Skip to contents

plot estimated and true CDFs for seroconversion date distribution

Usage

plot_CDF(true_hazard_alpha, true_hazard_beta, omega.hat)

Arguments

true_hazard_alpha

The data-generating hazard at the start of the study

true_hazard_beta

The change in data-generating hazard per calendar year

omega.hat

tibble of estimated discrete hazards

Value

a ggplot

Examples

if (FALSE) {

hazard_alpha = 1
hazard_beta = 0.5
study_data <- simulate_interval_censoring(
  "hazard_alpha" = hazard_alpha,
  "hazard_beta" = hazard_beta)

# fit model:
EM_algorithm_outputs <- fit_joint_model(
  obs_level_data = study_data$obs_data,
  participant_level_data = study_data$pt_data
)
plot1 = plot_CDF(
  true_hazard_alpha = hazard_alpha,
  true_hazard_beta = hazard_beta,
  omega.hat = EM_algorithm_outputs$Omega)

print(plot1)
}