Fit model using uniform imputation
Usage
fit_uniform_model(
participant_level_data,
obs_level_data,
maxit = 1000,
tolerance = 1e-08,
n_imputations = 10
)
Arguments
- participant_level_data
a data.frame or tibble with the following variables:
ID: participant ID
E: study enrollment date
L: date of last negative test for seroconversion
R: date of first positive test for seroconversion
Cohort` (optional): this variable can be used to stratify the modeling of the seroconversion distribution.
- obs_level_data
a data.frame or tibble with the following variables:
ID: participant ID
O: biomarker sample collection dates
Y: MAA classifications (binary outcomes)
- maxit
maximum iterations, passed to
bigglm
- tolerance
convergence criterion, passed to
bigglm
- n_imputations
number of imputed data sets to create
Examples
sim_data = simulate_interval_censoring(
"theta" = c(0.986, -3.88),
"study_cohort_size" = 4500,
"preconversion_interval_length" = 365,
"hazard_alpha" = 1,
"hazard_beta" = 0.5)
theta_est_midpoint = fit_uniform_model(
obs_level_data = sim_data$obs_data,
participant_level_data = sim_data$pt_data
)