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Preface

This web-book is derived from my lecture slides for Epidemiology 204: “Quantitative
Epidemiology III: Statistical Models”, at UC Davis.

I have drawn these materials from many sources, including but not limited to:

• David Rocke1’s materials from the 2021 edition of this course2

• Hua Zhou3’s materials from the 2020 edition of Biostat 200C at UCLA4

• Vittinghoff et al. (2012)

• Dobson and Barnett (2018)

• Harrell (2015)

Exclamation Important

I do not claim any of this content as my own original intellectual work. I have
attempted to provide more detailed disclaimers for specific sections that are heavily
derivative of, or even copied directly from, external sources.
Please see also the list of contributors on GitHub: https://github.com/d-morrison/
rme/graphs/contributors

Using these lecture notes

These lecture notes are available online at https://d-morrison.github.io/rme/. The online
notes are searchable and are currently being iteratively updated5. A pdf version of the
notes is also downloadable from https://d-morrison.github.io/rme/Regression-Models-for-
Epidemiology.pdf, and the source files are available at https://github.com/d-morrison/
rme.

Compiling chapters as lecture slide decks

Each chapter’s source file can also be compiled as a lecture slide deck, using the _quarto-
revealjs.yml6 Quarto profile7 included in the git repository on Github8.

For example, to compile Chapter 3 as a slide deck:

1https://dmrocke.ucdavis.edu/
2https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
3https://hua-zhou.github.io/
4https://ucla-biostat-200c-2020spring.github.io/schedule/schedule.html
5see the source file repository for recent changes: https://github.com/d-morrison/rme
6https://github.com/d-morrison/rme/blob/main/_quarto-revealjs.yml
7https://quarto.org/docs/projects/profiles.html
8https://github.com/d-morrison/rme
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Using these lecture notes

1) install quarto9

2) clone the project repository from Github10

3) Install the project dependencies using devtools:

library(devtools) # install from CRAN if needed
devtools::install_deps()

4) Render the chapter using the revealjs profile using the following terminal shell
command:

quarto render logistic-regression.qmd --profile=revealjs

You can also render all the chapters listed in the _quarto-revealjs.yml11 Quarto profile12

as slide decks simultaneously:

quarto render --profile=revealjs

Extracting LaTeX commands from the online version of the notes

If you want to extract the LaTeX commands for any math expressions in the online lecture
notes, you should be able to right-click and get this pop-up menu:

Figure 1.: Pop-up menu produced by right-clicking on math in online notes

If you select “TeX commands”, you will get a window with LaTeX code.13

9https://quarto.org/docs/get-started/
10https://github.com/d-morrison/rme
11https://github.com/d-morrison/rme/blob/main/_quarto-revealjs.yml
12https://quarto.org/docs/projects/profiles.html
13MathJax14 is more or less a dialect of LaTeX
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Using these lecture notes

Figure 2.: LaTeX source code window

You can also grab the TeX commands from the quarto source files on github, but those
files use custom macros (defined in https://github.com/d-morrison/rme/blob/main/macros.
qmd), so it’s a little harder to reuse code from the source files.

Dark Mode

The online notes have two color palette themes: light and dark. You can toggle between
them using the oval button near the top-left corner:

Figure 3.: Palette toggle

3

https://github.com/d-morrison/rme/blob/main/macros.qmd
https://github.com/d-morrison/rme/blob/main/macros.qmd


Other resources

Other resources

These notes represent my still-developing perspective on regression models in epidemiology.
Many other statisticians and epidemiologists have published their own perspectives, and I
encourage you to explore your many options and find ones that resonate with you. I have
attempted to cite my sources throughout these notes.

Here are some additional resources that I’ve come across; I haven’t had time to read some
of them thoroughly yet, but they’re all on my to-do list. I’ll add my thoughts on them over
time.

• Dobson and Barnett (2018) is a classic textbook on GLMs. It was used in UCLA
Biostatistics’s MS-level GLMs course (Biostat 200C) when I took it, and it helped
me a lot. It is fairly mathematically rigorous and concise, bordering on terse. It
covers GLMs in detail, and survival analysis briefly, and it also has helpful chapters
on Bayesian methods. I have adapted examples and explanations from it extensively
in these notes.

• Wakefield (2013) covers GLMs and hierarchical models using both Bayesian and
frequentist inference;

– statistics PhD level
– author: UW biostatistics professor Jon Wakefield15

– used in UCLA Biostat 250C16

• Hosmer, Lemeshow, and Sturdivant (2013) is a classic text on logistic regression. I
haven’t read it yet.

• Agresti (2012) is another classic text for GLMs. I haven’t read it yet.

• Agresti (2018) appears to be a more applied version of Agresti (2012). I haven’t
read it yet. There are extra exercises17 and other resources available on the Student
Companion Site18

• Agresti (2015) has “More than 400 exercises for readers to practice and extend the
theory, methods, and data analysis”; might be more theoretical?

• Agresti (2010) is specifically about ordinal data.

• Dunn and Smyth (2018) is a recent textbook on GLMs. It doesn’t cover time-to-event
models, and it doesn’t use the modern tidyverse19 packages (ggplot220, dplyr21,
etc.), but otherwise it seems great. Edelmann (2019) reviews this book formally.

• Moore (2016) is a recent textbook on survival analysis. It also doesn’t use the
tidyverse, but otherwise seems great.

15https://www.biostat.washington.edu/people/jon-wakefield
16https://donatello-telesca.com/biostatistics-251-
17https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=11293&itemId=1119405262&resourceId=

44770
18https://bcs.wiley.com/he-bcs/Books?action=index&itemId=1119405262&bcsId=11293
19https://tidyverse.org/
20https://ggplot2.tidyverse.org/
21https://dplyr.tidyverse.org/
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https://ggplot2.tidyverse.org/
https://dplyr.tidyverse.org/


Other resources

• Klein and Moeschberger (2003) is a classic text for survival analysis. I read most
of it in grad school, and it was very helpful. Examples and explanations from it
are borrowed extensively in the second half of these notes (partially filtered through
David Rocke’s course notes.)

• Kalbfleisch and Prentice (2011) is another classic survival analysis text; I haven’t read
it yet.

• David G. Kleinbaum and Klein (2010) is a mostly applied-level “self-learning” text
for logistic regression; I read it cover-to-cover before grad school, and found it very
helpful.

• David G. Kleinbaum and Klein (2012) is the corresponding “self-learning” text for
survival analysis; I read it cover-to-cover before grad school, and found it very helpful.

• David G. Kleinbaum, Kupper, and Morgenstern (1982), by the same authors, has a
solutions manual (David G. Kleinbaum, Kupper, and Morgenstern (1983))

• David G. Kleinbaum et al. (2014) is also by the same group, in a similar style

• Harrell (2015) is another popular textbook. It uses ggplot222 but not dplyr23,
and covers logistic regression and survival analysis (no Poisson or NB models?).
An abbreviated but continuously updated version with audio clips is available at
https://hbiostat.org/rmsc/.

• Fox (2015) is another standard text. 24

• McCullagh and Nelder (1989) is a classic, theoretical textbook on GLMs 25

• Dalgaard (2008) covers GLMs and survival analysis at an applied level, using base R

• Vittinghoff et al. (2012) covers GLMs, survival analysis, and causal inference, using
Stata. The authors are UCSF professors, and it is used for the core Epi PhD courses
there. I read this book nearly cover-to-cover before grad school, and it was hugely
helpful for me, both for statistical modeling and for causal inference (I think it
provided my first exposure to DAGs).

• McCulloch, Searle, and Neuhaus (2008) is also by UCSF professors

• Faraway (2016) has GLMs but not survival analysis

• Selvin (2001) provides worked-out examples of applications for a wide range of
statistical analysis techniques. The Author26 is a retired UC Berkeley Biostatistics
professor; he used it in a graduate-level biostat/epi course.

• Selvin (2004) is by the same author

– recommended by Jewell (2003) for Poisson regression

• Jewell (2003) is by another UC Berkeley professor27; it mostly covers logistic regression,
with one chapter on survival analysis.

22https://ggplot2.tidyverse.org/
23https://dplyr.tidyverse.org/
24I don’t have anything to say about this book, because I haven’t opened it yet, but I’ve heard it’s great!
25haven’t opened it either
26https://publichealth.berkeley.edu/people/steve-selvin
27https://publichealth.berkeley.edu/people/nicholas-jewell
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Other resources

• https://ucla-biostat-200c-2020spring.github.io/schedule/schedule.html provides
course notes for “Biostat 200C - Methods in Biostatistics C” at UCLA, which is at
the Biostatistics MS level.

• https://online.stat.psu.edu/stat504/book/ provides course notes for “STAT 504 -
Analysis of Discrete Data” at Penn State University. It includes logistic regression
and Poisson regression, as well as 2-way tables and other related topics, and includes
SAS code.

• Nahhas (2024) is currently in-development

• Clayton and Hills (2013) covers binary regression, count regression, and survival
analysis. Haven’t started it yet.

• https://thomaselove.github.io/2020-432-book/index.html is another set of lecture
notes.

• Woodward (2013) covers GLMs and survival; haven’t read it yet, but it looks compre-
hensive.

• Roback and Legler (2021) is recent and uses the tidyverse; doesn’t appear to cover
survival analysis.

• Wood (2017) is about generalized additive models but includes a detailed summary of
GLMs.

• Kutoyants (2023) appears to be a complete book on Poisson models.

• Hardin and Hilbe (2018) uses Stata.

• Andrews and Herzberg (2012) is a classic “learn-by-example” book with many datasets
amenable to GLMs

• Cannell and Livingston (2024) is another open-source, online textbook like this
one; it is primarily about statistical programming, but it includes full chapters on
linear regression28, logistic regression29, and Poisson regression30. There is currently
(2024/06) a placeholder chapter for survival analysis31.

• Gelman and Hill (2007) covers GLMs as well as hierarchical extensions of GLMs. No
survival models?

• In-development new Gelman et al book: https://bookdown.org/jl5522/MRP-case-
studies/

• Soch (2023) is a collection of proofs for results in probability, statistics, and related
computational sciences.

• Suárez et al. (2017) covers GLMs but not survival analysis

• Greenland (2014) is a lengthy chapter from the Handbook of Epidemiology

• Rothman et al. (2021) contains several chapters on regression analyses in epidemiology

• Rawlings, Pantula, and Dickey (1998) is used in PLS 20632

28https://www.r4epi.com/linear-regression
29https://www.r4epi.com/linear-regression-1
30https://www.r4epi.com/poisson-regression
31https://www.r4epi.com/cox-proportional-hazards-regression
32https://catalog.ucdavis.edu/search/?q=PLS+206
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License

• Bolker (2008) is used in PLS 20733

• Ken Rice34’s slides from Stat/Biostat 570 at University of Washington are also useful:
https://drive.google.com/file/d/1VwosGvHtRtKnC7P3ja7RAUawvvudgc9T/view

Other similar courses at UC Davis:

• MPM 20235, 20336, 20437 “Medical Statistics I-III”
• PHR 266/SPH 26638 “Applied Analytic Epidemiology”

– covers similar content; that course was designed for professional Master’s students
(e.g., MPVM, MPH) and does not assume a knowledge of mathematical statistics.

• PLS 20639 “Applied Multivariate Modeling in Agricultural & Environmental Sciences”
• STA 10140 “Advanced Applied Statistics for the Biological Sciences”
• STA 13841 “Analysis of Categorical Data”

– emphasizes methods for analyzing categorical outcomes and predictors (i.e. con-
tingency tables).

• STA 20742 “Statistical Methods for Research II”

License

This book is licensed to you under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License43.

The code samples in this book are licensed under Creative Commons CC0 1.0 Universal
(CC0 1.0)44, i.e. public domain.

33https://catalog.ucdavis.edu/search/?q=PLS+207
34https://www.biostat.washington.edu/people/ken-rice
35https://catalog.ucdavis.edu/search/?q=MPM+202
36https://catalog.ucdavis.edu/search/?q=MPM+203
37https://catalog.ucdavis.edu/search/?q=MPM+204
38https://catalog.ucdavis.edu/search/?q=PHR+266
39https://catalog.ucdavis.edu/search/?q=PLS+206
40https://catalog.ucdavis.edu/search/?q=STA+101
41https://catalog.ucdavis.edu/search/?q=STA+138
42https://catalog.ucdavis.edu/search/?q=STA+207
43http://creativecommons.org/licenses/by-nc-nd/4.0/
44https://creativecommons.org/publicdomain/zero/1.0/
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1. Introduction

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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1. Introduction

ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

1.1. Welcome

Welcome to Epidemiology 204: Quantitative Epidemiology III (Statistical Models).

Epi 204 is a course on regression modeling.

1.2. What you should already know

Exclamation-Triangle Warning

Epi 202, Epi 203, and Sta 108 are prerequisites for this course. If you haven’t passed
one of these courses, talk to me ASAP.

1.2.1. Epi 202: probability models

• Probability distributions

– binomial
– Poisson
– Gaussian
– exponential

• Characteristics of probability distributions

– Mean, median, mode, quantiles
– Variance, standard deviation, overdispersion

9



1. Introduction

• Characteristics of samples

– independence, dependence, covariance, correlation
– ranks, order statistics
– identical vs nonidentical distribution (homogeneity vs heterogeneity)
– Laws of Large Numbers
– Central Limit Theorem for the mean of an iid sample

1.2.2. Epi 203: inference for one or several homogenous populations

• the maximum likelihood inference framework:

– likelihood functions
– log-likelihood functions
– score functions
– estimating equations
– information matrices
– point estimates
– standard errors
– confidence intervals
– hypothesis tests
– p-values

• Hypothesis tests for one, two, and >2 groups:

– t-tests/ANOVA for Gaussian models
– chi-square tests for binomial and Poisson models
– nonparametric tests:

∗ Wilcoxon signed-rank test for matched pairs
∗ Mann–Whitney/Kruskal-Wallis rank sum test for ≥ 2 independent samples
∗ Fisher’s exact test for contingency tables
∗ Cochran–Mantel–Haenszel-Cox log-rank test

For all of the quantities above, and especially for confidence intervals and p-values, you
should know how both:

• how to compute them
• how to interpret them

10



1. Introduction

1.2.3. Stat 108: linear regression models

• building models for Gaussian outcomes

– multiple predictors
– interactions

• regression diagnostics
• fundamentals of R programming; e.g.:

– Wickham, Çetinkaya-Rundel, and Grolemund (2023)
– Dalgaard (2008)

• RMarkdown or Quarto for formatting homework1

– LaTeX for writing math in RMarkdown/Quarto

1.3. What we will cover in this course

• Linear (Gaussian) regression models (review and more details)

• Regression models for non-Gaussian outcomes

– binary
– count
– time to event

• Statistical analysis using R

We will start where Epi 203 left off: with linear regression models.

1.4. Motivations for regression models

Exercise 1.1. Why do we need regression models?

Solution 1.1.

• when there’s not enough data to analyze every subgroup of interest individually

• especially when subgroups are defined using continuous predictors

1https://r4ds.hadley.nz/quarto
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1. Introduction

1.4.1. Example: Adelie penguins
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Figure 1.1.: Palmer penguins

1.4.2. Linear regression

ggpenguins2 <-
ggpenguins +
stat_smooth(

method = "lm",
formula = y ~ x,
geom = "smooth"

)

ggpenguins2 |> print()
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Figure 1.2.: Palmer penguins with linear regression fit

1.4.3. Curved regression lines

ggpenguins2 <- ggpenguins +
stat_smooth(

method = "lm",
formula = y ~ log(x),
geom = "smooth"

) +
xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2
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Figure 1.3.: Palmer penguins - curved regression lines

1.4.4. Multiple regression

ggpenguins <-
palmerpenguins::penguins |>
ggplot(

aes(
x = bill_length_mm,
y = body_mass_g,
color = species

)
) +
geom_point() +
stat_smooth(

method = "lm",
formula = y ~ x,
geom = "smooth"

) +
xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins |> print()
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Figure 1.4.: Palmer penguins - multiple groups

15



1. Introduction

1.4.5. Modeling non-Gaussian outcomes

library(glmx)
data(BeetleMortality)
beetles <- BeetleMortality |>
mutate(

pct = died / n,
survived = n - died

)

plot1 <-
beetles |>
ggplot(aes(x = dose, y = pct)) +
geom_point(aes(size = n)) +
xlab("Dose (log mg/L)") +
ylab("Mortality rate (%)") +
scale_y_continuous(labels = scales::percent) +
# xlab(bquote(log[10]), bquote(CS[2])) +
scale_size(range = c(1, 2))

print(plot1)
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Figure 1.5.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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1.4.6. Why don’t we use linear regression?

beetles_long <-
beetles |>
reframe(

.by = everything(),
outcome = c(

rep(1, times = died),
rep(0, times = survived)

)
)

lm1 <-
beetles_long |>
lm(

formula = outcome ~ dose,
data = _

)

range1 <- range(beetles$dose) + c(-.2, .2)

f_linear <- function(x) predict(lm1, newdata = data.frame(dose = x))

plot2 <-
plot1 +
geom_function(fun = f_linear, aes(col = "Straight line")) +
labs(colour = "Model", size = "")

print(plot2)
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Figure 1.6.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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1.4.7. Zoom out
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Figure 1.7.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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1.4.8. log transformation of dose?

lm2 <-
beetles_long |>
lm(formula = outcome ~ log(dose), data = _)

f_linearlog <- function(x) predict(lm2, newdata = data.frame(dose = x))

plot3 <- plot2 +
expand_limits(x = c(1.6, 2)) +
geom_function(fun = f_linearlog, aes(col = "Log-transform dose"))

print(plot3 + expand_limits(x = c(1.6, 2)))
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Figure 1.8.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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1.4.9. Logistic regression

glm1 <- beetles |>
glm(formula = cbind(died, survived) ~ dose, family = "binomial")

f <- function(x) {
glm1 |>

predict(newdata = data.frame(dose = x), type = "response")
}

plot4 <- plot3 + geom_function(fun = f, aes(col = "Logistic regression"))
print(plot4)
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Figure 1.9.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)

1.5. Structure of regression models

Exercise 1.2. What is a regression model?

Definition 1.1 (Regression model). Regression models are conditional probability distri-
bution models:

P(𝑌 |𝑋̃)
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Exercise 1.3. What are some of the names used for the variables in a regression model
P(𝑌 |𝑋̃)?

Definition 1.2 (Outcome). The outcome variable in a regression model is the variable
whose distribution is being described; in other words, the variable on the left-hand side of
the “|” (“pipe”) symbol.

The outcome variable is also called the response variable, regressand, predicted
variable, explained variable, experimental variable, output variable, dependent
variable, endogenous variables, target, or label.

and is typically denoted 𝑌.

Definition 1.3 (Predictors). The predictor variables in a regression model are the con-
ditioning variables defining subpopulations among which the outcome distribution might
vary.

Predictors are also called regressors, covariates, independent variables, explanatory
variables, risk factors, exposure variables, input variables, exogenous variables,
candidate variables (Dunn and Smyth (2018)), carriers (Dunn and Smyth (2018)),
manipulated variables, or features and are typically denoted 𝑋̃. 2

Table 1.1.: Common pairings of terms for variables 𝑋̃ and 𝑌 in regression models 𝑃(𝑌 |𝑋̃) 4

𝑋̃ 𝑌 usual context

input output
independent dependent
predictor predicted or response
explanatory explained
exogenous endogenous econometrics
manipulated measured randomized controlled experiments
exposure outcome epidemiology
feature label or target machine learning

Exercise 1.4. What is the general structure of a generalized linear model?
2The “~” (“tilde”) symbol in the notation 𝑋̃ indicates that 𝑋̃ is a vector. See the appendices3 for a table

of notation used in these notes.
4adapted from https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Synonyms
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Solution 1.2. Generalized linear models have three components:

1. The outcome distribution family: p(𝑌 |𝜇( ̃𝑥))

2. The link function: 𝑔(𝜇( ̃𝑥)) = 𝜂( ̃𝑥)

3. The linear component: 𝜂( ̃𝑥) = ̃𝑥 ⋅ 𝛽

1. The outcome distribution family (a.k.a. the random component of the model)

• Gaussian (normal)
• Binomial
• Poisson
• Exponential
• Gamma
• Negative binomial

2. The linear component (a.k.a. the linear predictor or linear functional form)
describing how the covariates combine to define subpopulations:

𝜂( ̃𝑥) def= ̃𝑥⊤ ̃𝛽 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ...

3. The link function relating the outcome distribution to the linear component, typically
through the mean:

• identity: 𝜇(𝑦) = 𝜂( ̃𝑥)
• logit: log{ 𝜇(𝑦)

1−𝜇(𝑦)} = 𝜂( ̃𝑥)
• log: log{𝜇(𝑦)} = 𝜂( ̃𝑥)
• inverse: (𝜇(𝑦))−1 = 𝜂( ̃𝑥)
• clog-log: log{−log{1 − 𝜇(𝑦)}} = 𝜂( ̃𝑥)

Components 2 and 3 together are sometimes called the systematic component of the
model (for example, in Dunn and Smyth (2018)).
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Generalized Linear Models
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This section is primarily adapted starting from the textbook “An Introduction to Generalized
Linear Models” (4th edition, 2018) by Annette J. Dobson and Adrian G. Barnett:

https://doi.org/10.1201/9781315182780

The type of predictive model one uses depends on several issues; one is the type of response.

• Measured values such as quantity of a protein, age, weight usually can be handled in
an ordinary linear regression model, possibly after a log transformation.

• Patient survival, which may be censored, calls for a different method (survival analysis,
Cox regression).

• If the response is binary, then can we use logistic regression models

• If the response is a count, we can use Poisson regression

• If the count has a higher variance than is consistent with the Poisson, we can use a
negative binomial or over-dispersed Poisson

• Other forms of response can generate other types of generalized linear models

We need a linear predictor of the same form as in linear regression 𝛽𝑥. In theory, such a
linear predictor can generate any type of number as a prediction, positive, negative, or
zero

We choose a suitable distribution for the type of data we are predicting (normal for any
number, gamma for positive numbers, binomial for binary responses, Poisson for counts)

We create a link function which maps the mean of the distribution onto the set of all
possible linear prediction results, which is the whole real line (−∞,∞). The inverse of the
link function takes the linear predictor to the actual prediction.

• Ordinary linear regression has identity link (no transformation by the link function)
and uses the normal distribution

• If one is predicting an inherently positive quantity, one may want to use the log link
since ex is always positive.

• An alternative to using a generalized linear model with a log link, is to transform the
data using the log. This is a device that works well with measurement data and may
be usable in other cases, but it cannot be used for 0/1 data or for count data that
may be 0.

Table 1.2.: R glm() Families

Family Links

gaussian identity, log, inverse
binomial logit, probit, cauchit, log, cloglog
gamma inverse, identity, log
inverse.gaussian 1/mu^2, inverse, identity, log
Poisson log, identity, sqrt
quasi identity, logit, probit, cloglog, inverse, log,

1/mu^2 and sqrt
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Family Links

quasibinomial logit, probit, identity, cloglog, inverse, log,
1/mu^2 and sqrt

quasipoisson log, identity, logit, probit, cloglog, inverse,
1/mu^2 and sqrt

Table 1.3.: R glm() Link Functions; 𝜂 = 𝑋𝛽 = 𝑔(𝜇)

Name Domain Range Link Function Inverse Link Function

iden-
tity

(−∞,∞) (−∞,∞) 𝜂 = 𝜇. 𝜇 = 𝜂

log (0,∞) (−∞,∞) 𝜂 = log𝜇 𝜇 = exp{𝜂}
inverse (0,∞) (0,∞) 𝜂 = 1/𝜇 𝜇 = 1/𝜂
logit (0, 1) (−∞,∞) 𝜂 = log𝜇/(1 − 𝜇) 𝜇 =

exp{𝜂}/(1 + exp{𝜂})
probit (0, 1) (−∞,∞) 𝜂 = Φ−1(𝜇) 𝜇 = Φ(𝜂)
cloglog (0, 1) (−∞,∞) 𝜂 = log− log 1 − 𝜇 𝜇 = 1 − exp{−exp{𝜂}}
1/mu^2 (0,∞) (0,∞) 𝜂 = 1/𝜇2 𝜇 = 1/√𝜂
sqrt (0,∞) (0,∞) 𝜂 = √𝜇 𝜇 = 𝜂2
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2. Linear (Gaussian) Models

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

include_reference_lines <- FALSE

INFO Note

This content is adapted from:

• Dobson and Barnett (2018), Chapters 2-6
• Dunn and Smyth (2018), Chapters 2-3
• Vittinghoff et al. (2012), Chapter 4

There are numerous textbooks specifically for linear regression, including:

• Kutner et al. (2005): used for UCLA Biostatistics MS level linear models class
• Chatterjee and Hadi (2015): used for Stanford MS-level linear models class
• Seber and Lee (2012): used for UCLA Biostatistics PhD level linear models class

and UC Davis STA 108.
• David G. Kleinbaum et al. (2014): same first author as David G. Kleinbaum

and Klein (2010) and David G. Kleinbaum and Klein (2012)
• Linear Models with R (Faraway 2025)
• Applied Linear Regression by Sanford Weisberg (Weisberg 2005)

For more recommendations, see the discussion on Reddita.

• see also https://web.stanford.edu/class/stats191 1

ahttps://www.reddit.com/r/statistics/comments/qwgctl/q_books_on_applied_linear_
modelsregression_for/

1the current version of the first regression course I ever took
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2. Linear (Gaussian) Models

2.1. Overview

2.1.1. Why this course includes linear regression

• This course is about generalized linear models (for non-Gaussian outcomes)

• UC Davis STA 108 (“Applied Statistical Methods: Regression Analysis”) is a pre-
requisite for this course, so everyone here should have some understanding of linear
regression already.

• We will review linear regression to:
• make sure everyone is caught up
• to provide an epidemiological perspective on model interpretation.

2.1.2. Chapter overview

• Section 2.2: how to interpret linear regression models

• Section 2.3: how to estimate linear regression models

• Section 2.4: how to quantify uncertainty about our estimates

• Section 2.8: how to tell if your model is insufficiently complex

2.2. Understanding Gaussian Linear Regression Models

2.2.1. Motivating example: birthweights and gestational age

Suppose we want to learn about the distributions of birthweights (outcome 𝑌) for (human)
babies born at different gestational ages (covariate 𝐴) and with different chromosomal sexes
(covariate 𝑆) (Dobson and Barnett (2018) Example 2.2.2).

2.2.2. Dobson birthweight data

2.2.2.1. Data as table

2.2.2.2. Reshape data for graphing

2.2.2.3. Data as graph

plot1 <- bw |>
ggplot(aes(

x = age,
y = weight,
shape = sex,
col = sex

)) +
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Table 2.1.: birthweight data (Dobson and Barnett (2018) Example 2.2.2)

library(dobson)
data("birthweight", package = "dobson")
birthweight
#> # A tibble: 12 x 4
#> `boys gestational age` `boys weight` `girls gestational age` `girls weight`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 40 2968 40 3317
#> 2 38 2795 36 2729
#> 3 40 3163 40 2935
#> 4 35 2925 38 2754
#> 5 36 2625 42 3210
#> 6 37 2847 39 2817
#> 7 41 3292 40 3126
#> 8 40 3473 37 2539
#> 9 37 2628 36 2412
#> 10 38 3176 38 2991
#> 11 40 3421 39 2875
#> 12 38 2975 40 3231

theme_bw() +
xlab("Gestational age (weeks)") +
ylab("Birthweight (grams)") +
theme(legend.position = "bottom") +
# expand_limits(y = 0, x = 0) +
geom_point(alpha = .7)

print(plot1 + facet_wrap(~sex))
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2. Linear (Gaussian) Models

Table 2.2.: birthweight data reshaped

library(tidyverse)
bw <-
birthweight |>
pivot_longer(

cols = everything(),
names_to = c("sex", ".value"),
names_sep = "s "

) |>
rename(age = `gestational age`) |>
mutate(

id = row_number(),
sex = sex |>

case_match(
"boy" ~ "male",
"girl" ~ "female"

) |>
factor(levels = c("female", "male")),

male = sex == "male",
female = sex == "female"

)

bw
#> # A tibble: 24 x 6
#> sex age weight id male female
#> <fct> <dbl> <dbl> <int> <lgl> <lgl>
#> 1 male 40 2968 1 TRUE FALSE
#> 2 female 40 3317 2 FALSE TRUE
#> 3 male 38 2795 3 TRUE FALSE
#> 4 female 36 2729 4 FALSE TRUE
#> 5 male 40 3163 5 TRUE FALSE
#> 6 female 40 2935 6 FALSE TRUE
#> 7 male 35 2925 7 TRUE FALSE
#> 8 female 38 2754 8 FALSE TRUE
#> 9 male 36 2625 9 TRUE FALSE
#> 10 female 42 3210 10 FALSE TRUE
#> # i 14 more rows
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female male
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Figure 2.1.: birthweight data (Dobson and Barnett (2018) Example 2.2.2)

2.2.2.4. Data notation

Let’s define some notation to represent this data:

• 𝑌: birthweight (measured in grams)
• 𝑆: chromosomal sex: “male” (XY) or “female” (XX)
• 𝑀: indicator variable for 𝑆 = “male”2

• 𝑀 = 0 if 𝑆 = “female”
• 𝑀 = 1 if 𝑆 = “male”
• 𝐹: indicator variable for 𝑆 = “female”3

• 𝐹 = 1 if 𝑆 = “female”
• 𝐹 = 0 if 𝑆 = “male”
• 𝐴: estimated gestational age at birth (measured in weeks).

Female is the reference level for the categorical variable 𝑆 (chromosomal sex) and
corresponding indicator variable 𝑀 . The choice of a reference level is arbitrary and does
not limit what we can do with the resulting model; it only makes it more computationally
convenient to make inferences about comparisons involving that reference group.

𝑀 and 𝐹 are called dummy variables; together, they are a numeric representation of the
categorical variable 𝑆. Dummy variables with values 0 and 1 are also called indicator

2𝑀 is implicitly a deterministic function of 𝑆
3𝐹 is implicitly a deterministic function of 𝑆
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2. Linear (Gaussian) Models

variables. There are other ways to construct dummy variables, such as using the values -1
and 1 (see Dobson and Barnett (2018) §2.4 for details).

2.2.3. Parallel lines regression

(c.f. Dunn and Smyth (2018) §2.10.34)

We don’t have enough data to model the distribution of birth weight separately for each
combination of gestational age and sex, so let’s instead consider a (relatively) simple model
for how that distribution varies with gestational age and sex:

𝑌 |𝑀,𝐴 ∼ciid 𝑁(𝜇(𝑀,𝐴), 𝜎2)
𝜇(𝑚, 𝑎) = 𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎

(2.1)

Table 2.3 shows the parameter estimates from R. Figure 2.2 shows the estimated model,
superimposed on the data.

bw_lm1 <- lm(
formula = weight ~ sex + age,
data = bw

)

library(parameters)
bw_lm1 |>
parameters::parameters() |>
parameters::print_md(

include_reference = include_reference_lines,
select = "{estimate}"

)

Table 2.3.: Regression parameter estimates for Model 2.1 of birthweight data

Parameter Coefficient

(Intercept) -1773.32
sex (male) 163.04
age 120.89

4https://link.springer.com/chapter/10.1007/978-1-4419-0118-7_2#Sec31
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2. Linear (Gaussian) Models

bw <-
bw |>
mutate(`E[Y|X=x]` = fitted(bw_lm1)) |>
arrange(sex, age)

plot2 <-
plot1 %+% bw +
geom_line(aes(y = `E[Y|X=x]`))

print(plot2)
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Figure 2.2.: Graph of Model 2.1 for birthweight data

2.2.3.1. Model assumptions and predictions

To learn what this model is assuming, let’s plug in a few values.

Exercise 2.1. What’s the mean birthweight for a female born at 36 weeks?

Table 2.4.: Estimated coefficients for model 2.1

Parameter Coefficient

(Intercept) -1773.32
sex (male) 163.04
age 120.89
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Solution.

Table 2.5.: Estimated coefficients for model 2.1

Parameter Coefficient

(Intercept) -1773.32
sex (male) 163.04
age 120.89

pred_female <- coef(bw_lm1)["(Intercept)"] + coef(bw_lm1)["age"] * 36
### or using built-in prediction:
pred_female_alt <- predict(bw_lm1, newdata = tibble(sex = "female", age = 36))

𝐸[𝑌 |𝑀 = 0,𝐴 = 36] = 𝛽0 + (𝛽𝑀 ⋅ 0) + (𝛽𝐴 ⋅ 36)
= −1773.321839 + (163.039303 ⋅ 0) + (120.894327 ⋅ 36)
= 2578.873934

Exercise 2.2. What’s the mean birthweight for a male born at 36 weeks?

Table 2.6.: Estimated coefficients for model 2.1

Parameter Coefficient

(Intercept) -1773.32
sex (male) 163.04
age 120.89

Solution.

Table 2.7.: Estimated coefficients for model 2.1

Parameter Coefficient

(Intercept) -1773.32
sex (male) 163.04
age 120.89

pred_male <-
coef(bw_lm1)["(Intercept)"] +
coef(bw_lm1)["sexmale"] +
coef(bw_lm1)["age"] * 36
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𝐸[𝑌 |𝑀 = 1,𝐴 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36
= 2741.913237

Exercise 2.3. What’s the difference in mean birthweights between males born at 36 weeks
and females born at 36 weeks?

coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.322 163.039 120.894

Solution.
𝐸[𝑌 |𝑀 = 1,𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 36]
= 2741.913237 − 2578.873934
= 163.039303

Shortcut:

𝐸[𝑌 |𝑀 = 1,𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 36]
= (𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36) − (𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36)
= 𝛽𝑀

= 163.039303

Age cancels out in this difference. In other words, according to this model, the difference
between females and males with the same gestational age is the same for every age.

This characteristic is an assumption of the model specified by Equation 2.1. It’s hardwired
into the parametric model structure, even before we estimated values for those parameters.

2.2.3.2. Coefficient Interpretation

Recall Model 2.1:

𝐸[𝑌 |𝑀 = 𝑚,𝐴 = 𝑎] = 𝜇(𝑚, 𝑎) = 𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎

Slope (of the mean with respect to age) for males:

𝑑
𝑑𝑎

𝜇(1, 𝑎) = 𝑑
𝑑𝑎

(𝛽0 + 𝛽𝑀1 + 𝛽𝐴𝑎)

= ( 𝑑
𝑑𝑎

𝛽0 + 𝑑
𝑑𝑎

𝛽𝑀1 + 𝑑
𝑑𝑎

𝛽𝐴𝑎)

= (0 + 0 + 𝛽𝐴)
= 𝛽𝐴
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Slope for females:

𝑑
𝑑𝑎

𝜇(0, 𝑎) = 𝑑
𝑑𝑎

(𝛽0 + 𝛽𝑀0 + 𝛽𝐴𝑎)

= ( 𝑑
𝑑𝑎

𝛽0 + 𝑑
𝑑𝑎

𝛽𝑀0 + 𝑑
𝑑𝑎

𝛽𝐴𝑎)

= (0 + 0 + 𝛽𝐴)
= 𝛽𝐴

Exercise 2.4. What is the interpretation of 𝛽𝐴 in Model 2.1?

Solution.
𝑑
𝑑𝑎

𝜇(𝑚, 𝑎) = 𝑑
𝑑𝑎

(𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎)

= ( 𝑑
𝑑𝑎

𝛽0 + 𝑑
𝑑𝑎

𝛽𝑀𝑚+ 𝑑
𝑑𝑎

𝛽𝐴𝑎)

= (0 + 0 + 𝛽𝐴)
= 𝛽𝐴

Conclusion:

𝛽𝐴 = 𝑑
𝑑𝑎

𝜇(𝑚, 𝑎)

𝛽𝐴 is the slope of mean birthweight with respect to gestational age, adjusting for sex.

Or we can plug in the definition of slope:

𝛽𝐴 = 𝐸[𝑌 |𝑀 = 𝑚,𝐴 = 𝑎 + 1] − 𝐸[𝑌 |𝑀 = 𝑚,𝐴 = 𝑎]

Exchangeability and consistency have not been assessed; so we are not discussing potential
outcomes (causality), only observed outcomes.

Exercise 2.5. What is the interpretation of 𝛽𝑀 in Model 2.1?
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Solution.

More precisely written:

E[𝑌 |𝑀 = 𝑚,𝐴 = 𝑎] = 𝜇(𝑚, 𝑎) = {𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎, for 𝑚 ∈ {0, 1}
undefined, for 𝑚 ∉ {0, 1}

The model is undefined for 𝑚 ∉ {0, 1}, so the derivative with respect to 𝑚 doesn’t exist.

𝐸[𝑌 |𝑀 = 1,𝐴 = 𝑎] = 𝛽0 + 𝛽𝑀1 + 𝛽𝐴𝑎
= 𝛽0 + 𝛽𝑀 + 𝛽𝐴𝑎

𝐸[𝑌 |𝑀 = 0,𝐴 = 𝑎] = 𝛽0 + 𝛽𝑀0 + 𝛽𝐴𝑎
= 𝛽0 + 𝛽𝐴𝑎

So:

𝐸[𝑌 |𝑀 = 1,𝐴 = 𝑎] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 𝑎] = (𝛽0 + 𝛽𝑀 + 𝛽𝐴𝑎) − (𝛽0 + 𝛽𝐴𝑎)
= 𝛽𝑀

Therefore:
𝛽𝑀 = 𝐸[𝑌 |𝑀 = 1,𝐴 = 𝑎] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 𝑎]

= 𝜇(1, 𝑎) − 𝜇(0, 𝑎)

In words: 𝛽𝑀 is the difference in mean birthweight between males and females adjusting
for age.

Exercise 2.6. 𝛽0 = ?

Solution.
E[𝑌 |𝑀 = 0,𝐴 = 0] = 𝜇(0, 0)

= 𝛽0 + 𝛽𝑀0 + 𝛽𝐴0
= 𝛽0

𝛽0 = E[𝑌 |𝑀 = 0,𝐴 = 0] = 𝜇(0, 0)

𝛽0 is the mean birthweight for a female with gestational age 0 weeks.

2.2.4. Interactions

What if we don’t like that parallel lines assumption?

Then we need to allow an “interaction” between age 𝐴 and sex 𝑆:

𝐸[𝑌 |𝑆 = 𝑠,𝐴 = 𝑎] = 𝛽0 + 𝛽𝐴𝑎 + 𝛽𝑀𝑚+ 𝛽𝐴𝑀(𝑎 ⋅ 𝑚) (2.2)

Now, the slope of mean birthweight 𝐸[𝑌 |𝐴, 𝑆] with respect to gestational age 𝐴 depends
on the value of sex 𝑆.
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bw_lm2 <- lm(weight ~ sex + age + sex:age, data = bw)
bw_lm2 |>
parameters() |>
parameters::print_md(

include_reference = include_reference_lines,
select = "{estimate}"

)

Table 2.8.: Birthweight model with interaction term

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

bw <-
bw |>
mutate(

predlm2 = predict(bw_lm2)
) |>
arrange(sex, age)

plot1_interact <-
plot1 %+% bw +
geom_line(aes(y = predlm2))

print(plot1_interact)
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Figure 2.3.: Birthweight model with interaction term
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Now we can see that the lines aren’t parallel.

Here’s another way we could rewrite this model (by collecting terms involving 𝑆):

𝐸[𝑌 |𝑀,𝐴] = 𝛽0 + 𝛽𝑀𝑀 + (𝛽𝐴 + 𝛽𝐴𝑀𝑀)𝐴

If you want to understand a coefficient in a model with interactions, collect terms for the
corresponding variable, and you will see which other covariates interact with the variable
whose coefficient you are interested in. In this case, the association between 𝐴 (age) varies
between males and females (that is, by sex 𝑆). 5 So the slope of 𝑌 with respect to 𝐴
depends on the value of 𝑀. According to this model, there is no such thing as “the slope
of birthweight with respect to age”. There are two slopes, one for each sex. We can only
talk about “the slope of birthweight with respect to age among males” and “the slope
of birthweight with respect to age among females”. Then: each non-interaction slope
coefficient is the difference in means per unit difference in its corresponding variable, when
all interacting variables are set to 0.

To learn what this model is assuming, let’s plug in a few values.

Exercise 2.7. According to this model, what’s the mean birthweight for a female born at
36 weeks?

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

Solution.

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

5some call this kind of variation “interaction” or “effect modification”, but “act”, “effect”, “modify”, and
“by” all suggest causality, which we are not prepared to assess here; let’s try to avoid using causal terms,
unless we are constructing a causal model.
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pred_female <- coef(bw_lm2)["(Intercept)"] + coef(bw_lm2)["age"] * 36

𝐸[𝑌 |𝑀 = 0,𝑋2 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ (0 ∗ 36) = 2552.733333

Exercise 2.8. What’s the mean birthweight for a male born at 36 weeks?

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

Solution.

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

pred_male <-
coef(bw_lm2)["(Intercept)"] +
coef(bw_lm2)["sexmale"] +
coef(bw_lm2)["age"] * 36 +
coef(bw_lm2)["sexmale:age"] * 36

𝐸[𝑌 |𝑀 = 1,𝑋2 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 36
= 2762.706897

Exercise 2.9. What’s the difference in mean birthweights between males born at 36 weeks
and females born at 36 weeks?
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Solution.
𝐸[𝑌 |𝑀 = 1,𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 36]
= (𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 36)

− (𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 0 ⋅ 36)
= 𝛽𝑆 + 𝛽𝐴𝑀 ⋅ 36
= 209.973563

Note that age now does show up in the difference: in other words, according to this model,
the difference in mean birthweights between females and males with the same gestational
age can vary by gestational age.

That’s how the lines in the graph ended up non-parallel.

2.2.4.1. Coefficient Interpretation

Exercise 2.10. What is the interpretation of 𝛽𝑀 in Model 2.2?

Solution.

Mean birthweight among males with gestational age 0 weeks:

𝜇(1, 0) = E[𝑌 |𝑀 = 1,𝐴 = 0]
= 𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 0 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 0
= 𝛽0 + 𝛽𝑀

Mean birthweight among females with gestational age 0 weeks:

𝜇(0, 0) = E[𝑌 |𝑀 = 0,𝐴 = 0]
= 𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 0 + 𝛽𝐴𝑀 ⋅ 0 ⋅ 0
= 𝛽0

𝛽𝑀 = 𝜇(1, 0) − 𝜇(0, 0)
= E[𝑌 |𝑀 = 1,𝐴 = 0] − E[𝑌 |𝑀 = 0,𝐴 = 0]

𝛽𝑀 is the difference in mean birthweight between males with gestational age 0 weeks and
females with gestational age 0 weeks.

Exercise 2.11. What is the interpretation of 𝛽𝐴𝑀 in Model 2.2?
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Solution.

Slope among males:

𝜕
𝜕𝑎

𝜇(1, 𝑎) = 𝜕
𝜕𝑎

(𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 𝑎 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 𝑎)

= 𝜕
𝜕𝑎

(𝛽0 + 𝛽𝑀 + 𝛽𝐴 ⋅ 𝑎 + 𝛽𝐴𝑀 ⋅ 𝑎)

= 𝛽𝐴 + 𝛽𝐴𝑀

or
𝐸[𝑌 |1, 𝑎 + 1] − 𝐸[𝑌 |1, 𝑎] =𝛽0 + 𝛽𝑀1 + 𝛽𝐴(𝑎 + 1) + 𝛽𝐴𝑀1(𝑎 + 1)

− (𝛽0 + 𝛽𝑀1 + 𝛽𝐴(𝑎) + 𝛽𝐴𝑀1(𝑎))
=𝛽𝐴 + 𝛽𝐴𝑀

Slope among females:

𝜕
𝜕𝑎

𝜇(0, 𝑎) = 𝜕
𝜕𝑎

(𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 𝑎 + 𝛽𝐴𝑀 ⋅ 0 ⋅ 𝑎)

= 𝜕
𝜕𝑎

(𝛽0 + 𝛽𝐴 ⋅ 𝑎)

= 𝛽𝐴

or
𝐸[𝑌 |0, 𝑎 + 1] − 𝐸[𝑌 |0, 𝑎] =𝛽0 + 𝛽𝑀0 + 𝛽𝐴(𝑎 + 1) + 𝛽𝐴𝑀0(𝑎 + 1)

− (𝛽0 + 𝛽𝑀0 + 𝛽𝐴(𝑎) + 𝛽𝐴𝑀0(𝑎))
=𝛽0 + 𝛽𝐴(𝑎 + 1) − (𝛽0 + 𝛽𝐴(𝑎))
=𝛽𝐴

Difference in slopes:
𝜕
𝜕𝑎

𝜇(1, 𝑎) − 𝜕
𝜕𝑎

𝜇(0, 𝑎) = 𝛽𝐴 + 𝛽𝐴𝑀 − 𝛽𝐴

= 𝛽𝐴𝑀

or
(𝐸[𝑌 |1, 𝑎 + 1] − 𝐸[𝑌 |1, 𝑎]) − (𝐸[𝑌 |0, 𝑎 + 1] − 𝐸[𝑌 |0, 𝑎]) = 𝛽𝐴 + 𝛽𝐴𝑀 − 𝛽𝐴

= 𝛽𝐴𝑀

Therefore
𝛽𝐴𝑀 = 𝜕

𝜕𝑎
𝜇(1, 𝑎) − 𝜕

𝜕𝑎
𝜇(0, 𝑎)

=(𝐸[𝑌 |𝑀 = 1,𝐴 = 𝑎 + 1] − 𝐸[𝑌 |𝑀 = 1,𝐴 = 𝑎])
− (𝐸[𝑌 |𝑀 = 0,𝐴 = 𝑎 + 1] − 𝐸[𝑌 |𝑀 = 0,𝐴 = 𝑎])

𝛽𝐴𝑀 is the difference in slope of mean birthweight with respect to gestational age between
males and females.

2.2.4.2. Compare coefficient interpretations
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2. Linear (Gaussian) Models

Table 2.13.: Coefficient interpretations, by model structure

𝜇(𝑚, 𝑎) 𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎 𝛽0 + 𝛽𝑀𝑚+ 𝛽𝐴𝑎 + 𝛽𝐴𝑀𝑚𝑎

𝛽0 𝜇(0, 0) 𝜇(0, 0)
𝛽𝐴

𝜕
𝜕𝑎𝜇(𝑚, 𝑎) 𝜕

𝜕𝑎𝜇(0, 𝑎)
𝛽𝑀 𝜇(1, 𝑎) − 𝜇(0, 𝑎) 𝜇(1, 0) − 𝜇(0, 0)
𝛽𝐴𝑀

𝜕
𝜕𝑎𝜇(1, 𝑎) −

𝜕
𝜕𝑎𝜇(0, 𝑎)

In the model with an interaction term multiplying 𝐴×𝑀, the interpretation of 𝛽𝐴 involves the
reference level of 𝑀, and interpretation of 𝛽𝑀 involves the reference level of 𝐴 (Table 2.13).

2.2.5. Stratified regression

We could re-write the interaction model as a stratified model, with a slope and intercept
for each sex:

E[𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠] = 𝛽𝑀𝑚+ 𝛽𝐴𝑀(𝑎 ⋅ 𝑚) + 𝛽𝐹𝑓 + 𝛽𝐴𝐹(𝑎 ⋅ 𝑓) (2.3)

Compare this stratified model (Equation 2.3) with our interaction model, Equation 2.2:

E[𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠] = 𝛽0 + 𝛽𝐴𝑎 + 𝛽𝑀𝑚+ 𝛽𝐴𝑀(𝑎 ⋅ 𝑚)

In the stratified model, the intercept term 𝛽0 has been relabeled as 𝛽𝐹.

bw_lm2 <- lm(weight ~ sex + age + sex:age, data = bw)
bw_lm2 |>
parameters() |>
print_md(

include_reference = include_reference_lines,
select = "{estimate}"

)

Table 2.14.: Birthweight model with interaction term

Parameter Coefficient

(Intercept) -2141.67
sex (male) 872.99
age 130.40
sex (male) × age -18.42

bw_lm_strat <-
bw |>
lm(

formula = weight ~ sex + sex:age - 1,
data = _

)
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bw_lm_strat |>
parameters() |>
print_md(

select = "{estimate}"
)

Table 2.15.: Birthweight model - stratified betas

Parameter Coefficient

sex (female) -2141.67
sex (male) -1268.67
sex (female) × age 130.40
sex (male) × age 111.98

2.2.6. Curved-line regression

If we transform some of our covariates (𝑋s) and plot the resulting model on the original
covariate scale, we end up with curved regression lines:

bw_lm3 <- lm(weight ~ sex:log(age) - 1, data = bw)

ggbw <-
bw |>
ggplot(

aes(x = age, y = weight)
) +
geom_point() +
xlab("Gestational Age (weeks)") +
ylab("Birth Weight (g)")

ggbw2 <- ggbw +
stat_smooth(

method = "lm",
formula = y ~ log(x),
geom = "smooth"

) +
xlab("Gestational Age (weeks)") +
ylab("Birth Weight (g)")

ggbw2 |> print()
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Figure 2.4.: birthweight model with age entering on log scale

Below is an example with a slightly more obvious curve.

library(palmerpenguins)

ggpenguins <-
palmerpenguins::penguins |>
dplyr::filter(species == "Adelie") |>
ggplot(

aes(x = bill_length_mm, y = body_mass_g)
) +
geom_point() +
xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2 <- ggpenguins +
stat_smooth(

method = "lm",
formula = y ~ log(x),
geom = "smooth"

) +
xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2 |> print()
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Figure 2.5.: palmerpenguins model with bill_length entering on log scale

2.3. Estimating Linear Models via Maximum Likelihood

In EPI 203 and our review of MLEs, we learned how to fit outcome-only models of the form
𝑝(𝑋 = 𝑥|𝜃) to iid data ̃𝑥 = (𝑥1,…, 𝑥𝑛) using maximum likelihood estimation.

Now, we apply the same procedure to linear regression models:

2.3.1. Likelihood

ℒ𝑖
def= 𝑝(𝑌𝑖 = 𝑦𝑖|𝑋̃𝑖 = ̃𝑥𝑖)

= (2𝜋𝜎2)−1/2exp{− 1
2𝜎2 𝜀

2
𝑖 }

𝜀𝑖
def= 𝑦𝑖 − 𝜇𝑖

𝜇𝑖
def= 𝜇(𝑥𝑖)
= 𝑥𝑖 ⋅ 𝛽

ℒ def= ℒ( ̃𝑦|x, ̃𝛽, 𝜎2)
def= p( ̃𝑌 = ̃𝑦|X = x)

=
𝑛
∏
𝑖=1

ℒ𝑖

(2.4)
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2.3.2. Log-likelihood

ℓ𝑖
def= log{ℒ𝑖}

= log{(2𝜋𝜎2)−1/2exp{− 1
2𝜎2 𝜀

2
𝑖 }}

= −1
2

log{2𝜋𝜎2} − 1
2𝜎2 𝜀

2
𝑖

ℓ def= ℓ( ̃𝑦|x, 𝛽, 𝜎2)
def= log{ℒ( ̃𝑦|x, 𝛽, 𝜎2)}

= log{
𝑛
∏
𝑖=1

ℒ𝑖}

=
𝑛

∑
𝑖=1

log{ℒ𝑖}

=
𝑛

∑
𝑖=1

ℓ𝑖

=
𝑛

∑
𝑖=1

(−1
2

log{2𝜋𝜎2} − 1
2𝜎2 𝜀

2
𝑖 )

= −𝑛
2

log{2𝜋𝜎2} − 1
2𝜎2

𝑛
∑
𝑖=1

𝜀2
𝑖

= −𝑛
2

log{2𝜋𝜎2} − 1
2𝜎2 ( ̃𝜀 ⋅ ̃𝜀)

= −𝑛
2

log{2𝜋𝜎2} − 1
2𝜎2 (( ̃𝑦 − ̃𝜇) ⋅ ( ̃𝑦 − ̃𝜇))

= −𝑛
2

log{2𝜋𝜎2} − 1
2𝜎2 (( ̃𝑦 − X ̃𝛽) ⋅ ( ̃𝑦 − X ̃𝛽))

= −𝑛
2

log{2𝜋𝜎2} − 1
2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − ( ̃𝑥𝑖 ⋅ ̃𝛽))
2

(2.5)

2.3.3. Score function

𝜇′
𝑖

def= 𝜕
𝜕 ̃𝛽

𝜇𝑖

= 𝜕
𝜕 ̃𝛽

( ̃𝑥𝑖 ⋅ ̃𝛽)

= ( 𝜕
𝜕 ̃𝛽

̃𝛽) ̃𝑥𝑖

= 𝕀 ̃𝑥𝑖

= ̃𝑥𝑖
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𝜀′
𝑖

def= 𝜕
𝜕 ̃𝛽

𝜀𝑖

= 𝜕
𝜕 ̃𝛽

(𝑦𝑖 − 𝜇𝑖)

= 𝜕
𝜕 ̃𝛽

𝑦𝑖 −
𝜕
𝜕 ̃𝛽

𝜇𝑖

= 0 − ̃𝑥𝑖

= − ̃𝑥𝑖

ℓ′
𝑖

def= 𝜕
𝜕 ̃𝛽

ℓ𝑖

= 𝜕
𝜕 ̃𝛽

(−1
2

log{2𝜋𝜎2} − 1
2𝜎2 𝜀

2
𝑖 )

= 𝜕
𝜕 ̃𝛽

(−1
2

log{2𝜋𝜎2}) − 𝜕
𝜕 ̃𝛽

1
2𝜎2 𝜀

2
𝑖

= 0 − 1
2𝜎2

𝜕
𝜕 ̃𝛽

𝜀2
𝑖

= − 1
2𝜎2 2(𝜀

′
𝑖)𝜀𝑖

= − 1
𝜎2 (− ̃𝑥𝑖𝜀𝑖)

= 1
𝜎2 ̃𝑥𝑖𝜀𝑖

ℓ′
̃𝛽
def= 𝜕

𝜕 ̃𝛽
ℓ ̃𝛽

= 𝜕
𝜕 ̃𝛽

𝑛
∑
𝑖=1

ℓ𝑖

=
𝑛

∑
𝑖=1

𝜕
𝜕 ̃𝛽

ℓ𝑖

=
𝑛

∑
𝑖=1

ℓ′
𝑖

=
𝑛

∑
𝑖=1

1
𝜎2 ̃𝑥𝑖𝜀𝑖

= 1
𝜎2

𝑛
∑
𝑖=1

̃𝑥𝑖𝜀𝑖

= 1
𝜎2 X⊤ ̃𝜀
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2.3.4. Hessian

ℓ″
𝑖

def= 𝜕
𝜕 ̃𝛽⊤

𝜕
𝜕 ̃𝛽

ℓ𝑖

= 𝜕
𝜕 ̃𝛽⊤

ℓ′
𝑖

= 𝜕
𝜕 ̃𝛽⊤

( 1
𝜎2 ̃𝑥𝑖𝜀𝑖)

= 1
𝜎2 ̃𝑥𝑖𝜀′⊤

𝑖

= 1
𝜎2 ̃𝑥𝑖(− ̃𝑥⊤

𝑖 )

= − 1
𝜎2 ̃𝑥𝑖 ̃𝑥⊤

𝑖

ℓ″ def= 𝜕
𝜕 ̃𝛽⊤

𝜕
𝜕 ̃𝛽

ℓ

= 𝜕
𝜕 ̃𝛽⊤

ℓ′

= 𝜕
𝜕 ̃𝛽⊤

𝑛
∑
𝑖=1

ℓ′
𝑖

=
𝑛

∑
𝑖=1

𝜕
𝜕 ̃𝛽⊤

ℓ′
𝑖

=
𝑛

∑
𝑖=1

ℓ″
𝑖

=
𝑛

∑
𝑖=1

− 1
𝜎2 ̃𝑥𝑖 ̃𝑥⊤

𝑖

= − 1
𝜎2

𝑛
∑
𝑖=1

̃𝑥𝑖 ̃𝑥⊤
𝑖

= − 1
𝜎2 X⊤X

That is,

ℓ″ = − 1
𝜎2

𝑛
∑
𝑖=1

̃𝑥𝑖 ̃𝑥⊤
𝑖 (2.6)

2.3.5. Alternative approach using matrix derivatives

ℓ′
̃𝛽
( ̃𝑦|x, ̃𝛽, 𝜎2) def= 𝜕

𝜕 ̃𝛽
ℓ ̃𝛽( ̃𝑦|x, ̃𝛽, 𝜎2)

= − 1
2𝜎2

𝜕
𝜕 ̃𝛽

(
𝑛

∑
𝑖=1

(𝑦𝑖 − ( ̃𝑥𝑖 ⋅ ̃𝛽))
2
)

(2.7)
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Let’s switch to matrix-vector notation:

𝑛
∑
𝑖=1

(𝑦𝑖 − ̃𝑥⊤
𝑖

̃𝛽)2 = ( ̃𝑦 − X ̃𝛽) ⋅ ( ̃𝑦 − X ̃𝛽)

So

( ̃𝑦 − X ̃𝛽)′( ̃𝑦 − X ̃𝛽) = ( ̃𝑦′ − ̃𝛽′𝑋′)( ̃𝑦 − X ̃𝛽)

= ̃𝑦′ ̃𝑦 − ̃𝛽′𝑋′ ̃𝑦 − ̃𝑦′X ̃𝛽 + ̃𝛽′X′X𝛽
= ̃𝑦′ ̃𝑦 − 2 ̃𝑦′X𝛽 + 𝛽′X′X𝛽

We will use some results from vector calculus:

𝜕
𝜕 ̃𝛽

(
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑥′
𝑖𝛽)2) = 𝜕

𝜕 ̃𝛽
( ̃𝑦 − 𝑋𝛽)′( ̃𝑦 − 𝑋𝛽)

= 𝜕
𝜕 ̃𝛽

(𝑦′𝑦 − 2𝑦′𝑋𝛽 + 𝛽′X′X𝛽)

= (−2𝑋′𝑦 + 2X′X𝛽)
= −2𝑋′(𝑦 − 𝑋𝛽)
= −2𝑋′(𝑦 − E[𝑦])
= −2𝑋′𝜀(𝑦)

(2.8)

So if ℓ′(𝛽, 𝜎2) = 0, then

0 = (−2𝑋′𝑦 + 2X′X𝛽)
2𝑋′𝑦 = 2X′X𝛽
𝑋′𝑦 = X′X𝛽

(X′X)−1𝑋′𝑦 = 𝛽
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2.3.5.1. Hessian

The Hessian (second derivative matrix) is:

ℓ″
𝛽,𝛽′(𝛽, 𝜎2; ̃𝑦,X) = − 1

2𝜎2 X′X

ℓ″
𝛽,𝛽′(𝛽, 𝜎2;X, ̃𝑦) is negative definite at 𝛽 = (X′X)−1𝑋′𝑦, so ̂𝛽𝑀𝐿 = (X′X)−1𝑋′𝑦 is the

MLE for 𝛽.

Similarly (not shown):

𝜎̂2
𝑀𝐿 = 1

𝑛
(𝑌 −𝑋 ̂𝛽)′(𝑌 − 𝑋 ̂𝛽)

And

ℐ𝛽 = 𝐸[−ℓ″
𝛽,𝛽′(𝑌 |𝑋, 𝛽, 𝜎2)]

= 1
𝜎2 X′X

So:

𝑉 𝑎𝑟( ̂𝛽) ≈ (ℐ𝛽)−1 = 𝜎2(X′X)−1

and

̂𝛽∼̇𝑁(𝛽, ℐ−1
𝛽 )

These are all results you have hopefully seen before.

In the Gaussian linear regression case, we also have exact results:

̂𝛽𝑗

ŝe( ̂𝛽𝑗)
∼ 𝑡𝑛−𝑝

Example 2.1 (MLEs for birthweight data). In model 2.2 above, ̂ℐ(𝛽) is:

If we take the square roots of the diagonals, we get the standard errors listed in the model
output:
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Table 2.16.: Covariance matrix of ̂̃𝛽 for birthweight model 2.2 (with interaction term)

bw_lm2 |> vcov()
#> (Intercept) sexmale age sexmale:age
#> (Intercept) 1353968 -1353968 -34870.966 34870.966
#> sexmale -1353968 2596387 34870.966 -67210.974
#> age -34871 34871 899.896 -899.896
#> sexmale:age 34871 -67211 -899.896 1743.548

bw_lm2 |>
vcov() |>
diag() |>
sqrt()

#> (Intercept) sexmale age sexmale:age
#> 1163.6015 1611.3309 29.9983 41.7558

bw_lm2 |>
parameters() |>
print_md()

Table 2.17.: Estimated model for birthweight data with interaction term

Parameter Coefficient SE 95% CI t(20) p

(Intercept) -2141.67 1163.60 (-4568.90, 285.56) -1.84 0.081
sex (male) 872.99 1611.33 (-2488.18, 4234.17) 0.54 0.594
age 130.40 30.00 (67.82, 192.98) 4.35 < .001
sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

So we can do confidence intervals, hypothesis tests, and p-values exactly as in the one-variable
case we looked at previously.

2.3.6. Residual Standard Deviation

𝜎̂ represents an estimate of the Residual Standard Deviation parameter, 𝜎. We can extract
𝜎̂ from the fitted model, using the sigma() function:

sigma(bw_lm2)
#> [1] 180.613
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2.3.6.1. 𝜎 is NOT “Residual standard error”

In the summary.lm() output, this estimate is labeled as "Residual standard error":

summary(bw_lm2)
#>
#> Call:
#> lm(formula = weight ~ sex + age + sex:age, data = bw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -246.7 -138.1 -39.1 176.6 274.3
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -2141.7 1163.6 -1.84 0.08057 .
#> sexmale 873.0 1611.3 0.54 0.59395
#> age 130.4 30.0 4.35 0.00031 ***
#> sexmale:age -18.4 41.8 -0.44 0.66389
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 181 on 20 degrees of freedom
#> Multiple R-squared: 0.643, Adjusted R-squared: 0.59
#> F-statistic: 12 on 3 and 20 DF, p-value: 0.000101

However, this is a misnomer: see note in ?stats::sigma

2.4. Inference about Gaussian Linear Regression Models

2.4.1. Motivating example: birthweight data

Research question: is there really an interaction between sex and age?

𝐻0 ∶ 𝛽𝐴𝑀 = 0

𝐻𝐴 ∶ 𝛽𝐴𝑀 ≠ 0

𝑃(| ̂𝛽𝐴𝑀| > | − 18.417241| ∣ 𝐻0) = ?

2.4.2. Wald tests and CIs

R can give you Wald tests for single coefficients and corresponding CIs:

bw_lm2 |>
parameters() |>
print_md(

include_reference = TRUE
)
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2. Linear (Gaussian) Models

Parameter Coefficient SE 95% CI t(20) p

(Intercept) -2141.67 1163.60 (-4568.90, 285.56) -1.84 0.081
sex (female) 0.00
sex (male) 872.99 1611.33 (-2488.18, 4234.17) 0.54 0.594
age 130.40 30.00 (67.82, 192.98) 4.35 < .001
sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

To understand what’s happening, let’s replicate these results by hand for the interaction
term.

2.4.3. P-values

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE
)

Parameter Coefficient SE 95% CI t(20) p

sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

beta_hat <- coef(summary(bw_lm2))["sexmale:age", "Estimate"]
se_hat <- coef(summary(bw_lm2))["sexmale:age", "Std. Error"]
dfresid <- bw_lm2$df.residual
t_stat <- abs(beta_hat) / se_hat
pval_t <-
pt(-t_stat, df = dfresid, lower.tail = TRUE) +
pt(t_stat, df = dfresid, lower.tail = FALSE)

𝑃(| ̂𝛽𝐴𝑀| > | − 18.417241|∣𝐻0)

= Pr(∣
̂𝛽𝐴𝑀

̂𝑆𝐸( ̂𝛽𝐴𝑀)
∣ > ∣−18.417241

41.755817
∣∣𝐻0)

= Pr (|𝑇20| > 0.44107|𝐻0)
= 0.663893

This matches the result in the table above.

2.4.4. Confidence intervals
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bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE
)

Parameter Coefficient SE 95% CI t(20) p

sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

q_t <- qt(
p = 0.975,
df = dfresid,
lower.tail = TRUE

)

q_t <- qt(
p = 0.025,
df = dfresid,
lower.tail = TRUE

)

confint_radius_t <-
se_hat * q_t

confint_t <- beta_hat + c(-1, 1) * confint_radius_t

print(confint_t)
#> [1] 68.6839 -105.5184

This also matches.

2.4.5. Gaussian approximations

Here are the asymptotic (Gaussian approximation) equivalents:

2.4.6. P-values

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE
)
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Parameter Coefficient SE 95% CI t(20) p

sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

pval_z <- pnorm(abs(t_stat), lower = FALSE) * 2

print(pval_z)
#> [1] 0.659162

2.4.7. Confidence intervals

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE
)

Parameter Coefficient SE 95% CI t(20) p

sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664

confint_radius_z <- se_hat * qnorm(0.975, lower = TRUE)
confint_z <-
beta_hat + c(-1, 1) * confint_radius_z

print(confint_z)
#> [1] -100.2571 63.4227

2.4.8. Likelihood ratio statistics

logLik(bw_lm2)
#> 'log Lik.' -156.579 (df=5)
logLik(bw_lm1)
#> 'log Lik.' -156.695 (df=4)

log_LR <- (logLik(bw_lm2) - logLik(bw_lm1)) |> as.numeric()
delta_df <- (bw_lm1$df.residual - df.residual(bw_lm2))

x_max <- 1
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d_log_LR <- function(x, df = delta_df) dchisq(x, df = df)

chisq_plot <-
ggplot() +
geom_function(fun = d_log_LR) +
stat_function(

fun = d_log_LR,
xlim = c(log_LR, x_max),
geom = "area",
fill = "gray"

) +
geom_segment(

aes(
x = log_LR,
xend = log_LR,
y = 0,
yend = d_log_LR(log_LR)

),
col = "red"

) +
xlim(0.0001, x_max) +
ylim(0, 4) +
ylab("p(X=x)") +
xlab("log(likelihood ratio) statistic [x]") +
theme_classic()

chisq_plot |> print()
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Figure 2.6.: Chi-square distribution
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Now we can get the p-value:

pchisq(
q = 2 * log_LR,
df = delta_df,
lower = FALSE

) |>
print()

#> [1] 0.629806

In practice you don’t have to do this by hand; there are functions to do it for you:

# built in
library(lmtest)
lrtest(bw_lm2, bw_lm1)
#> # A tibble: 2 x 5
#> `#Df` LogLik Df Chisq `Pr(>Chisq)`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5 -157. NA NA NA
#> 2 4 -157. -1 0.232 0.630

2.5. Goodness of fit

2.5.1. AIC and BIC

When we use likelihood ratio tests, we are comparing how well different models fit the
data.

Likelihood ratio tests require “nested” models: one must be a special case of the other.

If we have non-nested models, we can instead use the Akaike Information Criterion (AIC)
or Bayesian Information Criterion (BIC):

• AIC = −2 ∗ ℓ( ̂𝜃) + 2 ∗ 𝑝

• BIC = −2 ∗ ℓ( ̂𝜃) + 𝑝 ∗ log(𝑛)

where ℓ is the log-likelihood of the data evaluated using the parameter estimates ̂𝜃, 𝑝 is
the number of estimated parameters in the model (including 𝜎̂2), and 𝑛 is the number of
observations.

You can calculate these criteria using the logLik() function, or use the built-in R func-
tions:

2.5.1.1. AIC in R
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-2 * logLik(bw_lm2) |> as.numeric() +
2 * (length(coef(bw_lm2)) + 1) # sigma counts as a parameter here

#> [1] 323.159

AIC(bw_lm2)
#> [1] 323.159

2.5.1.2. BIC in R

-2 * logLik(bw_lm2) |> as.numeric() +
(length(coef(bw_lm2)) + 1) * log(nobs(bw_lm2))

#> [1] 329.049

BIC(bw_lm2)
#> [1] 329.049

Large values of AIC and BIC are worse than small values. There are no hypothesis tests or
p-values associated with these criteria.

2.5.2. (Residual) Deviance

Let 𝑞 be the number of distinct covariate combinations in a data set.

bw_X_unique <-
bw |>
count(sex, age)

n_unique_bw <- nrow(bw_X_unique)

For example, in the birthweight data, there are 𝑞 = 12 unique patterns (Table 2.23).

Definition 2.1 (Replicates). If a given covariate pattern has more than one observation in
a dataset, those observations are called replicates.

Example 2.2 (Replicates in the birthweight data). In the birthweight dataset, there
are 2 replicates of the combination “female, age 36” (Table 2.23).

Exercise 2.12 (Replicates in the birthweight data). Which covariate pattern(s) in the
birthweight data has the most replicates?
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Table 2.23.: Unique covariate combinations in the birthweight data, with replicate counts

bw_X_unique
#> # A tibble: 12 x 3
#> sex age n
#> <fct> <dbl> <int>
#> 1 female 36 2
#> 2 female 37 1
#> 3 female 38 2
#> 4 female 39 2
#> 5 female 40 4
#> 6 female 42 1
#> 7 male 35 1
#> 8 male 36 1
#> 9 male 37 2
#> 10 male 38 3
#> 11 male 40 4
#> 12 male 41 1

Solution 2.1 (Replicates in the birthweight data). Two covariate patterns are tied for
most replicates: males at age 40 weeks and females at age 40 weeks. 40 weeks is the usual
length for human pregnancy (Polin, Fox, and Abman (2011)), so this result makes sense.

bw_X_unique |> dplyr::filter(n == max(n))
#> # A tibble: 2 x 3
#> sex age n
#> <fct> <dbl> <int>
#> 1 female 40 4
#> 2 male 40 4

2.5.2.1. Saturated models

The most complicated model we could fit would have one parameter (a mean) for each
covariate pattern, plus a variance parameter:

lm_max <-
bw |>
mutate(age = factor(age)) |>
lm(

formula = weight ~ sex:age - 1,
data = _

)
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lm_max |>
parameters() |>
print_md()

Table 2.24.: Saturated model for the birthweight data

Parameter Coefficient SE 95% CI t(12) p

sex (male) × age35 2925.00 187.92 (2515.55, 3334.45) 15.56 < .001
sex (female) × age36 2570.50 132.88 (2280.98, 2860.02) 19.34 < .001
sex (male) × age36 2625.00 187.92 (2215.55, 3034.45) 13.97 < .001
sex (female) × age37 2539.00 187.92 (2129.55, 2948.45) 13.51 < .001
sex (male) × age37 2737.50 132.88 (2447.98, 3027.02) 20.60 < .001
sex (female) × age38 2872.50 132.88 (2582.98, 3162.02) 21.62 < .001
sex (male) × age38 2982.00 108.50 (2745.60, 3218.40) 27.48 < .001
sex (female) × age39 2846.00 132.88 (2556.48, 3135.52) 21.42 < .001
sex (female) × age40 3152.25 93.96 (2947.52, 3356.98) 33.55 < .001
sex (male) × age40 3256.25 93.96 (3051.52, 3460.98) 34.66 < .001
sex (male) × age41 3292.00 187.92 (2882.55, 3701.45) 17.52 < .001
sex (female) × age42 3210.00 187.92 (2800.55, 3619.45) 17.08 < .001

We call this model the full, maximal, or saturated model for this dataset.

library(rlang) # defines the `.data` pronoun
plot_PIs_and_CIs <- function(model, data) {
cis <- model |>

predict(interval = "confidence") |>
suppressWarnings() |>
tibble::as_tibble()

names(cis) <- paste("ci", names(cis), sep = "_")

preds <- model |>
predict(interval = "predict") |>
suppressWarnings() |>
tibble::as_tibble()

names(preds) <- paste("pred", names(preds), sep = "_")
dplyr::bind_cols(bw, cis, preds) |>

ggplot2::ggplot() +
ggplot2::aes(

x = .data$age,
y = .data$weight,
col = .data$sex

) +
ggplot2::geom_point() +
ggplot2::theme(legend.position = "bottom") +
ggplot2::geom_line(ggplot2::aes(y = .data$ci_fit)) +
ggplot2::geom_ribbon(
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2. Linear (Gaussian) Models

ggplot2::aes(
ymin = .data$pred_lwr,
ymax = .data$pred_upr

),
alpha = 0.2

) +
ggplot2::geom_ribbon(

ggplot2::aes(
ymin = .data$ci_lwr,
ymax = .data$ci_upr

),
alpha = 0.5

) +
ggplot2::facet_wrap(~sex)

}

plot_PIs_and_CIs(bw_lm2, bw)
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(a) Model 2.2 (linear with age:sex interaction)

plot_PIs_and_CIs(lm_max, bw)
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(b) Saturated model

Figure 2.7.: Model 2.2 and saturated model for birthweight data, with confidence and
prediction intervals

We can calculate the log-likelihood of this model as usual:

logLik(lm_max)
#> 'log Lik.' -151.402 (df=13)

We can compare this model to our other models using chi-square tests, as usual:

lrtest(lm_max, bw_lm2)
#> # A tibble: 2 x 5
#> `#Df` LogLik Df Chisq `Pr(>Chisq)`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 13 -151. NA NA NA
#> 2 5 -157. -8 10.4 0.241
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The likelihood ratio statistic for this test is

𝜆 = 2 ∗ (ℓfull − ℓ) = 10.355374

where:

• ℓfull is the log-likelihood of the full model: -151.401601
• ℓ is the log-likelihood of our comparison model (two slopes, two intercepts): -156.579288

This statistic is called the deviance or residual deviance for our two-slopes and two-
intercepts model; it tells us how much the likelihood of that model deviates from the
likelihood of the maximal model.

The corresponding p-value tells us whether there we have enough evidence to detect that our
two-slopes, two-intercepts model is a worse fit for the data than the maximal model; in other
words, it tells us if there’s evidence that we missed any important patterns. (Remember, a
nonsignificant p-value could mean that we didn’t miss anything and a more complicated
model is unnecessary, or it could mean we just don’t have enough data to tell the difference
between these models.)

2.5.3. Null Deviance

Similarly, the least complicated model we could fit would have only one mean parameter,
an intercept:

E[𝑌 |𝑋 = 𝑥] = 𝛽0

We can fit this model in R like so:

lm0 <- lm(weight ~ 1, data = bw)

lm0 |>
parameters() |>
print_md()

Parameter Coefficient SE 95% CI t(23) p

(Intercept) 2967.67 57.58 (2848.56, 3086.77) 51.54 < .001
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lm0 |> plot_PIs_and_CIs()
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Figure 2.8.: Null model for birthweight data, with 95% confidence and prediction intervals.

This model also has a likelihood:

logLik(lm0)
#> 'log Lik.' -168.955 (df=2)

And we can compare it to more complicated models using a likelihood ratio test:

lrtest(bw_lm2, lm0)
#> # A tibble: 2 x 5
#> `#Df` LogLik Df Chisq `Pr(>Chisq)`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 5 -157. NA NA NA
#> 2 2 -169. -3 24.8 0.0000174

The likelihood ratio statistic for the test comparing the null model to the maximal model
is

𝜆 = 2 ∗ (ℓfull − ℓ0) = 35.106732

where:

• ℓ0 is the log-likelihood of the null model: -168.954967
• ℓfull is the log-likelihood of the maximal model: -151.401601

In R, this test is:
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lrtest(lm_max, lm0)
#> # A tibble: 2 x 5
#> `#Df` LogLik Df Chisq `Pr(>Chisq)`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 13 -151. NA NA NA
#> 2 2 -169. -11 35.1 0.000238

This log-likelihood ratio statistic is called the null deviance. It tells us whether we have
enough data to detect a difference between the null and full models.

2.6. Rescaling

2.6.1. Rescale age

bw <-
bw |>
mutate(

`age - mean` = age - mean(age),
`age - 36wks` = age - 36

)

lm1_c <- lm(weight ~ sex + `age - 36wks`, data = bw)

lm2_c <- lm(weight ~ sex + `age - 36wks` + sex:`age - 36wks`, data = bw)

parameters(lm2_c, ci_method = "wald") |> print_md()

Parameter Coefficient SE 95% CI t(20) p

(Intercept) 2552.73 97.59 (2349.16, 2756.30) 26.16 < .001
sex (male) 209.97 129.75 (-60.68, 480.63) 1.62 0.121
age - 36wks 130.40 30.00 (67.82, 192.98) 4.35 < .001
sex (male) × age -
36wks

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

Compare with what we got without rescaling:

parameters(bw_lm2, ci_method = "wald") |> print_md()

Parameter Coefficient SE 95% CI t(20) p

(Intercept) -2141.67 1163.60 (-4568.90, 285.56) -1.84 0.081
sex (male) 872.99 1611.33 (-2488.18, 4234.17) 0.54 0.594
age 130.40 30.00 (67.82, 192.98) 4.35 < .001
sex (male) × age -18.42 41.76 (-105.52, 68.68) -0.44 0.664
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2.7. Prediction

2.7.1. Prediction for linear models

Definition 2.2 (Predicted value). In a regression model p(𝑦| ̃𝑥), the predicted value of 𝑦
given ̃𝑥 is the estimated mean of 𝑌 given 𝑋̃ = ̃𝑥:

̂𝑦 def= Ê[𝑌 |𝑋̃ = ̃𝑥]

For linear models, the predicted value can be straightforwardly calculated by multiplying
each predictor value 𝑥𝑗 by its corresponding coefficient 𝛽𝑗 and adding up the results:

̂𝑦 = Ê[𝑌 |𝑋̃ = ̃𝑥]

= ̃𝑥′ ̂𝛽

= ̂𝛽0 ⋅ 1 + ̂𝛽1𝑥1 + ... + ̂𝛽𝑝𝑥𝑝

2.7.2. Example: prediction for the birthweight data

x <- c(1, 1, 40)
sum(x * coef(bw_lm1))
#> [1] 3225.49

R has built-in functions for prediction:

x <- tibble(age = 40, sex = "male")
bw_lm1 |> predict(newdata = x)
#> 1
#> 3225.49

If you don’t provide newdata, R will use the covariate values from the original dataset:

predict(bw_lm1)
#> 1 2 3 4 5 6 7 8 9 10
#> 3225.49 3062.45 2983.70 2578.87 3225.49 3062.45 2621.02 2820.66 2741.91 3304.24
#> 11 12 13 14 15 16 17 18 19 20
#> 2862.81 2941.56 3346.38 3062.45 3225.49 2699.77 2862.81 2578.87 2983.70 2820.66
#> 21 22 23 24
#> 3225.49 2941.56 2983.70 3062.45

These special predictions are called the fitted values of the dataset:
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Definition 2.3. For a given dataset ( ̃𝑌 ,X) and corresponding fitted model p ̂𝛽( ̃𝑦|x), the
fitted value of 𝑦𝑖 is the predicted value of 𝑦 when 𝑋̃ = ̃𝑥𝑖 using the estimate parameters ̂𝛽.

R has an extra function to get these values:

fitted(bw_lm1)
#> 1 2 3 4 5 6 7 8 9 10
#> 3225.49 3062.45 2983.70 2578.87 3225.49 3062.45 2621.02 2820.66 2741.91 3304.24
#> 11 12 13 14 15 16 17 18 19 20
#> 2862.81 2941.56 3346.38 3062.45 3225.49 2699.77 2862.81 2578.87 2983.70 2820.66
#> 21 22 23 24
#> 3225.49 2941.56 2983.70 3062.45

2.7.3. Confidence intervals

Use predict(se.fit = TRUE) to compute SEs for predicted values:

bw_lm1 |>
predict(

newdata = x,
se.fit = TRUE

)
#> $fit
#> 1
#> 3225.49
#>
#> $se.fit
#> [1] 61.4599
#>
#> $df
#> [1] 21
#>
#> $residual.scale
#> [1] 177.116

The output of predict.lm(se.fit = TRUE) is a list(); you can extract the elements
with $ or magrittr::use_series():

library(magrittr)
bw_lm1 |>
predict(

newdata = x,
se.fit = TRUE

) |>
use_series(se.fit)

#> [1] 61.4599
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We can construct confidence intervals for E[𝑌 |𝑋 = 𝑥] using the usual formula:

𝜇( ̃𝑥) ∈ ( ̂𝜇( ̃𝑥) ± 𝜁𝛼)

𝜁𝛼 = 𝑡𝑛−𝑝(1 − 𝛼
2
) ∗ ŝe( ̂𝜇( ̃𝑥))

̂𝜇( ̃𝑥) = ̃𝑥 ⋅ ̂𝛽

se( ̂𝜇( ̃𝑥)) = √Var( ̂𝜇( ̃𝑥))

Var( ̂𝜇( ̃𝑥)) = Var(𝑥′ ̂𝛽)

= 𝑥′Var( ̂𝛽)𝑥
= 𝑥′𝜎2(X′X)−1𝑥
= 𝜎2𝑥′(X′X)−1𝑥

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑥𝑖𝑥𝑗Cov( ̂𝛽𝑖, ̂𝛽𝑗)

V̂ar( ̂𝜇( ̃𝑥)) = 𝜎̂2𝑥′(X′X)−1𝑥

bw_lm2 |> predict(
newdata = x,
interval = "confidence"

)
#> fit lwr upr
#> 1 3210.64 3062.23 3359.05
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library(sjPlot)
bw_lm2 |>
plot_model(type = "pred", terms = c("age", "sex"), show.data = TRUE) +
theme_sjplot() +
theme(legend.position = "bottom")
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Figure 2.9.: Predicted values and confidence bands for the birthweight model with inter-
action term

2.7.4. Prediction intervals

We can also construct prediction intervals for the value of a new observation 𝑌 ∗, given a
covariate pattern ̃𝑥∗:

̂𝑌 ∗ = ̂𝜇( ̃𝑥∗) + ̂𝜖∗

Var( ̂𝑌 ) = Var( ̂𝜇) + Var( ̂𝜖)

Var( ̂𝑌 ) = Var(𝑥′ ̂𝛽) + Var( ̂𝜖)

= ̃𝑥∗⊤Var( ̂𝛽) ̃𝑥∗ + 𝜎2

= ̃𝑥∗⊤(𝜎2(X′X)−1) ̃𝑥∗ + 𝜎2

= 𝜎2 ̃𝑥∗⊤(X′X)−1 ̃𝑥∗ + 𝜎2

(2.9)

See Hogg, Tanis, and Zimmerman (2015) §7.6 (p. 340) for a longer version.

bw_lm2 |>
predict(newdata = x, interval = "predict")

#> fit lwr upr
#> 1 3210.64 2805.71 3615.57
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If you don’t specify newdata, you get a warning:

bw_lm2 |>
predict(interval = "predict") |>
head()

#> Warning in predict.lm(bw_lm2, interval = "predict"): predictions on current data refer to _future_ responses
#> fit lwr upr
#> 1 2552.73 2124.50 2980.97
#> 2 2552.73 2124.50 2980.97
#> 3 2683.13 2275.99 3090.27
#> 4 2813.53 2418.60 3208.47
#> 5 2813.53 2418.60 3208.47
#> 6 2943.93 2551.48 3336.38

The warning from the last command is: “predictions on current data refer to future
responses” (since you already know what happened to the current data, and thus don’t
need to predict it).

See ?predict.lm for more.

plot_PIs_and_CIs(bw_lm2, bw)
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Figure 2.10.: Confidence and prediction intervals for birthweight model 2.2
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2.8. Diagnostics

LIGHTBULB Tip

This section is adapted from Dobson and Barnett (2018, secs. 6.2–6.3) and Dunn and
Smyth (2018) Chapter 3a.

ahttps://link.springer.com/chapter/10.1007/978-1-4419-0118-7_3

2.8.1. Assumptions in linear regression models

𝑌𝑖|𝑋̃𝑖 ∼⟂⟂ N(𝜇𝑖, 𝜎2)

𝜇𝑖 = ̃𝑥 ⋅ ̃𝛽

1. Normality

The model assumes that the distribution conditional on a given 𝑋 value is Gaussian.

2. Correct Functional Form of Conditional Mean Structure (Linear Component)

The model assumes that the conditional means have the structure:

E[𝑌 |𝑋̃ = ̃𝑥] = ̃𝑥′ ̃𝛽

3. Homoskedasticity

The model assumes that variance 𝜎2 is constant (with respect to ̃𝑥).

4. Independence

The model assumes that the observations are statistically independent.

2.8.2. Direct visualization

The most direct way to examine the fit of a model is to compare it to the raw observed
data.

bw <-
bw |>
mutate(

predlm2 = predict(bw_lm2)
) |>
arrange(sex, age)

plot1_interact <-
plot1 %+% bw +
geom_line(aes(y = predlm2))

print(plot1_interact)
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Figure 2.11.: Birthweight model with interaction term

It’s not easy to assess these assumptions from this model. If there are multiple continuous
covariates, it becomes even harder to visualize the raw data.

2.8.2.1. Fitted model for hers data

Consider the hers data from Vittinghoff et al. (2012).

The “heart and estrogen/progestin study” (HERS) was a clinical trial of hormone therapy
for prevention of recurrent heart attacks and death among 2,763 post-menopausal women
with existing coronary heart disease (CHD) (Hulley et al. 1998).

Suppose we consider models with and without intercept terms (i.e., possibly forcing the
intercept to go through 0):

hers_lm_with_int <- lm(
na.action = na.exclude,
LDL ~ smoking * age, data = hers

)

library(equatiomatic)
equatiomatic::extract_eq(hers_lm_with_int)
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Table 2.28.: hers data

hers <- fs::path_package("rme", "extdata/hersdata.dta") |>
haven::read_dta()

hers
#> # A tibble: 2,763 x 37
#> HT age raceth nonwhite smoking drinkany exercise physact globrat
#> <dbl+lbl> <dbl> <dbl+l> <dbl+lb> <dbl+l> <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
#> 1 0 [placebo] 70 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 5 [muc~ 3 [goo~
#> 2 0 [placebo] 62 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 1 [muc~ 3 [goo~
#> 3 1 [hormone ~ 69 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 3 [abo~ 3 [goo~
#> 4 0 [placebo] 64 1 [Whi~ 0 [no] 1 [yes] 1 [yes] 0 [no] 1 [muc~ 3 [goo~
#> 5 0 [placebo] 65 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 2 [som~ 3 [goo~
#> 6 1 [hormone ~ 68 2 [Afr~ 1 [yes] 0 [no] 1 [yes] 0 [no] 3 [abo~ 3 [goo~
#> 7 0 [placebo] 70 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 3 [abo~ 2 [fai~
#> 8 1 [hormone ~ 69 1 [Whi~ 0 [no] 0 [no] 0 [no] 1 [yes] 5 [muc~ 4 [ver~
#> 9 1 [hormone ~ 61 1 [Whi~ 0 [no] 0 [no] 1 [yes] 1 [yes] 3 [abo~ 4 [ver~
#> 10 1 [hormone ~ 62 1 [Whi~ 0 [no] 1 [yes] 1 [yes] 0 [no] 2 [som~ 3 [goo~
#> # i 2,753 more rows
#> # i 28 more variables: poorfair <dbl+lbl>, medcond <dbl>, htnmeds <dbl+lbl>,
#> # statins <dbl+lbl>, diabetes <dbl+lbl>, dmpills <dbl+lbl>,
#> # insulin <dbl+lbl>, weight <dbl>, BMI <dbl>, waist <dbl>, WHR <dbl>,
#> # glucose <dbl>, weight1 <dbl>, BMI1 <dbl>, waist1 <dbl>, WHR1 <dbl>,
#> # glucose1 <dbl>, tchol <dbl>, LDL <dbl>, HDL <dbl>, TG <dbl>, tchol1 <dbl>,
#> # LDL1 <dbl>, HDL1 <dbl>, TG1 <dbl>, SBP <dbl>, DBP <dbl>, age10 <dbl>
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Table 2.29.: hers data models with and without intercepts

(a) With intercept

library(gtsummary)
hers_lm_with_int |>
tbl_regression(intercept = TRUE)

Characteristic Beta 95% CI p-value
(Intercept) 154 138, 170 <0.001
current smoker 54 15, 94 0.007
age in years -0.14 -0.38, 0.09 0.2
current smoker * age in years -0.79 -1.4, -0.17 0.012
Abbreviation: CI = Confidence Interval

(b) No intercept

hers_lm_no_int |>
tbl_regression(intercept = TRUE)

Characteristic Beta 95% CI p-value
age in years 2.1 2.1, 2.2 <0.001
age in years * current smoker 0.19 0.12, 0.26 <0.001
Abbreviation: CI = Confidence Interval

LDL = 𝛼+ 𝛽1(smoking) + 𝛽2(age) + 𝛽3(smoking× age) + 𝜖 (2.10)

hers_lm_no_int <- lm(
na.action = na.exclude,
LDL ~ age + smoking:age - 1, data = hers

)

library(equatiomatic)
equatiomatic::extract_eq(hers_lm_no_int)

LDL = 𝛽1(age) + 𝛽2(age× agesmoking) + 𝜖 (2.11)
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library(sjPlot)

hers_plot1 <- hers_lm_no_int |>
sjPlot::plot_model(

type = "pred",
terms = c("age", "smoking"),
show.data = TRUE

) +
facet_wrap(~group_col, ncol = 1) +
expand_limits(y = 0) +
theme(legend.position = "bottom")
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(a) No intercept

library(sjPlot)

hers_plot2 <- hers_lm_with_int |>
sjPlot::plot_model(
type = "pred",
terms = c("age", "smoking"),
show.data = TRUE

) +
facet_wrap(~group_col, ncol = 1) +
expand_limits(y = 0) +
theme(legend.position = "bottom")
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(b) With intercept

Figure 2.12.: hers data models with and without intercepts

2.8.3. Residuals

Maybe we can transform the data and model in some way to make it easier to inspect.

Definition 2.4 (Residual noise/deviation from the population mean). The residual noise
in a probabilistic model 𝑝(𝑌 ), also known as the residual deviation of an observation
from its population mean or residual for short, is the difference between an observed
value 𝑦 and its population mean:

𝜀(𝑦) def= 𝑦 − E[𝑌] (2.12)

We use the same notation for residual noise that we used for errors.

E[𝑌] can be viewed as an estimate of 𝑌, before 𝑦 is observed. Conversely, each observation 𝑦
can be viewed as an estimate of E[𝑌] (albeit an imprecise one, individually, since 𝑛 = 1).

We can rearrange Equation 2.12 to view 𝑦 as the sum of its mean plus the residual noise:

𝑦 = E[𝑌] + 𝜀(𝑦)
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Theorem 2.1 (Residuals in Gaussian models). If 𝑌 has a Gaussian distribution, then 𝜀(𝑌 )
also has a Gaussian distribution, and vice versa.

Proof. Left to the reader.

Definition 2.5 (Residuals of a fitted model value). The residual of a fitted value ̂𝑦
(shorthand: “residual”) is its error relative to the observed data:

𝑒( ̂𝑦) def= 𝜀( ̂𝑦)
= 𝑦 − ̂𝑦

Example 2.3 (residuals in birthweight data).

plot1_interact +
facet_wrap(~sex) +
geom_segment(

aes(
x = age,
y = predlm2,
xend = age,
yend = weight,
col = sex,
group = id

),
linetype = "dotted"

)
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Figure 2.13.: Fitted values and residuals for interaction model for birthweight data
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2.8.3.1. Residuals of fitted values vs residual noise

𝑒( ̂𝑦) can be seen as the maximum likelihood estimate of the residual noise:

𝑒( ̂𝑦) = 𝑦 − ̂𝑦
= ̂𝜀𝑀𝐿

2.8.3.2. General characteristics of residuals

Theorem 2.2. If Ê[𝑌] is an unbiased estimator of the mean E[𝑌], then:

E[𝑒(𝑦)] = 0 (2.13)

Var(𝑒(𝑦)) ≈ 𝜎2 (2.14)

Proof.

Equation 2.13:

E[𝑒(𝑦)] = E[𝑦 − ̂𝑦]
= E[𝑦] − E[ ̂𝑦]
= E[𝑦] − E[𝑦]
= 0

Equation 2.14:

Var(𝑒(𝑦)) = Var(𝑦 − ̂𝑦)
= Var(𝑦) + Var( ̂𝑦) − 2Cov(𝑦, ̂𝑦)
≈̇Var(𝑦) + 0 − 2 ⋅ 0
= Var(𝑦)
= 𝜎2
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2.8.3.3. Characteristics of residuals in Gaussian models

With enough data and a correct model, the residuals will be approximately Guassian
distributed, with variance 𝜎2, which we can estimate using 𝜎̂2; that is:

𝑒𝑖 ∼iid 𝑁(0, 𝜎̂2)

2.8.3.4. Computing residuals in R

R provides a function for residuals:

resid(bw_lm2)
#> 1 2 3 4 5 6 7 8
#> 176.2667 -140.7333 -144.1333 -59.5333 177.4667 -126.9333 -68.9333 242.6667
#> 9 10 11 12 13 14 15 16
#> -139.3333 51.6667 156.6667 -125.1333 274.2759 -137.7069 -27.6897 -246.6897
#> 17 18 19 20 21 22 23 24
#> -191.6724 189.3276 -11.6724 -242.6379 -47.6379 262.3621 210.3621 -30.6207

Exercise 2.13. Check R’s output by computing the residuals directly.

Solution.

bw$weight - fitted(bw_lm2)
#> 1 2 3 4 5 6 7 8
#> 176.2667 -140.7333 -144.1333 -59.5333 177.4667 -126.9333 -68.9333 242.6667
#> 9 10 11 12 13 14 15 16
#> -139.3333 51.6667 156.6667 -125.1333 274.2759 -137.7069 -27.6897 -246.6897
#> 17 18 19 20 21 22 23 24
#> -191.6724 189.3276 -11.6724 -242.6379 -47.6379 262.3621 210.3621 -30.6207

This matches R’s output!
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2.8.3.5. Graphing the residuals

plot1_interact +
facet_wrap(~sex) +
geom_segment(

aes(
x = age,
y = predlm2,
xend = age,
yend = weight,
col = sex,
group = id

),
linetype = "dotted"

)
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(a) fitted values

bw <- bw |>
mutate(
resids_intxn =

weight - fitted(bw_lm2)
)

plot_bw_resid <-
bw |>
ggplot(aes(
x = age,
y = resids_intxn,
linetype = sex,
shape = sex,
col = sex

)) +
theme_bw() +
xlab("Gestational age (weeks)") +
ylab("residuals (grams)") +
theme(legend.position = "bottom") +
geom_hline(aes(
yintercept = 0,
col = sex

)) +
geom_segment(
aes(yend = 0),
linetype = "dotted"

) +
geom_point()

# expand_limits(y = 0, x = 0) +
geom_point(alpha = .7)
#> geom_point: na.rm = FALSE
#> stat_identity: na.rm = FALSE
#> position_identity
print(plot_bw_resid + facet_wrap(~sex))
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(b) Residuals

Figure 2.14.: Fitted values and residuals for interaction model for birthweight data
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2.8.3.6. Residuals versus predictors

hers <- hers |>
mutate(

resids_no_intcpt =
LDL - fitted(hers_lm_no_int),

resids_with_intcpt =
LDL - fitted(hers_lm_with_int)

)

hers |>
arrange(age) |>
ggplot() +
aes(x = age, y = resids_no_intcpt, col = factor(smoking)) +
geom_point() +
geom_hline(aes(yintercept = 0, col = factor(smoking))) +
facet_wrap(~smoking, labeller = "label_both") +
theme(legend.position = "bottom") +
geom_smooth(col = "blue")
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(a) no intercept

hers |>
arrange(age) |>
ggplot() +
aes(x = age, y = resids_with_intcpt, col = factor(smoking)) +
geom_point() +
geom_hline(aes(yintercept = 0, col = factor(smoking))) +
facet_wrap(~smoking, labeller = "label_both") +
theme(legend.position = "bottom") +
geom_smooth(col = "blue")

smoking: 0 smoking: 1

50 60 70 80 50 60 70 80

−100

0

100

200

age in years

LD
L 

ch
ol

es
te

ro
l (

m
g/

dl
)

factor(smoking) 0 1

(b) with intercept

Figure 2.15.: Residuals of hers data vs predictors

2.8.3.7. Residuals versus fitted values

If the model contains multiple continuous covariates, how do we check for errors in the
mean structure assumption?

library(ggfortify)
hers_lm_no_int |>
update(na.action = na.omit) |>
autoplot(
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which = 1,
ncol = 1,
smooth.colour = NA

) +
geom_hline(yintercept = 0, col = "red")
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Figure 2.16.: Residuals of interaction model for hers data

We can add a LOESS smooth to visualize where the residual mean is nonzero:

library(ggfortify)
hers_lm_no_int |>
update(na.action = na.omit) |>
autoplot(

which = 1,
ncol = 1

) +
geom_hline(yintercept = 0, col = "red")
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Figure 2.17.: Residuals of interaction model for hers data, no intercept term

library(ggfortify)
hers_lm_no_int |>
update(na.action = na.omit) |>
autoplot(

which = 1,
ncol = 1

) +
geom_hline(yintercept = 0, col = "red")
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(a) no intercept term

hers_lm_with_int |>
update(na.action = na.omit) |>
autoplot(
which = 1,
ncol = 1

) +
geom_hline(yintercept = 0, col = "red")
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(b) with intercept term

Figure 2.18.: Residuals of interaction model for hers data, with and without intercept term
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Definition 2.6 (Standardized residuals).

𝑟𝑖 =
𝑒𝑖

𝑆𝐷(𝑒𝑖)

Hence, with enough data and a correct model, the standardized residuals will be approxi-
mately standard Gaussian; that is,

𝑟𝑖 ∼iid 𝑁(0, 1)

2.8.4. Marginal distributions of residuals

To look for problems with our model, we can check whether the residuals 𝑒𝑖 and standardized
residuals 𝑟𝑖 look like they have the distributions that they are supposed to have, according
to the model.

2.8.4.1. Standardized residuals in R

rstandard(bw_lm2)
#> 1 2 3 4 5 6 7
#> 1.1598166 -0.9260109 -0.8747917 -0.3472255 1.0350665 -0.7347315 -0.3990086
#> 8 9 10 11 12 13 14
#> 1.4375164 -0.8253872 0.3060646 0.9280669 -0.8761592 1.9142780 -0.8655921
#> 15 16 17 18 19 20 21
#> -0.1642993 -1.4637574 -1.1101599 1.0965787 -0.0676062 -1.4615865 -0.2869582
#> 22 23 24
#> 1.5803994 1.2671652 -0.1980543
resid(bw_lm2) / sigma(bw_lm2)
#> 1 2 3 4 5 6 7
#> 0.9759331 -0.7791962 -0.7980209 -0.3296173 0.9825771 -0.7027900 -0.3816622
#> 8 9 10 11 12 13 14
#> 1.3435690 -0.7714449 0.2860621 0.8674141 -0.6928239 1.5185792 -0.7624398
#> 15 16 17 18 19 20 21
#> -0.1533089 -1.3658431 -1.0612299 1.0482473 -0.0646265 -1.3434099 -0.2637562
#> 22 23 24
#> 1.4526163 1.1647086 -0.1695371

These are not quite the same, because R is doing something more complicated and precise
to get the standard errors. Let’s not worry about those details for now; the difference is
pretty small in this case:
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rstandard_compare_plot <-
tibble(

x = resid(bw_lm2) / sigma(bw_lm2),
y = rstandard(bw_lm2)

) |>
ggplot(aes(x = x, y = y)) +
geom_point() +
theme_bw() +
coord_equal() +
xlab("resid(bw_lm2)/sigma(bw_lm2)") +
ylab("rstandard(bw_lm2)") +
geom_abline(

aes(
intercept = 0,
slope = 1,
col = "x=y"

)
) +
labs(colour = "") +
scale_colour_manual(values = "red")

print(rstandard_compare_plot)
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Let’s add these residuals to the tibble of our dataset:

bw <-
bw |>
mutate(
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fitted_lm2 = fitted(bw_lm2),
resid_lm2 = resid(bw_lm2),
resid_lm2_alt = weight - fitted_lm2,
std_resid_lm2 = rstandard(bw_lm2),
std_resid_lm2_alt = resid_lm2 / sigma(bw_lm2)

)

bw |>
select(

sex,
age,
weight,
fitted_lm2,
resid_lm2,
std_resid_lm2

)
#> # A tibble: 24 x 6
#> sex age weight fitted_lm2 resid_lm2 std_resid_lm2
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 female 36 2729 2553. 176. 1.16
#> 2 female 36 2412 2553. -141. -0.926
#> 3 female 37 2539 2683. -144. -0.875
#> 4 female 38 2754 2814. -59.5 -0.347
#> 5 female 38 2991 2814. 177. 1.04
#> 6 female 39 2817 2944. -127. -0.735
#> 7 female 39 2875 2944. -68.9 -0.399
#> 8 female 40 3317 3074. 243. 1.44
#> 9 female 40 2935 3074. -139. -0.825
#> 10 female 40 3126 3074. 51.7 0.306
#> # i 14 more rows

Now let’s build histograms:

resid_marginal_hist <-
bw |>
ggplot(aes(x = resid_lm2)) +
geom_histogram()

print(resid_marginal_hist)
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Figure 2.19.: Marginal distribution of (nonstandardized) residuals

Hard to tell with this small amount of data, but I’m a bit concerned that the histogram
doesn’t show a bell-curve shape.

std_resid_marginal_hist <-
bw |>
ggplot(aes(x = std_resid_lm2)) +
geom_histogram()

print(std_resid_marginal_hist)
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Figure 2.20.: Marginal distribution of standardized residuals

This looks similar, although the scale of the x-axis got narrower, because we divided by 𝜎̂
(roughly speaking).

Still hard to tell if the distribution is Gaussian.

2.8.5. QQ plot of standardized residuals

Another way to assess normality is the QQ plot of the standardized residuals versus normal
quantiles:

library(ggfortify)
# needed to make ggplot2::autoplot() work for `lm` objects

qqplot_lm2_auto <-
bw_lm2 |>
autoplot(

which = 2, # options are 1:6; can do multiple at once
ncol = 1

) +
theme_classic()

print(qqplot_lm2_auto)
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If the Gaussian model were correct, these points should follow the dotted line.

Fig 2.4 panel (c) in Dobson and Barnett (2018) is a little different; they didn’t specify how
they produced it, but other statistical analysis systems do things differently from R.

See also Dunn and Smyth (2018) §3.5.46.

2.8.5.1. QQ plot - how it’s built

Let’s construct it by hand:

bw <- bw |>
mutate(

p = (rank(std_resid_lm2) - 1 / 2) / n(), # "Blom's method"
expected_quantiles_lm2 = qnorm(p)

)

qqplot_lm2 <-
bw |>
ggplot(

aes(
x = expected_quantiles_lm2,
y = std_resid_lm2,
col = sex,
shape = sex

)
) +

6https://link.springer.com/chapter/10.1007/978-1-4419-0118-7_3#Sec14:~:text=3.5.4%20Q%E2%80%
93Q%20Plots%20and%20Normality
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geom_point() +
theme_classic() +
theme(legend.position = "none") + # removing the plot legend
ggtitle("Normal Q-Q") +
xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

# find the expected line:

ps <- c(.25, .75) # reference probabilities
a <- quantile(rstandard(bw_lm2), ps) # empirical quantiles
b <- qnorm(ps) # theoretical quantiles

qq_slope <- diff(a) / diff(b)
qq_intcpt <- a[1] - b[1] * qq_slope

qqplot_lm2 <-
qqplot_lm2 +
geom_abline(slope = qq_slope, intercept = qq_intcpt)

print(qqplot_lm2)
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2.8.6. Conditional distributions of residuals

If our Gaussian linear regression model is correct, the residuals 𝑒𝑖 and standardized residuals
𝑟𝑖 should have:

• an approximately Gaussian distribution, with:
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• a mean of 0
• a constant variance

This should be true for every value of 𝑥.

If we didn’t correctly guess the functional form of the linear component of the mean,

E[𝑌 |𝑋 = 𝑥] = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝

Then the residuals might have nonzero mean.

Regardless of whether we guessed the mean function correctly, ther the variance of the
residuals might differ between values of 𝑥.

2.8.6.1. Residuals versus fitted values

To look for these issues, we can plot the residuals 𝑒𝑖 against the fitted values ̂𝑦𝑖 (Fig-
ure 2.21).

autoplot(bw_lm2, which = 1, ncol = 1) |> print()
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Figure 2.21.: birthweight model (Equation 2.2): residuals versus fitted values

If the model is correct, the blue line should stay flat and close to 0, and the cloud of dots
should have the same vertical spread regardless of the fitted value.

If not, we probably need to change the functional form of linear component of the mean,

E[𝑌 |𝑋 = 𝑥] = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝
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2.8.6.2. Example: PLOS Medicine title length data

(Adapted from Dobson and Barnett (2018), §6.7.1)

data(PLOS, package = "dobson")
library(ggplot2)
fig1 =
PLOS |>
ggplot(

aes(x = authors,
y = nchar)

) +
geom_point() +
theme(legend.position = "bottom") +
labs(col = "") +
guides(col=guide_legend(ncol=3))

fig1
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Figure 2.22.: Number of authors versus title length in PLOS Medicine articles

Linear fit

lm_PLOS_linear = lm(
formula = nchar ~ authors,
data = PLOS)
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fig2 = fig1 +
geom_smooth(

method = "lm",
fullrange = TRUE,
aes(col = "lm(y ~ x)"))

fig2

library(ggfortify)
autoplot(lm_PLOS_linear, which = 1, ncol = 1)
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Figure 2.23.: Number of authors versus title length in PLOS Medicine, with linear model fit

Quadratic fit

lm_PLOS_quad = lm(
formula = nchar ~ authors + I(authors^2),
data = PLOS)

fig3 =
fig2 +

geom_smooth(
method = "lm",
fullrange = TRUE,
formula = y ~ x + I(x ^ 2),
aes(col = "lm(y ~ x + I(x^2))")

)
fig3

autoplot(lm_PLOS_quad, which = 1, ncol = 1)
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Figure 2.24.: Number of authors versus title length in PLOS Medicine, with quadratic
model fit

Linear versus quadratic fits

library(ggfortify)
autoplot(lm_PLOS_linear, which = 1, ncol = 1)

autoplot(lm_PLOS_quad, which = 1, ncol = 1)
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(b) Quadratic

Figure 2.25.: Residuals versus fitted plot for linear and quadratic fits to PLOS data

Cubic fit

lm_PLOS_cub = lm(
formula = nchar ~ authors + I(authors^2) + I(authors^3),
data = PLOS)
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fig4 =
fig3 +

geom_smooth(
method = "lm",
fullrange = TRUE,
formula = y ~ x + I(x ^ 2) + I(x ^ 3),
aes(col = "lm(y ~ x + I(x^2) + I(x ^ 3))")

)
fig4

autoplot(lm_PLOS_cub, which = 1, ncol = 1)
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Figure 2.26.: Number of authors versus title length in PLOS Medicine, with cubic model fit

Logarithmic fit

lm_PLOS_log = lm(nchar ~ log(authors), data = PLOS)

fig5 = fig4 +
geom_smooth(

method = "lm",
fullrange = TRUE,
formula = y ~ log(x),
aes(col = "lm(y ~ log(x))")

)
fig5

autoplot(lm_PLOS_log, which = 1, ncol = 1)
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Table 2.30.: linear vs quadratic

anova(lm_PLOS_linear, lm_PLOS_quad)
#> # A tibble: 2 x 6
#> Res.Df RSS Df `Sum of Sq` F `Pr(>F)`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 876 947502. NA NA NA NA
#> 2 875 880950. 1 66552. 66.1 1.46e-15

Table 2.31.: quadratic vs cubic

anova(lm_PLOS_quad, lm_PLOS_cub)
#> # A tibble: 2 x 6
#> Res.Df RSS Df `Sum of Sq` F `Pr(>F)`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 875 880950. NA NA NA NA
#> 2 874 865933. 1 15018. 15.2 0.000106
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(b) Residuals vs fitted

Figure 2.27.: logarithmic fit

Model selection

AIC/BIC

AIC(lm_PLOS_quad)
#> [1] 8567.61
AIC(lm_PLOS_cub)
#> [1] 8554.51
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AIC(lm_PLOS_cub)
#> [1] 8554.51
AIC(lm_PLOS_log)
#> [1] 8543.63

BIC(lm_PLOS_cub)
#> [1] 8578.4
BIC(lm_PLOS_log)
#> [1] 8557.97

Extrapolation is dangerous

fig_all = fig5 +
xlim(0, 60)

fig_all
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lm(y ~ x)

Figure 2.28.: Number of authors versus title length in PLOS Medicine

2.8.6.3. Scale-location plot

We can also plot the square roots of the absolute values of the standardized residuals against
the fitted values (Figure 2.29).
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autoplot(bw_lm2, which = 3, ncol = 1) |> print()
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Figure 2.29.: Scale-location plot of birthweight data

Here, the blue line doesn’t need to be near 0, but it should be flat. If not, the residual
variance 𝜎2 might not be constant, and we might need to transform our outcome 𝑌 (or use
a model that allows non-constant variance).

2.8.6.4. Residuals versus leverage

We can also plot our standardized residuals against “leverage”, which roughly speaking is a
measure of how unusual each 𝑥𝑖 value is. Very unusual 𝑥𝑖 values can have extreme effects
on the model fit, so we might want to remove those observations as outliers, particularly if
they have large residuals.
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autoplot(bw_lm2, which = 5, ncol = 1) |> print()
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Figure 2.30.: birthweight model with interactions (Equation 2.2): residuals versus leverage

The blue line should be relatively flat and close to 0 here.

2.8.7. Diagnostics constructed by hand

bw <-
bw |>
mutate(

predlm2 = predict(bw_lm2),
residlm2 = weight - predlm2,
std_resid = residlm2 / sigma(bw_lm2),
# std_resid_builtin = rstandard(bw_lm2), # uses leverage
sqrt_abs_std_resid = std_resid |> abs() |> sqrt()

)

Residuals vs fitted

resid_vs_fit <- bw |>
ggplot(

aes(x = predlm2, y = residlm2, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
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geom_hline(yintercept = 0)

print(resid_vs_fit)
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Standardized residuals vs fitted

bw |>
ggplot(

aes(x = predlm2, y = std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)
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Standardized residuals vs gestational age

bw |>
ggplot(

aes(x = age, y = std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)
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sqrt(abs(rstandard())) vs fitted

Compare with autoplot(bw_lm2, 3)

bw |>
ggplot(

aes(x = predlm2, y = sqrt_abs_std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)

0.0

0.4

0.8

1.2

2600 2800 3000 3200
predlm2

sq
rt

_a
bs

_s
td

_r
es

id

sex

female

male

2.9. Model selection

(adapted from Dobson and Barnett (2018) §6.3.3; for more information on prediction, see
James et al. (2013) and Harrell (2015)).

If we have a lot of covariates in our dataset, we might want to choose a small subset to use
in our model.

There are a few possible metrics to consider for choosing a “best” model.

2.9.1. Mean squared error

We might want to minimize the mean squared error, E[(𝑦 − ̂𝑦)2], for new observations
that weren’t in our data set when we fit the model.

Unfortunately,
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2
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gives a biased estimate of E[(𝑦 − ̂𝑦)2] for new data. If we want an unbiased estimate, we
will have to be clever.

2.9.1.1. Cross-validation

data("carbohydrate", package = "dobson")
library(cvTools)
full_model <- lm(carbohydrate ~ ., data = carbohydrate)
cv_full <-
full_model |> cvFit(

data = carbohydrate, K = 5, R = 10,
y = carbohydrate$carbohydrate

)

reduced_model <- full_model |> update(formula = ~ . - age)

cv_reduced <-
reduced_model |> cvFit(

data = carbohydrate, K = 5, R = 10,
y = carbohydrate$carbohydrate

)

results_reduced <-
tibble(

model = "wgt+protein",
errs = cv_reduced$reps[]

)
results_full <-
tibble(

model = "wgt+age+protein",
errs = cv_full$reps[]

)

cv_results <-
bind_rows(results_reduced, results_full)

cv_results |>
ggplot(aes(y = model, x = errs)) +
geom_boxplot()
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wgt+age+protein

wgt+protein
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comparing metrics

compare_results <- tribble(
~model, ~cvRMSE, ~r.squared, ~adj.r.squared, ~trainRMSE, ~loglik,
"full",
cv_full$cv,
summary(full_model)$r.squared,
summary(full_model)$adj.r.squared,
sigma(full_model),
logLik(full_model) |> as.numeric(),
"reduced",
cv_reduced$cv,
summary(reduced_model)$r.squared,
summary(reduced_model)$adj.r.squared,
sigma(reduced_model),
logLik(reduced_model) |> as.numeric()

)

compare_results
#> # A tibble: 2 x 6
#> model cvRMSE r.squared adj.r.squared trainRMSE loglik
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 full 6.59 0.481 0.383 5.96 -61.8
#> 2 reduced 6.84 0.445 0.380 5.97 -62.5
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anova(full_model, reduced_model)
#> # A tibble: 2 x 6
#> Res.Df RSS Df `Sum of Sq` F `Pr(>F)`
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 16 568. NA NA NA NA
#> 2 17 606. -1 -38.4 1.08 0.314

2.9.1.2. stepwise regression

library(olsrr)
olsrr:::ols_step_both_aic(full_model)
#>
#>
#> Stepwise Summary
#> -------------------------------------------------------------------------
#> Step Variable AIC SBC SBIC R2 Adj. R2
#> -------------------------------------------------------------------------
#> 0 Base Model 140.773 142.764 83.068 0.00000 0.00000
#> 1 protein (+) 137.950 140.937 80.438 0.21427 0.17061
#> 2 weight (+) 132.981 136.964 77.191 0.44544 0.38020
#> -------------------------------------------------------------------------
#>
#> Final Model Output
#> ------------------
#>
#> Model Summary
#> ---------------------------------------------------------------
#> R 0.667 RMSE 5.505
#> R-Squared 0.445 MSE 30.301
#> Adj. R-Squared 0.380 Coef. Var 15.879
#> Pred R-Squared 0.236 AIC 132.981
#> MAE 4.593 SBC 136.964
#> ---------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> -------------------------------------------------------------------
#> Sum of
#> Squares DF Mean Square F Sig.
#> -------------------------------------------------------------------
#> Regression 486.778 2 243.389 6.827 0.0067
#> Residual 606.022 17 35.648
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#> Total 1092.800 19
#> -------------------------------------------------------------------
#>
#> Parameter Estimates
#> ----------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ----------------------------------------------------------------------------------------
#> (Intercept) 33.130 12.572 2.635 0.017 6.607 59.654
#> protein 1.824 0.623 0.534 2.927 0.009 0.509 3.139
#> weight -0.222 0.083 -0.486 -2.662 0.016 -0.397 -0.046
#> ----------------------------------------------------------------------------------------

2.9.1.3. Lasso

arg max
𝜃

{ℓ(𝜃) − 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|}

library(glmnet)
y <- carbohydrate$carbohydrate
x <- carbohydrate |>
select(age, weight, protein) |>
as.matrix()

fit <- glmnet(x, y)

autoplot(fit, xvar = "lambda")
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Figure 2.31.: Lasso selection

cvfit <- cv.glmnet(x, y)
plot(cvfit)
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Table 2.32.: The iris data

head(iris)
#> # A tibble: 6 x 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa

coef(cvfit, s = "lambda.1se")
#> 4 x 1 sparse Matrix of class "dgCMatrix"
#> lambda.1se
#> (Intercept) 34.2044364
#> age .
#> weight -0.0925966
#> protein 0.8582398

2.10. Categorical covariates with more than two levels

2.10.1. Example: birthweight

In the birthweight example, the variable sex had only two observed values:

unique(bw$sex)
#> [1] female male
#> Levels: female male

If there are more than two observed values, we can’t just use a single variable with 0s and
1s.

2.10.2.

For example, Table 2.32 shows the (in)famous7 iris data (Anderson (1935)), and Table 2.33
provides summary statistics. The data include three species: “setosa”, “versicolor”, and
“virginica”.

library(table1)
table1(
x = ~ . | Species,
data = iris,

7https://www.meganstodel.com/posts/no-to-iris/
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Table 2.33.: Summary statistics for the iris data

  setosa
(N=50)

versicolor
(N=50)

virginica
(N=50)

Sepal.Length
Mean (SD) 5.01 (0.352) 5.94 (0.516) 6.59 (0.636)
Median [Min, Max] 5.00 [4.30, 5.80] 5.90 [4.90, 7.00] 6.50 [4.90, 7.90]

Sepal.Width
Mean (SD) 3.43 (0.379) 2.77 (0.314) 2.97 (0.322)
Median [Min, Max] 3.40 [2.30, 4.40] 2.80 [2.00, 3.40] 3.00 [2.20, 3.80]

Petal.Length
Mean (SD) 1.46 (0.174) 4.26 (0.470) 5.55 (0.552)
Median [Min, Max] 1.50 [1.00, 1.90] 4.35 [3.00, 5.10] 5.55 [4.50, 6.90]

Petal.Width
Mean (SD) 0.246 (0.105) 1.33 (0.198) 2.03 (0.275)
Median [Min, Max] 0.200 [0.100, 0.600] 1.30 [1.00, 1.80] 2.00 [1.40, 2.50]

overall = FALSE
)

If we want to model Sepal.Length by species, we could create a variable 𝑋 that represents
“setosa” as 𝑋 = 1, “virginica” as 𝑋 = 2, and “versicolor” as 𝑋 = 3.

Then we could fit a model like:

iris_lm1 <- lm(Sepal.Length ~ X, data = iris)
iris_lm1 |>
parameters() |>
print_md()

Table 2.35.: Model of iris data with numeric coding of Species

Parameter Coefficient SE 95% CI t(148) p

(Intercept) 4.91 0.16 (4.60, 5.23) 30.83 < .001
X 0.46 0.07 (0.32, 0.61) 6.30 < .001

2.10.3. Let’s see how that model looks:

iris_plot1 <- iris |>
ggplot(

aes(
x = X,
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Table 2.34.: iris data with numeric coding of species

data(iris) # this step is not always necessary, but ensures you're starting
# from the original version of a dataset stored in a loaded package

iris <-
iris |>
tibble() |>
mutate(

X = case_when(
Species == "setosa" ~ 1,
Species == "virginica" ~ 2,
Species == "versicolor" ~ 3

)
)

iris |>
distinct(Species, X)

#> # A tibble: 3 x 2
#> Species X
#> <fct> <dbl>
#> 1 setosa 1
#> 2 versicolor 3
#> 3 virginica 2

y = Sepal.Length
)

) +
geom_point(alpha = .1) +
geom_abline(

intercept = coef(iris_lm1)[1],
slope = coef(iris_lm1)[2]

) +
theme_bw(base_size = 18)

print(iris_plot1)
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Figure 2.32.: Model of iris data with numeric coding of Species

We have forced the model to use a straight line for the three estimated means. Maybe not
a good idea?

2.10.4. Let’s see what R does with categorical variables by default:

iris_lm2 <- lm(Sepal.Length ~ Species, data = iris)
iris_lm2 |>
parameters() |>
print_md()

Table 2.36.: Model of iris data with Species as a categorical variable

Parameter Coefficient SE 95% CI t(147) p

(Intercept) 5.01 0.07 (4.86, 5.15) 68.76 < .001
Species (versicolor) 0.93 0.10 (0.73, 1.13) 9.03 < .001
Species (virginica) 1.58 0.10 (1.38, 1.79) 15.37 < .001

2.10.5. Re-parametrize with no intercept

If you don’t want the default and offset option, you can use “-1” like we’ve seen previously:

iris_lm2_no_int <- lm(Sepal.Length ~ Species - 1, data = iris)
iris_lm2_no_int |>
parameters() |>
print_md()
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Table 2.37.

Parameter Coefficient SE 95% CI t(147) p

Species (setosa) 5.01 0.07 (4.86, 5.15) 68.76 < .001
Species (versicolor) 5.94 0.07 (5.79, 6.08) 81.54 < .001
Species (virginica) 6.59 0.07 (6.44, 6.73) 90.49 < .001

2.10.6. Let’s see what these new models look like:

iris_plot2 <-
iris |>
mutate(

predlm2 = predict(iris_lm2)
) |>
arrange(X) |>
ggplot(aes(x = X, y = Sepal.Length)) +
geom_point(alpha = .1) +
geom_line(aes(y = predlm2), col = "red") +
geom_abline(

intercept = coef(iris_lm1)[1],
slope = coef(iris_lm1)[2]

) +
theme_bw(base_size = 18)

print(iris_plot2)
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Table 2.38.

formula(iris_lm2)
#> Sepal.Length ~ Species
model.matrix(iris_lm2) |>
as_tibble() |>
unique()

#> # A tibble: 3 x 3
#> `(Intercept)` Speciesversicolor Speciesvirginica
#> <dbl> <dbl> <dbl>
#> 1 1 0 0
#> 2 1 1 0
#> 3 1 0 1

Table 2.39.

formula(iris_lm2_no_int)
#> Sepal.Length ~ Species - 1
model.matrix(iris_lm2_no_int) |>
as_tibble() |>
unique()

#> # A tibble: 3 x 3
#> Speciessetosa Speciesversicolor Speciesvirginica
#> <dbl> <dbl> <dbl>
#> 1 1 0 0
#> 2 0 1 0
#> 3 0 0 1

2.10.7. Let’s see how R did that:

This format is called a “corner point parametrization” (e.g., in Dobson and Barnett (2018))
or “treatment coding” (e.g., in Dunn and Smyth (2018)).

The default contrasts are controlled by options("contrasts"):

options("contrasts")
#> $contrasts
#> unordered ordered
#> "contr.treatment" "contr.poly"

See ?options for more details.

This format is called a “group point parametrization” (e.g., in Dobson and Barnett (2018)).

113



2. Linear (Gaussian) Models

Table 2.40.: HERS dataset

hers |> head()
#> # A tibble: 6 x 37
#> HT age raceth nonwhite smoking drinkany exercise physact globrat
#> <dbl+lbl> <dbl> <dbl+l> <dbl+lb> <dbl+l> <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
#> 1 0 [placebo] 70 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 5 [muc~ 3 [goo~
#> 2 0 [placebo] 62 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 1 [muc~ 3 [goo~
#> 3 1 [hormone t~ 69 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 3 [abo~ 3 [goo~
#> 4 0 [placebo] 64 1 [Whi~ 0 [no] 1 [yes] 1 [yes] 0 [no] 1 [muc~ 3 [goo~
#> 5 0 [placebo] 65 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 2 [som~ 3 [goo~
#> 6 1 [hormone t~ 68 2 [Afr~ 1 [yes] 0 [no] 1 [yes] 0 [no] 3 [abo~ 3 [goo~
#> # i 28 more variables: poorfair <dbl+lbl>, medcond <dbl>, htnmeds <dbl+lbl>,
#> # statins <dbl+lbl>, diabetes <dbl+lbl>, dmpills <dbl+lbl>,
#> # insulin <dbl+lbl>, weight <dbl>, BMI <dbl>, waist <dbl>, WHR <dbl>,
#> # glucose <dbl>, weight1 <dbl>, BMI1 <dbl>, waist1 <dbl>, WHR1 <dbl>,
#> # glucose1 <dbl>, tchol <dbl>, LDL <dbl>, HDL <dbl>, TG <dbl>, tchol1 <dbl>,
#> # LDL1 <dbl>, HDL1 <dbl>, TG1 <dbl>, SBP <dbl>, DBP <dbl>, age10 <dbl>

There are more options; see Dobson and Barnett (2018) §6.4.1 and the codingMatrices
package8 vignette9 (Venables (2023)).

2.11. Ordinal covariates

(c.f. Dobson and Barnett (2018) §2.4.4)

We can create ordinal variables in R using the ordered() function10.

Example 2.4.

url <- paste0(
"https://regression.ucsf.edu/sites/g/files/tkssra6706/",
"f/wysiwyg/home/data/hersdata.dta"

)
library(haven)
hers <- read_dta(url)

Check out ?codingMatrices::contr.diff

8https://CRAN.R-project.org/package=codingMatrices
9https://cran.r-project.org/web/packages/codingMatrices/vignettes/codingMatrices.pdf

10or equivalently, factor(ordered = TRUE)
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Logistic regression and variations

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:
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rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(

legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

options(digits = 6)
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3.1. Introduction

Exercise 3.1. What is logistic regression?

Solution 3.1.

Definition 3.1. Logistic regression is a framework for modeling binary outcomes, condi-
tional on one or more predictors (a.k.a. covariates).

1https://dmrocke.ucdavis.edu/
2https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
3https://www.bookdown.org/rwnahhas/RMPH/blr.html
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Exercise 3.2 (Examples of binary outcomes). What are some examples of binary outcomes
in the health sciences?

Solution 3.2. Examples of binary outcomes include:

• exposure (exposed vs unexposed)
• disease (diseased vs healthy)
• recovery (recovered vs unrecovered)
• relapse (relapse vs remission)
• return to hospital (returned vs not)
• vital status (dead vs alive)

Logistic regression uses the Bernoulli distribution to model the outcome variable, conditional
on one or more covariates.

Exercise 3.3. Write down a mathematical definition of the Bernoulli distribution.

Solution 3.3. The Bernoulli distribution family for a random variable 𝑋 is defined as:

Pr(𝑋 = 𝑥) = 1𝑥∈{0,1}𝜋𝑥(1 − 𝜋)1−𝑥

= { 𝜋, 𝑥 = 1
1 − 𝜋, 𝑥 = 0

3.1.1. Logistic regression versus linear regression

Logistic regression differs from linear regression, which uses the Gaussian (“normal”)
distribution to model the outcome variable, conditional on the covariates.

Exercise 3.4. Recall: what kinds of outcomes is linear regression used for?
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Solution 3.4. Linear regression is typically used for numerical outcomes that aren’t event
counts or waiting times for an event.

Examples of outcomes that are often analyzed using linear regression include:

• weight
• height
• income
• prices

3.2. Risk estimation and prediction

In Epi 203, you have already seen methods for modeling binary outcomes using one covariate
that is also binary (such as exposure/non-exposure). In this section, we review one-covariate
analyses, with a special focus on risk ratios and odds ratios, which are important concepts
for interpreting logistic regression.

Example 3.1 (Oral Contraceptive Use and Heart Attack).

• Research question: how does oral contraceptive (OC) use affect the risk of myocardial
infarction (MI; a.k.a. heart attack)?

This was an issue when oral contraceptives were first developed, because the original
formulations used higher concentrations of hormones. Modern OCs don’t have this issue.

Table 3.1 contains simulated data for an imaginary follow-up (a.k.a. prospective) study
in which two groups are identified, one using OCs and another not using OCs, and both
groups are tracked for three years to determine how many in each groups have MIs.

library(dplyr)
oc_mi <-
tribble(

~OC, ~MI, ~Total,
"OC use", 13, 5000,
"No OC use", 7, 10000

) |>
mutate(`No MI` = Total - MI) |>
relocate(`No MI`, .after = MI)

totals <-
oc_mi |>
summarize(across(c(MI, `No MI`, Total), sum)) |>
mutate(OC = "Total")

tbl_oc_mi <- bind_rows(oc_mi, totals)

tbl_oc_mi |> pander::pander()
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Table 3.1.: Simulated data from study of oral contraceptive use and heart attack risk

OC MI No MI Total

OC use 13 4,987 5,000
No OC use 7 9,993 10,000

Total 20 14,980 15,000

Exercise 3.5. Estimate the probabilities of MI for OC users and non-OC users in Exam-
ple 3.1.

Solution 3.5.
p̂(𝑀𝐼|𝑂𝐶) = 13

5000
= 0.0026

p̂(𝑀𝐼|¬𝑂𝐶) = 7
10000

= 7 × 10−4

Exercise 3.6. What does the term “controls” mean in the context of study design?

Solution 3.6.

Definition 3.2 (Two meanings of “controls”). Depending on context, “controls” can mean
either:

• individuals who don’t experience an exposure of interest,
• or individuals who don’t experience an outcome of interest.

Exercise 3.7. What types of studies do the two definitions of controls correspond to?

Solution 3.7.

Definition 3.3 (cases and controls in retrospective studies). In retrospective case-control stud-
ies, participants who experience the outcome of interest are called cases, while participants
who don’t experience that outcome are called controls.

Definition 3.4 (treatment groups and control groups in prospective studies). In prospective
studies, the group of participants who experience the treatment or exposure of interest is
called the treatment group, while the participants who receive the baseline or comparison
treatment (for example, clinical trial participants who receive a placebo or a standard-of-care
treatment rather than an experimental treatment) are called controls.
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3.3. Comparing probabilities

3.3.1. Risk differences

The simplest comparison of two probabilities, 𝜋1, and 𝜋2, is the difference of their values:

Definition 3.5 (Risk difference). The risk difference of two probabilities, 𝜋1, and 𝜋2, is
the difference of their values:

𝛿(𝜋1, 𝜋2)
def= 𝜋1 − 𝜋2

Example 3.2 (Difference in MI risk). In Example 3.1, the maximum likelihood estimate
of the difference in MI risk between OC users and OC non-users is:

̂𝛿(𝜋(𝑂𝐶), 𝜋(¬𝑂𝐶)) = 𝛿( ̂𝜋(𝑂𝐶), ̂𝜋(¬𝑂𝐶))
= ̂𝜋(𝑂𝐶) − ̂𝜋(¬𝑂𝐶)
= 0.0026 − 7 × 10−4

= 0.0019

Exercise 3.8 (interpreting risk differences). How can we interpret the preceding relative
risk estimate in prose?

Solution 3.8 (interpreting risk differences). “The difference in risk of MI between OC users
and non-users was 0.0019.”

or

“The difference in risk of MI between OC users and non-users was 0.19 percentage points4.”

See the note about working with percentages in the Appendix.

4https://en.wikipedia.org/wiki/Percentage_point
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3.3.2. Risk ratios

Exercise 3.9. If 𝜋1 and 𝜋2 are two probabilities, what do we call the following ratio?

𝜌(𝜋1, 𝜋2) =
𝜋1
𝜋2

Solution 3.9.

Definition 3.6 (Relative risk ratios). The ratio of two probabilities 𝜋1 and 𝜋2,

𝜌(𝜋1, 𝜋2) =
𝜋1
𝜋2

is called the:

• risk ratio,
• relative risk ratio,
• probability ratio,
• or rate ratio

of 𝜋1 compared to 𝜋2.

Exercise 3.10.

Above, we estimated that:

p̂(𝑀𝐼|𝑂𝐶) = 0.0026

p̂(𝑀𝐼|¬𝑂𝐶) = 7 × 10−4

Now, estimate the relative risk of MI for OC versus non-OC.

Solution 3.10.

The relative risk of MI for OC versus non-OC is:

rr <- (13 / 5000) / (7 / 10000)

̂𝜌(𝑂𝐶,¬𝑂𝐶) = p̂(𝑀𝐼|𝑂𝐶)
p̂(𝑀𝐼|¬𝑂𝐶)

= 0.0026
7 × 10−4

= 3.714286
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Exercise 3.11. How can we interpret the preceding relative risk estimate in prose?

Solution 3.11.

We might summarize this result by saying that:

• “The estimated probability of MI among OC users was 3.714286 times as high as the
estimated probability among OC non-users.”

or

• “The estimated probability of MI among OC users was 2.714286 times higher than,
the estimated probability among OC non-users.”

see also Section 8.1.45 which uses similar phrasing.

3.3.3. Relative risk differences

The second approach above, where we subtract 1 from the risk ratio, is actually reporting a
slightly different metric:

Definition 3.7 (Relative risk difference).

Sometimes, we divide the risk difference by the comparison probability; the result is called
the relative risk difference:

𝜉(𝜋1, 𝜋2)
def= 𝛿(𝜋1, 𝜋2)

𝜋2

Theorem 3.1 (Relative risk difference equals risk ratio minus 1).

𝜉(𝜋1, 𝜋2) = 𝜌(𝜋1, 𝜋2) − 1

5https://link.springer.com/chapter/10.1007/978-1-4614-1353-0_8#Sec5_8
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Proof.

𝜉(𝜋1, 𝜋2)
def= 𝛿(𝜋1, 𝜋2)

𝜋2

= 𝜋1 − 𝜋2
𝜋2

= 𝜋1
𝜋2

− 1

= 𝜌(𝜋1, 𝜋2) − 1

3.3.4. Changing reference groups in risk comparisons

Risk differences, risk ratios, and relative risk differences are defined by two probabilities,
plus a choice of which probability is the baseline or reference probability (i.e., which
probability is the subtrahend of the risk difference or the denominator of the risk ratio).

𝛿(𝜋2, 𝜋1) = −𝛿(𝜋1, 𝜋2)

𝜌(𝜋2, 𝜋1) = (𝜌(𝜋1, 𝜋2))
−1

𝜉(𝜋2, 𝜋1) = (𝜉(𝜋1, 𝜋2) + 1)−1 − 1

Exercise 3.12. Prove the relationships above.

Example 3.3 (Switching the reference group in a risk ratio). Above, we estimated that
the risk ratio of OC versus non-OC is:

𝜌(𝑂𝐶,¬𝑂𝐶) = 3.714286

In comparison, the risk ratio for non-OC versus OC is:

𝜌(¬𝑂𝐶,𝑂𝐶) = p̂(𝑀𝐼|¬𝑂𝐶)
p̂(𝑀𝐼|𝑂𝐶)

= 7 × 10−4

0.0026
= 0.269231

= 1
𝜌(𝑂𝐶,¬𝑂𝐶)
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3.4. Odds and odds ratios

3.4.1. Odds and probabilities

In logistic regression, we will make use of a mathematically-convenient transformation of
probability, called odds:

Definition 3.8 (Odds).

The odds of an event 𝐴, is the probability that the event occurs, divided by the probability
that it doesn’t occur. We can represent odds with the Greek letter 𝜔 (“omega”). 6 Thus,
in mathematical notation:

𝜔 def= Pr(𝐴)
Pr(¬𝐴)

(3.1)

This course is about regression models, which are conditional probability models (Defini-
tion 1.1). Accordingly, we define conditional odds in terms of conditional probabilities:

Definition 3.9 (Conditional odds).

The conditional odds of an event 𝐴 given a condition 𝐵, is the (conditional) probability
that event 𝐴 occurs (given condition 𝐵), divided by the (conditional) probability that it
doesn’t occur (given condition 𝐵). We can represent conditional odds using 𝜔(𝐴|𝐵), 𝜔(𝐵)
or 𝜔𝐵 (“omega bee”). Thus, in mathematical notation:

𝜔(𝐵) def= Pr(𝐴|𝐵)
Pr(¬𝐴|𝐵)

(3.2)

Example 3.4 (Computing odds from probabilities). In Exercise 3.5, we estimated that
the probability of MI, given OC use, is 𝜋(𝑂𝐶) def= Pr(𝑀𝐼|𝑂𝐶) = 0.0026. If this estimate is
correct, then the odds of MI, given OC use, is:

𝜔(𝑂𝐶) def= Pr(𝑀𝐼|𝑂𝐶)
Pr(¬𝑀𝐼|𝑂𝐶)

= Pr(𝑀𝐼|𝑂𝐶)
1 − Pr(𝑀𝐼|𝑂𝐶)

= 𝜋(𝑂𝐶)
1 − 𝜋(𝑂𝐶)

= 0.0026
1 − 0.0026

≈ 0.002607

6The name “omega” is a contraction of “o mega”, which means “long o” in Greek, in contrast with “omicron”
(𝜊, “short o”). See https://www.etymonline.com/search?q=omega and https://en.wikipedia.org/wiki/
Omega for more details.
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Exercise 3.13 (Computing odds from probabilities). Estimate the odds of MI, for non-OC
users.

Solution.
𝜔(¬𝑂𝐶) = 7.004903 × 10−4

Exercise 3.14. Find a general formula for converting probabilities into odds.

Solution 3.12. Using Definition 3.8 and Corollary C.2:

𝜔 def= Pr(𝐴)
Pr(¬𝐴)

= 𝜋
1 − 𝜋

Theorem 3.2. If 𝜋 is the probability of an event 𝐴 and 𝜔 is the corresponding odds of 𝐴,
then:

𝜔 = 𝜋
1 − 𝜋

(3.3)

Proof. By Solution 3.12.

The mathematical relationship between odds 𝜔 and probabilities 𝜋, which is represented in
Equation 3.3, is a core component of logistic regression models, as we will see in the rest of
this chapter. Let’s give the expression on the righthand side of Equation 3.3 its own name
and symbol, so that we can refer to it concisely:

Definition 3.10 (Odds function). The odds function is defined as:

odds{𝜋} def= 𝜋
1 − 𝜋

(3.4)

We can use the odds function (Definition 3.10) to simplify Equation 3.3 (in Theorem 3.2)
into a more concise expression, which is easier to remember and manipulate:
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Corollary 3.1. If 𝜋 is the probability of an outcome 𝐴 and 𝜔 is the corresponding odds of
𝐴, then:

𝜔 = odds{𝜋} (3.5)

In other words, the odds function rescales probabilities into odds.

Proof. By Theorem 3.2 and Definition 3.10.

Exercise 3.15. Graph the odds function.

Solution 3.13.

Figure 3.1 graphs the odds function.

odds <- function(pi) pi / (1 - pi)
library(ggplot2)
ggplot() +
geom_function(

fun = odds,
arrow = arrow(ends = "last"),
mapping = aes(col = "odds function")

) +
xlim(0, .99) +
xlab("Probability") +
ylab("Odds") +
geom_abline(aes(

intercept = 0,
slope = 1,
col = "y=x"

)) +
theme_bw() +
labs(colour = "") +
theme(legend.position = "bottom")
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Figure 3.1.: Odds versus probability

Theorem 3.3 (One-sample MLE for odds). Let 𝑋1, ...𝑋𝑛 be a set of 𝑛 iid Bernoulli trials,
and let 𝑋 = ∑𝑛

𝑖=1 𝑋𝑖 be their sum.

Then the maximum likelihood estimate of the odds of 𝑋 = 1, 𝜔, is:

𝜔̂ = 𝑥
𝑛 − 𝑥

Proof.
1 − ̂𝜋 = 1 − 𝑥

𝑛
= 𝑛

𝑛
− 𝑥

𝑛
= 𝑛 − 𝑥

𝑛

Thus, the estimated odds is:

̂𝜋
1 − ̂𝜋

=
(𝑥

𝑛)
(𝑛−𝑥

𝑛 )

= 𝑥
𝑛 − 𝑥

(3.6)

That is, the odds estimate can be computed directly as “# events” divided by “# nonevents”,
without needing to compute ̂𝜋 and 1 − ̂𝜋 first.
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Example 3.5 (Calculating odds using the shortcut). In Example 3.4, we calculated

𝜔(𝑂𝐶) = 0.002607

Let’s recalculate this result using our shortcut.

Solution 3.14.
𝜔(𝑂𝐶) = 13

5000 − 13
= 0.002607

Same answer as in Example 3.4!

Theorem 3.4 (Simplified expressions for odds function).

Two equivalent expressions for the odds function are:

odds{𝜋} = 1
𝜋−1 − 1

= (𝜋−1 − 1)−1
(3.7)

Exercise 3.16. Prove Theorem 3.4.

Solution 3.15. Starting from Definition 3.10:

odds{𝜋} = 𝜋
1 − 𝜋

= 𝜋
1 − 𝜋

𝜋−1

𝜋−1

= 𝜋𝜋−1

(1 − 𝜋)𝜋−1

= 1
(𝜋−1 − 𝜋𝜋−1)

= 1
(𝜋−1 − 1)

= (𝜋−1 − 1)−1
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Corollary 3.2 (Odds of a non-event). If 𝜋 is the odds of event 𝐴 and 𝜔 is the corresponding
odds of 𝐴, then the odds of ¬𝐴 are:

𝜔(¬𝐴) = 1 − 𝜋
𝜋

= 𝜋−1 − 1

Proof. Left to the reader.

3.4.1.1. Odds of rare events

Exercise 3.17. What odds value corresponds to the probability 𝜋 = 0.2, and what is the
numerical difference between these two values?

Solution.
𝜔 = 𝜋

1 − 𝜋
= .2

.8
= .25

Exercise 3.18. Find the difference between an odds 𝜔 and its corresponding probability 𝜋,
as a function of 𝜋.

Solution 3.16.
𝜔 − 𝜋 = 𝜋

1 − 𝜋
− 𝜋

= 𝜋
1 − 𝜋

− 𝜋(1 − 𝜋)
1 − 𝜋

= 𝜋
1 − 𝜋

− 𝜋 − 𝜋2

1 − 𝜋

= 𝜋 − (𝜋 − 𝜋2)
1 − 𝜋

= 𝜋 − 𝜋 + 𝜋2

1 − 𝜋

= 𝜋2

1 − 𝜋
= 𝜋

1 − 𝜋
𝜋

= 𝜔𝜋
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Theorem 3.5. Let 𝜔 = 𝜋
1−𝜋 . Then:

𝜔 − 𝜋 = 𝜋2

1 − 𝜋

Proof. By Solution 3.16.

For rare events (small 𝜋), odds and probabilities are nearly equal (see Figure 3.1), because
1 − 𝜋 ≈ 1 and 𝜋2 ≈ 0.

For example, in Example 3.4, the probability and odds differ by 6.777622 × 10−6.

3.4.2. The inverse odds function

Exercise 3.19. If 𝜋 is the probability of an event 𝐴 and 𝜔 is the corresponding odds of 𝐴,
how can we compute 𝜋 from 𝜔?

For example, if 𝜔 = 3/2, what is 𝜋?

Solution 3.17. Starting from Theorem 3.2, we can solve Equation 3.3 for 𝜋 in terms of 𝜔:

𝜔 = 𝜋
1 − 𝜋

(1 − 𝜋)𝜔 = 𝜋
𝜔 − 𝜋𝜔 = 𝜋

𝜔 = 𝜋 + 𝜋𝜔
𝜔 = (1 + 𝜔)𝜋

𝜋 = 𝜔
1 + 𝜔

So if 𝜔 = 3/2,

𝜋 = 3/2
1 + 3/2

= 3/2
5/2

= 3
5

Theorem 3.6. If 𝜋 is the probability of an event and 𝜔 is the corresponding odds of that
event, then:

𝜋 = 𝜔
1 + 𝜔

(3.8)
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Proof. By Theorem 3.2 and Solution 3.17.

Definition 3.11 (inverse odds function).

invodds{𝜔} def= 𝜔
1 + 𝜔

(3.9)

can be called the inverse-odds function.

Corollary 3.3.
𝜋 = invodds{𝜔}

Proof. By Definition 3.11 and Theorem 3.6.

Corollary 3.4.
invodds{𝜔} = odds−1{𝜔}

Proof. Using Corollary 3.1 and Theorem 3.6:

invodds{odds{𝜋}} = invodds{𝜔}

= 𝜔
1 + 𝜔

= 𝜋

Likewise (not shown):

odds{invodds{𝜔}} = 𝜔
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The inverse-odds function converts odds into their corresponding probabilities (Figure 3.2).
Its domain of inputs is 𝜔 ∈ [0,∞) and its range of outputs is 𝜋 ∈ [0, 1].

I haven’t seen anyone give the inverse-odds function a concise name; maybe prob() or prob()
or risk()?

odds_inv <- function(omega) (1 + omega^-1)^-1
library(ggplot2)
ggplot() +
geom_function(fun = odds_inv, aes(col = "inverse-odds")) +
xlab("Odds") +
ylab("Probability") +
xlim(0, 5) +
ylim(0, 1) +
geom_abline(aes(intercept = 0, slope = 1, col = "x=y"))
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Figure 3.2.: The inverse odds function, invodds{𝜔}

Exercise 3.20. What probability corresponds to an odds of 𝜔 = 1, and what is the
numerical difference between these two values?

Solution.
𝜋 = invodds{1}

= 1
1 + 1

= 1
2

= .5
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𝜔 − 𝜋 = 1 − .5
= .5

Lemma 3.1 (Simplified expression for inverse odds function).

Equivalent expressions for the inverse odds function are:

invodds{𝜔} = 1
1 + 𝜔−1

= (1 + 𝜔−1)−1
(3.10)

Exercise 3.21. Prove that Equation 3.10 is equivalent to Definition 3.11.

Solution 3.18. Analogous to Solution 3.15.

Lemma 3.2 (One minus inverse-odds).

1 − 𝜋 = 1
1 + 𝜔

Proof. By Theorem 3.6:

1 − 𝜋 = 1 − 𝜔
1 + 𝜔

= 1 + 𝜔
1 + 𝜔

− 𝜔
1 + 𝜔

= (1 + 𝜔) − 𝜔
1 + 𝜔

= 1 + 𝜔 − 𝜔
1 + 𝜔

= 1
1 + 𝜔

Corollary 3.5.
1 + 𝜔 = 1

1 − 𝜋
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3.4.3. Odds ratios

Now that we have defined odds, we can introduce another way of comparing event probabil-
ities: odds ratios.

Definition 3.12 (Odds ratio). The odds ratio for two conditional odds, 𝜔1 and 𝜔2, is the
ratio of those odds:

𝜃(𝜔1, 𝜔2)
def= 𝜔1

𝜔2

There’s a 1:1 mapping between probability and odds, and according to that mapping, the
odds are equal between two covariate patterns IF and ONLY IF the probabilities are also
equal between those patterns. So, testing whether an odds ratio = 1 is equivalent to testing
whether the corresponding risk ratio = 1, and also equivalent to testing whether the risk
difference = 0. Therefore, in hypothesis testing, if the null hypothesis is no effect, then
we can shift between RD, RR, and OR. But when we’re talking about point estimates and
CIs, we need to limit our conclusions to the effect measure(s) that we actually estimated,
because the sizes of RDs, RRs, and ORs don’t have a simple relationship to each other,
except when pi_1=pi_2 (as shown by Figure 3.3).

An odds ratio is a ratio of odds. An odds is a ratio of probabilities, so odds ratios are ratios
of ratios:

Theorem 3.7.
𝜃(𝜔1, 𝜔2) =

𝜔1
𝜔2

=
( 𝜋1

1−𝜋1
)

( 𝜋2
1−𝜋2

)

Example 3.6 (Calculating odds ratios). In Example 3.1, the odds ratio for OC users versus
OC-non-users is:

𝜃(𝜔(𝑂𝐶), 𝜔(¬𝑂𝐶)) = 𝜔(𝑂𝐶)
𝜔(¬𝑂𝐶)

= 0.0026
7 × 10−4

= 3.714286
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3.4.3.1. A shortcut for calculating odds ratio estimates

The general form of a two-by-two table is shown in Table 3.2.

Table 3.2.: A generic 2x2 table

Event Non-Event Total

Exposed a b a+b
Non-exposed c d c+d
Total a+c b+d a+b+c+d

From this table, we have:

• ̂𝜋(𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑎/(𝑎 + 𝑏)

• ̂𝜋(¬𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑏/(𝑎 + 𝑏)

• 𝜔̂(𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) =
𝑎

𝑎+𝑏
𝑏

𝑎+𝑏
= 𝑎

𝑏

• 𝜔̂(𝐸𝑣𝑒𝑛𝑡|¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑐
𝑑 (see Exercise 3.22)

• 𝜃(𝐸𝑥𝑝𝑜𝑠𝑒𝑑, ¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) =
𝑎
𝑏
𝑐
𝑑
= 𝑎𝑑

𝑏𝑐

Exercise 3.22. Given Table 3.2, show that 𝜔̂(𝐸𝑣𝑒𝑛𝑡|¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑐
𝑑 .

3.4.3.2. Properties of odds ratios

Odds ratios have a special property: we can swap a covariate with the outcome, and the
odds ratio remains the same.

Theorem 3.8 (Odds ratios are reversible). For any two events 𝐴, 𝐵:

𝜃(𝐴|𝐵) = 𝜃(𝐵|𝐴)
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Proof.

𝜃(𝐴|𝐵) def= 𝜔(𝐴|𝐵)
𝜔(𝐴|¬𝐵)

=
( p(𝐴|𝐵)

p(¬𝐴|𝐵))

( p(𝐴|¬𝐵)
p(¬𝐴|¬𝐵))

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵)

)( p(𝐴|¬𝐵)
p(¬𝐴|¬𝐵)

)
−1

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵)

)(p(¬𝐴|¬𝐵)
p(𝐴|¬𝐵)

)

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵)

⋅ p(𝐵)
p(𝐵)

)(p(¬𝐴|¬𝐵)
p(𝐴|¬𝐵)

⋅ p(¬𝐵)
p(¬𝐵)

)

= ( p(𝐴,𝐵)
p(¬𝐴,𝐵)

)(p(¬𝐴,¬𝐵)
p(𝐴, ¬𝐵)

)

= ( p(𝐵,𝐴)
p(𝐵, ¬𝐴)

)(p(¬𝐵,¬𝐴)
p(¬𝐵,𝐴)

)

= ( p(𝐵,𝐴)
p(¬𝐵,𝐴)

)(p(¬𝐵,¬𝐴)
p(𝐵, ¬𝐴)

)

= [reverse the preceding steps]
= 𝜃(𝐵|𝐴)

Example 3.7. In Example 3.1, we have:
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𝜃(𝑀𝐼;𝑂𝐶) def= 𝜔(𝑀𝐼|𝑂𝐶)
𝜔(𝑀𝐼|¬𝑂𝐶)

def=
( Pr(𝑀𝐼|𝑂𝐶)

Pr(¬𝑀𝐼|𝑂𝐶))

( Pr(𝑀𝐼|¬𝑂𝐶)
Pr(¬𝑀𝐼|¬𝑂𝐶))

=
( Pr(𝑀𝐼,𝑂𝐶)

Pr(¬𝑀𝐼,𝑂𝐶))

( Pr(𝑀𝐼,¬𝑂𝐶)
Pr(¬𝑀𝐼,¬𝑂𝐶))

= ( Pr(𝑀𝐼,𝑂𝐶)
Pr(¬𝑀𝐼,𝑂𝐶)

)(Pr(¬𝑀𝐼, ¬𝑂𝐶)
Pr(𝑀𝐼, ¬𝑂𝐶)

)

= ( Pr(𝑀𝐼,𝑂𝐶)
Pr(𝑀𝐼, ¬𝑂𝐶)

)(Pr(¬𝑀𝐼, ¬𝑂𝐶)
Pr(¬𝑀𝐼,𝑂𝐶)

)

= ( Pr(𝑂𝐶,𝑀𝐼)
Pr(¬𝑂𝐶,𝑀𝐼)

)(Pr(¬𝑂𝐶,¬𝑀𝐼)
Pr(𝑂𝐶,¬𝑀𝐼)

)

= ( Pr(𝑂𝐶|𝑀𝐼)
Pr(¬𝑂𝐶|𝑀𝐼)

)(Pr(¬𝑂𝐶|¬𝑀𝐼)
Pr(𝑂𝐶|¬𝑀𝐼)

)

=
( Pr(𝑂𝐶|𝑀𝐼)

Pr(¬𝑂𝐶|𝑀𝐼))

( Pr(𝑂𝐶|¬𝑀𝐼)
Pr(¬𝑂𝐶|¬𝑀𝐼))

def= 𝜔(𝑂𝐶|𝑀𝐼)
𝜔(𝑂𝐶|¬𝑀𝐼)

def= 𝜃(𝑂𝐶;𝑀𝐼)

Exercise 3.23. For Table 3.2, show that ̂𝜃(𝐸𝑥𝑝𝑜𝑠𝑒𝑑, 𝑈𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑) = ̂𝜃(𝐸𝑣𝑒𝑛𝑡, ¬𝐸𝑣𝑒𝑛𝑡).

Conditional odds ratios have the same reversibility property:

Theorem 3.9 (Conditional odds ratios are reversible). For any three events 𝐴, 𝐵, 𝐶:

𝜃(𝐴|𝐵,𝐶) = 𝜃(𝐵|𝐴,𝐶)

Proof. Apply the same steps as for Theorem 3.8, inserting 𝐶 into the conditions (RHS of |)
of every expression.

3.4.3.3. Odds Ratios vs Probability (Risk) Ratios

When the outcome is rare (i.e., its probability is small) for both groups being compared in
an odds ratio, the odds of the outcome will be similar to the probability of the outcome,
and thus the risk ratio will be similar to the odds ratio.
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Case 1: rare events

For rare events, odds ratios and probability (a.k.a. risk, a.k.a. prevalence) ratios will be
close:

𝜋1 = .01

𝜋2 = .02

pi1 <- .01
pi2 <- .02
pi2 / pi1
#> [1] 2
odds(pi2) / odds(pi1)
#> [1] 2.02041

Example 3.8. In Example 3.1, the outcome is rare for both OC and non-OC participants,
so the odds for both groups are similar to the corresponding probabilities, and the odds
ratio is similar the risk ratio.

Case 2: frequent events

𝜋1 = .4

𝜋2 = .5

For more frequently-occurring outcomes, this won’t be the case:

pi1 <- .4
pi2 <- .5
pi2 / pi1
#> [1] 1.25
odds(pi2) / odds(pi1)
#> [1] 1.5
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Figure 3.3 compares risk differences, risk ratios, and odds ratios as functions of the underlying
probabilities being compared.
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if (run_graphs) {
RD <- function(p1, p2) p2 - p1
RR <- function(p1, p2) p2 / p1
odds <- function(p) p / (1 - p)
OR <- function(p1, p2) odds(p2) / odds(p1)
OR_minus_RR <- function(p1, p2) OR(p2, p1) - RR(p2, p1)

n_ticks <- 201
probs <- seq(.001, .99, length.out = n_ticks)
RD_mat <- outer(probs, probs, RD)
RR_mat <- outer(probs, probs, RR)
OR_mat <- outer(probs, probs, OR)

opacity <- .3
z_min <- -1
z_max <- 5
plotly::plot_ly(

x = ~probs,
y = ~probs

) |>
plotly::add_surface(

z = ~ t(RD_mat),
contours = list(
z = list(

show = TRUE,
start = -1,
end = 1,
size = .1

)
),
name = "Risk Difference",
showscale = FALSE,
opacity = opacity,
colorscale = list(c(0, 1), c("green", "green"))

) |>
plotly::add_surface(

opacity = opacity,
colorscale = list(c(0, 1), c("red", "red")),
z = ~ t(RR_mat),
contours = list(
z = list(

show = TRUE,
start = z_min,
end = z_max,
size = .2

)
),
showscale = FALSE,
name = "Risk Ratio"

) |>
plotly::add_surface(

opacity = opacity,
colorscale = list(c(0, 1), c("blue", "blue")),
z = ~ t(OR_mat),
contours = list(
z = list(

show = TRUE,
start = z_min,
end = z_max,
size = .2

)
),
showscale = FALSE,
name = "Odds Ratio"

) |>
plotly::layout(

scene = list(
xaxis = list(

# type = "log",
title = "reference group probability"

),
yaxis = list(

# type = "log",
title = "comparison group probability"

),
zaxis = list(

# type = "log",
range = c(z_min, z_max),
title = "comparison metric"

),
camera = list(eye = list(x = -1.25, y = -1.25, z = 0.5)),
aspectratio = list(x = .9, y = .8, z = 0.7)

)
)

}

Figure 3.3.: Graph of risk difference, risk ratio, and odds ratio
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3.4.3.4. Odds Ratios in Case-Control Studies

Table 3.1 simulates a follow-up study in which two populations were followed and the
number of MI’s was observed. The risks are 𝑃(𝑀𝐼|𝑂𝐶) and 𝑃(𝑀𝐼|¬𝑂𝐶) and we can
estimate these risks from the data.

But suppose we had a case-control study in which we had 100 women with MI and selected
a comparison group of 100 women without MI (matched as groups on age, etc.). Then MI
is not random, and we cannot compute P(MI|OC) and we cannot compute the risk ratio.
However, the odds ratio however can be computed.

The disease odds ratio is the odds for the disease in the exposed group divided by the
odds for the disease in the unexposed group, and we cannot validly compute and use these
separate parts.

We can still validly compute and use the exposure odds ratio, which is the odds for exposure
in the disease group divided by the odds for exposure in the non-diseased group (because
exposure can be treated as random):

̂𝜃(𝑂𝐶|𝑀𝐼) = 𝜔̂(𝑂𝐶|𝑀𝐼)
𝜔̂(𝑂𝐶|¬𝑀𝐼)

And these two odds ratios, ̂𝜃(𝑀𝐼|𝑂𝐶) and ̂𝜃(𝑂𝐶|𝑀𝐼), are mathematically equivalent, as
we saw in Section 3.4.3.2:

̂𝜃(𝑀𝐼|𝑂𝐶) = ̂𝜃(𝑂𝐶|𝑀𝐼)

Exercise 3.24. Calculate the odds ratio of MI with respect to OC use, assuming that
Table 3.1 comes from a case-control study. Confirm that the result is the same as in
Example 3.6.

Solution.

tbl_oc_mi |> pander::pander()

Table 3.3.: Simulated data from study of oral contraceptive use and heart attack risk

OC MI No MI Total

OC use 13 4,987 5,000
No OC use 7 9,993 10,000

Total 20 14,980 15,000
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• 𝜔(𝑂𝐶|𝑀𝐼) = 𝑃(𝑂𝐶|𝑀𝐼)/(1–𝑃(𝑂𝐶|𝑀𝐼) = 13
7 = 1.857143

• 𝜔(𝑂𝐶|¬𝑀𝐼) = 𝑃(𝑂𝐶|¬𝑀𝐼)/(1–𝑃(𝑂𝐶|¬𝑀𝐼) = 4987
9993 = 0.499049

• 𝜃(𝑂𝐶,𝑀𝐼) = 𝜔(𝑂𝐶|𝑀𝐼)
𝜔(𝑂𝐶|¬𝑀𝐼) = 13/7

4987/9993 = 3.721361

This is the same estimate we calculated in Example 3.6.

3.4.3.5. Odds Ratios in Cross-Sectional Studies

• If a cross-sectional study is a uniform probability sample of a population (which it
rarely is), then we can estimate prevalence (sometimes called “prevalence risk” or just
“risk”) using standard methods (Lee 1994), and we can thus also estimate prevalence
differences, prevalence ratios, and prevalence odds ratios comparing sub-populations.

• If the cross-sectional study is a stratified probability sample, then we can estimate
prevalence, prevalence differences, prevalence ratios, and prevalence odds ratios using
specialized methods for complex surveys (Lumley 2010).

• If the study has sampling biases that we cannot adjust for with survey weights, such
as in a convenience sample, then we need to treat it in the same way as a case-control
study, and we cannot validly estimate prevalence, prevalence differences, or prevalence
ratios; we can only validly estimate prevalence odds ratios.

3.5. The logit and expit functions

3.5.1. The logit function

Definition 3.13 (log-odds).

If 𝜔 is the odds of an event 𝐴, then the log-odds of 𝐴, which we will represent by 𝜂 (“eta”),
is the natural logarithm of the odds of 𝐴:

𝜂 def= log{𝜔} (3.11)

Theorem 3.10. If 𝜋 is the probability of an event 𝐴, 𝜔 is the corresponding odds of 𝐴,
and 𝜂 is the corresponding log-odds of 𝐴, then:

𝜂 = log{ 𝜋
1 − 𝜋

} (3.12)

Proof. Apply Definition 3.13 and then Theorem 3.2.

142



3. Models for Binary Outcomes

Definition 3.14 (logit function).

The logit function of a probability 𝜋 is the natural logarithm of the odds function of 𝜋:

logit(𝜋) def= log{odds{𝜋}}

The logit function is a composite function7.

Exercise 3.25 (Compose the logit function). Mathematically expand the definition of the
logit function.

Solution 3.19 (Compose the logit function).

Theorem 3.11 (Expanded expression for logit).

logit(𝜋) = log{ 𝜋
1 − 𝜋

} (3.13)

Proof. Apply Definition 3.14 and then Definition 3.8 (details left to the reader).

Corollary 3.6. If 𝜋 is the probability of an event 𝐴 and 𝜂 is the corresponding log-odds of
𝐴, then:

𝜂 = logit{𝜋}

Proof. Apply Theorem 3.10 and Theorem 3.11.

Figure 3.4 shows the shape of the logit() function.

7https://en.wikipedia.org/wiki/Function_composition
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odds <- function(pi) pi / (1 - pi)

logit <- function(p) log(odds(p))

library(ggplot2)
logit_plot <-
ggplot() +
geom_function(

fun = logit,
arrow = arrow(ends = "both")

) +
xlim(.001, .999) +
ylab("logit(p)") +
xlab("p") +
theme_bw()

print(logit_plot)
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Figure 3.4.: The logit function

3.5.2. The expit function

Lemma 3.3.

If 𝜔 is the odds of an event 𝐴 and 𝜂 is the corresponding log-odds of 𝐴, then:

𝜔 = exp{𝜂}
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Proof. Start from Definition 3.13 and solve for 𝜔.

Theorem 3.12.

If 𝜋 is the probability of an event 𝐴, 𝜔 is the corresponding odds of 𝐴, and 𝜂 is the
corresponding log-odds of 𝐴, then:

𝜋 = exp{𝜂}
1 + exp{𝜂}

Proof. Apply Theorem 3.6 and then Lemma 3.3.

Definition 3.15 (expit, logistic, inverse-logit). The expit function of a log-odds 𝜂, also
known as the inverse-logit function or logistic function, is the inverse-odds of the
exponential of 𝜂:

expit(𝜂) def= invodds{exp{𝜂}}

Theorem 3.13 (Expressions for expit function).

expit(𝜂) = exp{𝜂}
1 + exp{𝜂}

= 1
1 + exp{−𝜂})

= (1 + exp{−𝜂})−1

Proof. Apply definitions and Lemma 3.1. Details left to the reader.

Theorem 3.14. If 𝜋 is the probability of an event 𝐴, 𝜔 is the corresponding odds of 𝐴,
and 𝜂 is the corresponding log-odds of 𝐴, then:

𝜋 = expit{𝜂}
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Proof. Apply Theorem 3.12 and Theorem 3.13.

Figure 3.5 graphs the expit function.

expit <- function(eta) {
exp(eta) / (1 + exp(eta))

}
library(ggplot2)
expit_plot <-
ggplot() +
geom_function(

fun = expit,
arrow = arrow(ends = "both")

) +
xlim(-8, 8) +
ylim(0, 1) +
ylab(expression(expit(eta))) +
xlab(expression(eta)) +
theme_bw()

print(expit_plot)
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Figure 3.5.: The expit function

Theorem 3.15 (logit and expit are each others’ inverses).

logit{expit{𝜂}} = 𝜂
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expit{logit{𝜋}} = 𝜋

Proof. Left to the reader.

3.5.3. Diagram of expit and logit

[𝜋 def= Pr(𝑌 = 1|𝑋̃ = ̃𝑥)]

logit(𝜋)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜋
1−𝜋
−−→
←−−

𝜔
1+𝜔

[𝜔 def= odds(𝑌 = 1|𝑋̃ = ̃𝑥)]
log{𝜔}
−−−−→
←−−−−

exp{𝜂}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
expit(𝜂)

[𝜂( ̃𝑥) def= log-odds(𝑌 = 1|𝑋̃ = ̃𝑥)]

Figure 3.6.: Diagram of logistic regression link and inverse link functions

3.6. Introduction to logistic regression

• In Example 3.1, we estimated the risk and the odds of MI for two groups, defined by
oral contraceptive use.

• If the predictor is quantitative (dose) or there is more than one predictor, the task
becomes more difficult.

• In this case, we will use logistic regression, which is a generalization of the linear
regression models you have been using that can account for a binary response instead
of a continuous one.

3.6.1. Independent binary outcomes - general

Exercise 3.26. Let ̃𝑦 represent a data set of mutually independent binary outcomes, each
with a potentially different event probability 𝜋𝑖:

̃𝑦 = (𝑦1, ..., 𝑦𝑛)
𝑦𝑖 ∼⟂⟂ Ber(𝜋𝑖)

Write the likelihood of ̃𝑦.
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Solution 3.20.
𝜋𝑖

def= P(𝑌𝑖 = 1)
P(𝑌𝑖 = 0) = 1 − 𝜋𝑖

P(𝑌𝑖 = 𝑦𝑖) = P(𝑌𝑖 = 1)𝑦𝑖P(𝑌𝑖 = 0)1−𝑦𝑖

= (𝜋𝑖)𝑦𝑖(1 − 𝜋𝑖)1−𝑦𝑖

ℒ𝑖(𝜋𝑖)
def= P(𝑌𝑖 = 𝑦𝑖)

ℒ( ̃𝜋) def= P(𝑌1 = 𝑦1,… , 𝑌𝑛 = 𝑦𝑛)

=
𝑛
∏
𝑖=1

P(𝑌𝑖 = 𝑦𝑖)

=
𝑛
∏
𝑖=1

ℒ𝑖(𝜋𝑖)

=
𝑛
∏
𝑖=1

(𝜋𝑖)𝑦𝑖(1 − 𝜋𝑖)1−𝑦𝑖

Exercise 3.27. Write the log-likelihood of ̃𝑦.

Solution 3.21.
ℓ( ̃𝜋) def= log{ℒ( ̃𝜋)}

= log{
𝑛
∏
𝑖=1

ℒ𝑖(𝜋𝑖)}

=
𝑛

∑
𝑖=1

log{ℒ𝑖(𝜋𝑖)}

=
𝑛

∑
𝑖=1

ℓ𝑖(𝜋𝑖)

ℓ𝑖(𝜋𝑖)
def= log{ℒ𝑖(𝜋𝑖)}
= 𝑦𝑖log{𝜋𝑖} + (1 − 𝑦𝑖)log{1 − 𝜋𝑖}

3.6.2. Modeling 𝜋𝑖 as a function of 𝑋𝑖

If there are only a few distinct 𝑋𝑖 values, we can model 𝜋𝑖 separately for each value of
𝑋𝑖.

Otherwise, we need regression.

𝜋(𝑥) ≡ E(𝑌 = 1|𝑋 = 𝑥)
= 𝑓(𝑥⊤𝛽)

Typically, we use the expit inverse-link:

𝜋( ̃𝑥) = expit( ̃𝑥′𝛽) (3.14)
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Table 3.4.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous carbon
disulphide (Bliss 1935)

library(glmx)
library(dplyr)
data(BeetleMortality, package = "glmx")
beetles <- BeetleMortality |>
mutate(

pct = died / n,
survived = n - died,
dose_c = dose - mean(dose)

)
beetles
#> # A tibble: 8 x 6
#> dose died n pct survived dose_c
#> <dbl> <int> <int> <dbl> <int> <dbl>
#> 1 1.69 6 59 0.102 53 -0.103
#> 2 1.72 13 60 0.217 47 -0.0692
#> 3 1.76 18 62 0.290 44 -0.0382
#> 4 1.78 28 56 0.5 28 -0.00923
#> 5 1.81 52 63 0.825 11 0.0179
#> 6 1.84 53 59 0.898 6 0.0435
#> 7 1.86 61 62 0.984 1 0.0676
#> 8 1.88 60 60 1 0 0.0905

3.6.3. Meet the beetles
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library(ggplot2)
plot1 <-
beetles |>
ggplot(aes(x = dose, y = pct)) +
geom_point(aes(size = n)) +
xlab("Dose (log mg/L)") +
ylab("Mortality rate (%)") +
scale_y_continuous(labels = scales::percent) +
scale_size(range = c(1, 2)) +
theme_bw(base_size = 18)

print(plot1)
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Figure 3.7.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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3.6.4. Why don’t we use linear regression?

beetles_long <- beetles |>
reframe(

.by = everything(),
outcome = c(

rep(1, times = died),
rep(0, times = survived)

)
) |>
as_tibble()

lm1 <- beetles_long |> lm(formula = outcome ~ dose)
f_linear <- function(x) predict(lm1, newdata = data.frame(dose = x))

range1 <- range(beetles$dose) + c(-.2, .2)

plot2 <-
plot1 +
geom_function(

fun = f_linear,
aes(col = "Straight line")

) +
labs(colour = "Model", size = "")

plot2 |> print()
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Figure 3.8.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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3.6.5. Zoom out

(plot2 + expand_limits(x = c(1.6, 2))) |> print()

−50%

0%

50%

100%

150%

1.6 1.7 1.8 1.9 2.0

Dose (log mg/L)

M
or

ta
lit

y 
ra

te
 (

%
)

56
58
60
62

Model
Straight line

Figure 3.9.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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3.6.6. log transformation of dose?

lm2 <- beetles_long |> lm(formula = outcome ~ log(dose))
f_linearlog <- function(x) predict(lm2, newdata = data.frame(dose = x))

plot3 <- plot2 +
expand_limits(x = c(1.6, 2)) +
geom_function(fun = f_linearlog, aes(col = "Log-transform dose"))

(plot3 + expand_limits(x = c(1.6, 2))) |> print()
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Figure 3.10.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935)
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3.6.7. Logistic regression

beetles_glm_grouped <- beetles |>
glm(formula = cbind(died, survived) ~ dose, family = "binomial")

f <- function(x) {
beetles_glm_grouped |>

predict(newdata = data.frame(dose = x), type = "response")
}

plot4 <- plot3 + geom_function(fun = f, aes(col = "Logistic regression"))
plot4 |> print()
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Figure 3.11.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous
carbon disulphide (Bliss 1935).

3.6.8. Three parts to regression models

• What distribution does the outcome have for a specific subpopulation defined by
covariates? (outcome model)

• How does the combination of covariates relate to the mean? (link function)

• How do the covariates combine? (linear predictor, interactions)

3.6.9. Fitting and manipulating logistic regression models in R
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Table 3.6.

fitted(beetles_glm_grouped)
#> 1 2 3 4 5 6 7 8
#> 0.058601 0.164028 0.362119 0.605315 0.795172 0.903236 0.955196 0.979049
predict(beetles_glm_grouped, type = "response")
#> 1 2 3 4 5 6 7 8
#> 0.058601 0.164028 0.362119 0.605315 0.795172 0.903236 0.955196 0.979049

library(glmx)
library(dplyr)
data(BeetleMortality)
beetles <- BeetleMortality |>
mutate(

pct = died / n,
survived = n - died

)

beetles_glm_grouped <-
beetles |>
glm(

formula = cbind(died, survived) ~ dose,
family = "binomial"

)

library(parameters)
beetles_glm_grouped |>
parameters() |>
print_md()

Table 3.5.: logistic regression model for beetles data with grouped (binomial) data

Parameter Log-Odds SE 95% CI z p

(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

3.6.9.1. Fitted values

Fitted values are provided on the probability scale (Table 3.6)
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3.6.9.2. Count scale

For grouped data, we can convert to the count scale by multiplying by the group size:

beetles$n * fitted(beetles_glm_grouped)
#> 1 2 3 4 5 6 7 8
#> 3.45746 9.84167 22.45138 33.89763 50.09582 53.29091 59.22216 58.74296

3.6.9.3. Logit scale

predict(beetles_glm_grouped, type = "link")
#> 1 2 3 4 5 6 7 8
#> -2.776615 -1.628559 -0.566179 0.427661 1.356386 2.233707 3.059622 3.844412

Converting between logit and probability scales works as expected:

predict(beetles_glm_grouped, type = "link") |> arm::invlogit()
#> 1 2 3 4 5 6 7 8
#> 0.058601 0.164028 0.362119 0.605315 0.795172 0.903236 0.955196 0.979049
predict(beetles_glm_grouped, type = "response")
#> 1 2 3 4 5 6 7 8
#> 0.058601 0.164028 0.362119 0.605315 0.795172 0.903236 0.955196 0.979049

predict(beetles_glm_grouped, type = "response") |> arm::logit()
#> 1 2 3 4 5 6 7 8
#> -2.776615 -1.628559 -0.566179 0.427661 1.356386 2.233707 3.059622 3.844412
predict(beetles_glm_grouped, type = "link")
#> 1 2 3 4 5 6 7 8
#> -2.776615 -1.628559 -0.566179 0.427661 1.356386 2.233707 3.059622 3.844412

type = "terms" is confusing, because the variables get centered:

predict(beetles_glm_grouped, type = "terms")
#> dose
#> 1 -3.520419
#> 2 -2.372363
#> 3 -1.309983
#> 4 -0.316144
#> 5 0.612582
#> 6 1.489902
#> 7 2.315817
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#> 8 3.100608
#> attr(,"constant")
#> [1] 0.743804
coef(beetles_glm_grouped)["dose"] * beetles$dose
#> [1] 57.9408 59.0889 60.1513 61.1451 62.0738 62.9512 63.7771 64.5619

We can construct the link-scale predictions from the terms:

terms_pred <- predict(beetles_glm_grouped, type = "terms")
terms_pred + attr(terms_pred, "constant")
#> dose
#> 1 -2.776615
#> 2 -1.628559
#> 3 -0.566179
#> 4 0.427661
#> 5 1.356386
#> 6 2.233707
#> 7 3.059622
#> 8 3.844412
#> attr(,"constant")
#> [1] 0.743804
predict(beetles_glm_grouped, type = "link")
#> 1 2 3 4 5 6 7 8
#> -2.776615 -1.628559 -0.566179 0.427661 1.356386 2.233707 3.059622 3.844412

3.6.9.4. Individual observations

beetles_glm_ungrouped <-
beetles_long |>
glm(

formula = outcome ~ dose,
family = "binomial"

)

beetles_glm_ungrouped |>
parameters() |>
print_md()
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Table 3.7.: beetles data in long format

beetles_long
#> # A tibble: 481 x 7
#> dose died n pct survived dose_c outcome
#> <dbl> <int> <int> <dbl> <int> <dbl> <dbl>
#> 1 1.69 6 59 0.102 53 -0.103 1
#> 2 1.69 6 59 0.102 53 -0.103 1
#> 3 1.69 6 59 0.102 53 -0.103 1
#> 4 1.69 6 59 0.102 53 -0.103 1
#> 5 1.69 6 59 0.102 53 -0.103 1
#> 6 1.69 6 59 0.102 53 -0.103 1
#> 7 1.69 6 59 0.102 53 -0.103 0
#> 8 1.69 6 59 0.102 53 -0.103 0
#> 9 1.69 6 59 0.102 53 -0.103 0
#> 10 1.69 6 59 0.102 53 -0.103 0
#> # i 471 more rows

Table 3.8.: logistic regression model for beetles data with individual Bernoulli data

Parameter Log-Odds SE 95% CI z p

(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

Exercise 3.28. Compare this model with the grouped-observations model (Table 3.5).

Solution 3.22.

They seem the same! But not quite:

logLik(beetles_glm_grouped)
#> 'log Lik.' -18.7151 (df=2)
logLik(beetles_glm_ungrouped)
#> 'log Lik.' -186.235 (df=2)

The difference is due to the binomial coefficient (𝑛
𝑥 ) which isn’t included in the individual-

observations (Bernoulli) version of the model.

3.7. Derivatives of logistic regression functions

In order to interpret logistic regression models and find their MLEs, we will need to compute
various derivatives. This section compiles some useful results.
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3.7.1. Derivatives of odds function

Theorem 3.16 (Derivative of odds function).

odds′{𝜋} = 𝜕𝜔
𝜕𝜋

= 1
(1 − 𝜋)2

Proof. We can use Theorem 3.2 and the quotient rule (Theorem B.26):

𝜕𝜔
𝜕𝜋

= 𝜕
𝜕𝜋

( 𝜋
1 − 𝜋

)

=
𝜕

𝜕𝜋𝜋
1 − 𝜋

−( 𝜋
(1 − 𝜋)2 ⋅ 𝜕

𝜕𝜋
(1 − 𝜋))

= 1
1 − 𝜋

− 𝜋
(1 − 𝜋)2 ⋅ (−1)

= 1
1 − 𝜋

+ 𝜋
(1 − 𝜋)2

= 1 − 𝜋
(1 − 𝜋)2 + 𝜋

(1 − 𝜋)2

= 1 − 𝜋 + 𝜋
(1 − 𝜋)2

= 1
(1 − 𝜋)2

Corollary 3.7.
𝜕𝜔
𝜕𝜋

= (1 + 𝜔)2

Proof. By Theorem 3.16 and Corollary 3.5.

3.7.2. Derivatives of inverse-odds function

Theorem 3.17 (Derivative of inverse odds function).

invodds′{𝜔} = 𝜕𝜋
𝜕𝜔

= (1 − 𝜋)2 = 1
(1 + 𝜔)2 (3.15)
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Proof. By Theorem 3.16 and Corollary 3.7.

Or for a direct approach, use the quotient rule (Theorem B.26) again:

𝜕𝜋
𝜕𝜔

= 𝜕
𝜕𝜔

𝜔
1 + 𝜔

=
𝜕

𝜕𝜔𝜔
1 + 𝜔

− 𝜔
(1 + 𝜔)2 ⋅ 𝜕

𝜕𝜔
(1 + 𝜔)

= 1
1 + 𝜔

− 𝜔
(1 + 𝜔)2 ⋅ 1

= 1
1 + 𝜔

− 𝜔
(1 + 𝜔)2

= 1 + 𝜔
(1 + 𝜔)2 − 𝜔

(1 + 𝜔)2

= 1 + 𝜔 − 𝜔
(1 + 𝜔)2

= 1
(1 + 𝜔)2

3.7.3. Derivatives of logit function

Lemma 3.4 (Derivative of log-odds by odds).

𝜕𝜂
𝜕𝜔

= 𝜔−1

Proof. Using Definition 3.13:

𝜕𝜂
𝜕𝜔

= 𝜕
𝜕𝜔

log𝜔

= 𝜔−1

Theorem 3.18 (Derivative of log-odds by odds).

𝜕𝜂
𝜕𝜔

= 1 − 𝜋
𝜋
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Proof. Using Theorem 3.2 and Lemma 3.4:

𝜕𝜂
𝜕𝜔

= 𝜔−1

= 1 − 𝜋
𝜋

Theorem 3.19 (Derivative of log-odds by probability).

𝜕𝜂
𝜕𝜋

= 1
(𝜋)(1 − 𝜋)

Proof. Using Theorem 3.18, Theorem 3.16, and the chain rule (Theorem B.27):

𝜕𝜂
𝜕𝜋

= 𝜕𝜂
𝜕𝜔

𝜕𝜔
𝜕𝜋

= 1 − 𝜋
𝜋

1
(1 − 𝜋)2

= 1
(𝜋)(1 − 𝜋)

Corollary 3.8 (Derivative of logit function).

logit′(𝜋) = 1
(𝜋)(1 − 𝜋)

Proof. By Theorem 3.19 and Corollary 3.6.
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3.7.4. Derivatives of expit function

Lemma 3.5.
𝜕𝜔
𝜕𝜂

= 𝜔

Proof. Using Lemma 3.3 and Theorem B.24:

𝜕𝜔
𝜕𝜂

= 𝜕
𝜕𝜂

exp{𝜂}

= exp{𝜂}
= 𝜔

Theorem 3.20.
𝜕𝜔
𝜕𝜂

= 𝜋
1 − 𝜋

(3.16)

Proof. Use Lemma 3.5 and Theorem 3.2.

Theorem 3.21.
𝜕𝜋
𝜕𝜂

= 𝜋(1 − 𝜋)

Proof. By the chain rule (Theorem B.27), Theorem 3.20, and Theorem 3.17:

𝜕𝜋
𝜕𝜂

= 𝜕𝜔
𝜕𝜂

𝜕𝜋
𝜕𝜔

= 𝜋
1 − 𝜋

(1 − 𝜋)2

= 𝜋(1 − 𝜋)

Alternatively, by Theorem 3.19:

𝜕𝜋
𝜕𝜂

= (𝜕𝜂
𝜕𝜋

)
−1

= ( 1
(𝜋)(1 − 𝜋)

)
−1

= 𝜋(1 − 𝜋)
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Corollary 3.9. If 𝜋 = Pr(𝑌 = 1|𝑋̃ = ̃𝑥), then:

𝜕𝜋
𝜕𝜂

= Var(𝑌 |𝑋 = 𝑥)

3.8. Understanding logistic regression models

Lemma 3.6. By Theorem B.31:

𝜕𝜂
𝜕 ̃𝑥

= 𝜕
𝜕 ̃𝑥

̃𝑥 ⋅ ̃𝛽

= ̃𝛽

Exercise 3.29. Consider a logistic regression model with a single predictor, 𝑋:

𝑌𝑖|𝑋𝑖 ∼⟂⟂ Ber(𝜋(𝑋𝑖))
𝜋(𝑥) = expit{𝜂(𝑥)} = 𝜋(𝜔(𝜂(𝑥)))
𝜂(𝑥) = 𝛼 + 𝛽𝑥

(3.17)

Find the derivative of 𝜋(𝑥) = E[𝑌 |𝑋 = 𝑥] with respect to 𝑥:

𝜕𝜋
𝜕𝑥

= ?

Solution 3.23. By Theorem 3.21, Lemma 3.6, and the chain rule (Theorem B.27):

𝜕𝜋
𝜕𝑥

= 𝜕𝜋
𝜕𝜂

𝜕𝜂
𝜕𝑥

= 𝜋(1 − 𝜋)𝛽
= Var(𝑌 |𝑋 = 𝑥) ⋅ 𝛽

The slope is steepest at 𝜋 = 0.5, i.e., at 𝜂 = 0, which for a unipredictor model occurs at
𝑥 = −𝛼/𝛽. The slope goes to 0 as 𝑥 goes to −∞ or +∞ (compare with Figure 3.5).

INFO Note

In order to interpret 𝛽𝑗: differentiate or difference 𝜂( ̃𝑥) with respect to 𝑥𝑗 (depending
on whether 𝑥𝑗 is continuous or discrete, respectively):
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𝜕
𝜕𝑥𝑗

𝜂( ̃𝑥)

In order to find the MLE ̂̃𝛽: differentiate the log-likelihood function ℓ( ̃𝛽) with
respect to ̃𝛽:

𝜕
𝜕 ̃𝛽

ℓ( ̃𝛽)

Exercise 3.30 (General formula for odds ratios in logistic regression). Consider the generic
logistic regression model:

• 𝑌𝑖|𝑋̃𝑖 ∼⟂⟂ Ber(𝜋(𝑋̃𝑖))
• logit{𝜋( ̃𝑥)} = 𝜂( ̃𝑥)
• 𝜂( ̃𝑥) = ̃𝑥′ ̃𝛽

Let ̃𝑥 and ̃𝑥∗ be two covariate patterns, representing two individuals or two subpopulations.

Find a concise formula to compute the odds ratio comparing covariate patterns ̃𝑥 and ̃𝑥∗:

𝜃( ̃𝑥, ̃𝑥∗) def= 𝜔( ̃𝑥)
𝜔( ̃𝑥∗)

(3.18)

Solution 3.24 (General formula for odds ratios in logistic regression).

𝜃( ̃𝑥, ̃𝑥∗) def= 𝜔( ̃𝑥)
𝜔( ̃𝑥∗)

= exp{𝜂( ̃𝑥)}
exp{𝜂( ̃𝑥∗)}

= exp{𝜂( ̃𝑥) − 𝜂( ̃𝑥∗)}

Solution 3.24 is more concrete than Equation 3.18, but it doesn’t yet completely explain
how to compute 𝜃( ̃𝑥, ̃𝑥∗), so let’s mark it as a lemma:

Lemma 3.7 (General formula for odds ratios in logistic regression).

𝜃( ̃𝑥, ̃𝑥∗) = exp{𝜂( ̃𝑥) − 𝜂( ̃𝑥∗)} (3.19)

Proof. By Solution 3.24.
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Definition 3.16 (Difference in log-odds).

Let ̃𝑥 and ̃𝑥∗ be two covariate patterns, representing two individuals or two subpopulations.

Then we can define the difference in log-odds between ̃𝑥 and ̃𝑥∗, denoted Δ𝜂( ̃𝑥, ̃𝑥∗) or Δ𝜂
for short, as:

Δ𝜂 def= 𝜂( ̃𝑥) − 𝜂( ̃𝑥∗)

Corollary 3.10 (Shorthand general formula for odds ratios in logistic regression).

𝜃( ̃𝑥, ̃𝑥∗) = exp{Δ𝜂} (3.20)

Proof. By Lemma 3.7 and Definition 3.16.

Exercise 3.31 (Difference in log-odds). Find a concise expression for the difference in
log-odds:

Δ𝜂 def= 𝜂( ̃𝑥) − 𝜂( ̃𝑥∗)

Solution 3.25 (Difference in log-odds).

Δ𝜂 def= 𝜂( ̃𝑥) − 𝜂( ̃𝑥∗)

= ( ̃𝑥 ⋅ ̃𝛽) − ( ̃𝑥∗ ⋅ ̃𝛽)

= ( ̃𝑥⊤ ̃𝛽) − (( ̃𝑥∗)⊤ ̃𝛽)

= ( ̃𝑥⊤ − ( ̃𝑥∗)⊤) ̃𝛽

= ( ̃𝑥 − ̃𝑥∗)⊤ ̃𝛽

= ( ̃𝑥 − ̃𝑥∗) ⋅ ̃𝛽

Lemma 3.8 (Difference in log-odds).

Δ𝜂 = ( ̃𝑥 − ̃𝑥∗) ⋅ ̃𝛽

Proof. By Solution 3.25.
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Definition 3.17 (Difference in covariate patterns).

Let ̃𝑥 and ̃𝑥∗ be two covariate patterns, representing two individuals or two subpopulations.
The difference in covariate patterns, denoted Δ ̃𝑥, is defined as:

Δ ̃𝑥 def= ̃𝑥 − ̃𝑥∗

Corollary 3.11 (Difference in log-odds).

Δ𝜂 = (Δ ̃𝑥) ⋅ ̃𝛽

Proof. By Lemma 3.8 and Definition 3.17.

Exercise 3.32. Find an expression for the odds ratio 𝜃( ̃𝑥, ̃𝑥∗) in terms of Δ ̃𝑥 and ̃𝛽.

Solution 3.26. Combine Corollary 3.10 and Corollary 3.11:

𝜃( ̃𝑥, ̃𝑥∗) = exp{Δ𝜂}

= exp{Δ ̃𝑥 ⋅ ̃𝛽}

Theorem 3.22. The odds ratio comparing covariate patterns ̃𝑥 and ̃𝑥∗ is:

𝜃( ̃𝑥, ̃𝑥∗) = exp{(Δ ̃𝑥) ⋅ ̃𝛽} (3.21)

Proof. By Solution 3.26.

Corollary 3.12.
log{𝜃( ̃𝑥, ̃𝑥∗)} = Δ𝜂

3.9. Estimating logistic regression models

3.9.1. Model

Assume:

• 𝑌𝑖|𝑋̃𝑖 ∼⟂⟂ Ber(𝜋(𝑋𝑖))
• 𝜋( ̃𝑥) = expit{𝜂( ̃𝑥)}
• 𝜂( ̃𝑥) = ̃𝑥 ⋅ ̃𝛽
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3. Models for Binary Outcomes

Table 3.9.: Mortality rates of adult flour beetles after five hours’ exposure to gaseous carbon
disulphide (Bliss 1935)

library(glmx)
library(dplyr)
data(BeetleMortality)
beetles <- BeetleMortality |>
mutate(

pct = died / n,
survived = n - died,
dose_c = dose - mean(dose)

)
beetles_long <-
beetles |>
reframe(

.by = everything(),
outcome = c(

rep(1, times = died),
rep(0, times = survived)

)
)

beetles
#> # A tibble: 8 x 6
#> dose died n pct survived dose_c
#> <dbl> <int> <int> <dbl> <int> <dbl>
#> 1 1.69 6 59 0.102 53 -0.103
#> 2 1.72 13 60 0.217 47 -0.0692
#> 3 1.76 18 62 0.290 44 -0.0382
#> 4 1.78 28 56 0.5 28 -0.00923
#> 5 1.81 52 63 0.825 11 0.0179
#> 6 1.84 53 59 0.898 6 0.0435
#> 7 1.86 61 62 0.984 1 0.0676
#> 8 1.88 60 60 1 0 0.0905

3.9.2. Likelihood function

Exercise 3.33. Compute and graph the likelihood for the beetles data model:

beetles_glm <-
beetles |>
glm(

formula = cbind(died, survived) ~ dose,
family = "binomial"

)
equatiomatic::extract_eq(beetles_glm)

log [ 𝑃(died = 60)
1 − 𝑃(died = 60)

] = 𝛼 + 𝛽1(dose) (3.22)
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beetles_glm |>
parameters::parameters() |>
parameters::print_md()

Table 3.10.: Fitted logistic regression model for beetles data

Parameter Log-Odds SE 95% CI z p

(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

Solution 3.27.

odds_inv <- function(omega) (1 + omega^-1)^-1
lik_beetles0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose,
omega = exp(eta),
pi = odds_inv(omega),
Lik = pi^died * (1 - pi)^survived,
# llik = died*eta + n*log(1 - pi)

) |>
pull(Lik) |>
prod()

}

lik_beetles <- Vectorize(lik_beetles0)

3.9.3. Log-likelihood function

Exercise 3.34. Find the log-likelihood function for the general logistic regression model.

Solution 3.28.
ℓ( ̃𝛽, ̃𝑦) = log{ℒ( ̃𝛽, ̃𝑦)}

=
𝑛

∑
𝑖=1

ℓ𝑖(𝜋( ̃𝑥𝑖))
(3.23)
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Using Theorem 3.10 and Corollary 3.5:

ℓ𝑖(𝜋𝑖) = 𝑦𝑖log{𝜋𝑖} + (1 − 𝑦𝑖)log{1 − 𝜋𝑖}
= 𝑦𝑖log{𝜋𝑖} + (1 ⋅ log{1 − 𝜋𝑖} − 𝑦𝑖 ⋅ log{1 − 𝜋𝑖})
= 𝑦𝑖log{𝜋𝑖} + (log{1 − 𝜋𝑖} − 𝑦𝑖log{1 − 𝜋𝑖})
= 𝑦𝑖log{𝜋𝑖} + log{1 − 𝜋𝑖} − 𝑦𝑖log{1 − 𝜋𝑖}
= 𝑦𝑖log{𝜋𝑖} − 𝑦𝑖log{1 − 𝜋𝑖} + log{1 − 𝜋𝑖}
= (𝑦𝑖log{𝜋𝑖} − 𝑦𝑖log{1 − 𝜋𝑖}) + log{1 − 𝜋𝑖}
= 𝑦𝑖(log{𝜋𝑖} − log{1 − 𝜋𝑖}) + log{1 − 𝜋𝑖}

= 𝑦𝑖(log{ 𝜋𝑖
1 − 𝜋𝑖

})+ log{1 − 𝜋𝑖}

= 𝑦𝑖logit(𝜋𝑖) + log{1 − 𝜋𝑖}
= 𝑦𝑖𝜂𝑖 + log{1 − 𝜋𝑖}

= 𝑦𝑖𝜂𝑖 + log{(1 + 𝜔𝑖)
−1}

= 𝑦𝑖𝜂𝑖 − log{1 + 𝜔𝑖}

Lemma 3.9.
ℓ𝑖(𝜋𝑖) = 𝑦𝑖𝜂𝑖 − log{1 + 𝜔𝑖}

Exercise 3.35. Compute and graph the log-likelihood for the beetles data.

Solution 3.29.

odds_inv <- function(omega) (1 + omega^-1)^-1
llik_beetles0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose,
omega = exp(eta),
pi = odds_inv(omega), # need for next line:
llik = died*eta + n*log(1 - pi)

) |>
pull(llik) |>
sum()

}

llik_beetles <- Vectorize(llik_beetles0)

# to check that we implemented it correctly:
# ests = coef(beetles_glm_ungrouped)
# logLik(beetles_glm_ungrouped)
# llik_beetles(ests[1], ests[2])
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Let’s center dose:

beetles_glm_grouped_centered <- beetles |>
glm(

formula = cbind(died, survived) ~ dose_c,
family = "binomial"

)

beetles_glm_ungrouped_centered <- beetles_long |>
mutate(died = outcome) |>
glm(

formula = died ~ dose_c,
family = "binomial"

)

equatiomatic::extract_eq(beetles_glm_ungrouped_centered)

log [ 𝑃(died = 1)
1 − 𝑃(died = 1)

] = 𝛼 + 𝛽1(dose_c) (3.24)

beetles_glm_grouped_centered |>
parameters::parameters() |>
parameters::print_md()

Table 3.11.: Fitted logistic regression model for beetles data, with dose centered

Parameter Log-Odds SE 95% CI z p

(Intercept) 0.74 0.14 (0.48, 1.02) 5.40 < .001
dose c 34.27 2.91 (28.85, 40.30) 11.77 < .001

odds_inv <- function(omega) (1 + omega^-1)^-1
lik_beetles0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose_c,
omega = exp(eta),
pi = odds_inv(omega),
Lik = (pi^died) * (1 - pi)^(survived)

) |>
pull(Lik) |>
prod()

}

lik_beetles <- Vectorize(lik_beetles0)
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odds_inv <- function(omega) (1 + omega^-1)^-1
llik_beetles0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose_c,
omega = exp(eta),
pi = odds_inv(omega),
llik = died * eta + n*log(1 - pi)

) |>
pull(llik) |>
sum()

}

llik_beetles <- Vectorize(llik_beetles0)

3.9.4. Score function

As usual, by independence, we have:

Lemma 3.10.
̃ℓ′( ̃𝛽)

def
= 𝜕

𝜕 ̃𝛽
ℓ( ̃𝛽)

= 𝜕
𝜕 ̃𝛽

𝑛
∑
𝑖=1

ℓ𝑖( ̃𝛽)

=
𝑛

∑
𝑖=1

𝜕
𝜕 ̃𝛽

ℓ𝑖( ̃𝛽)

=
𝑛

∑
𝑖=1

̃ℓ′
𝑖( ̃𝛽)

Starting from Lemma 3.9, we can apply the vector chain rule (Theorem B.33):

Lemma 3.11.
̃ℓ′

𝑖( ̃𝛽) = 𝜕
𝜕 ̃𝛽

ℓ𝑖( ̃𝛽)

= 𝜕
𝜕 ̃𝛽

(𝑦𝑖𝜂𝑖 − log{1 + 𝜔𝑖})

= 𝜕
𝜕 ̃𝛽

𝑦𝑖𝜂𝑖 −
𝜕
𝜕 ̃𝛽

log{1 + 𝜔𝑖}

= 𝜕𝜂𝑖

𝜕 ̃𝛽
𝑦𝑖 −

𝜕𝜔𝑖

𝜕 ̃𝛽
1

1 + 𝜔𝑖
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Lemma 3.12. By Theorem B.31:

𝜕𝜂
𝜕 ̃𝛽

= 𝜕
𝜕 ̃𝛽

( ̃𝑥 ⋅ ̃𝛽)

= ̃𝑥
(3.25)

Lemma 3.12 is very similar to Lemma 3.6, but not quite the same; Lemma 3.6 differentiates
by ̃𝑥, whereas Lemma 3.12 differentiates by ̃𝛽.

Theorem 3.23.

To derive 𝜕𝜔
𝜕 ̃𝛽

, we can apply the vector chain rule (Theorem B.33) again along with Lemma 3.5
and Lemma 3.12:

𝜕𝜔
𝜕 ̃𝛽

= 𝜕𝜂
𝜕 ̃𝛽

𝜕𝜔
𝜕𝜂

= ̃𝑥𝜔

Corollary 3.13.
𝜕𝜔
𝜕 ̃𝛽

= ̃𝑥 𝜋
1 − 𝜋

Now we can combine Lemma 3.11, Lemma 3.12, and Theorem 3.23:

ℓ′
𝑖( ̃𝛽) = 𝜕𝜂𝑖

𝜕 ̃𝛽
𝑦𝑖 −

𝜕𝜔𝑖

𝜕 ̃𝛽
1

1 + 𝜔𝑖

= ̃𝑥𝑖𝑦𝑖 − ̃𝑥𝜔𝑖
1

1 + 𝜔𝑖

= ̃𝑥𝑖𝑦𝑖 − ̃𝑥 𝜔𝑖
1 + 𝜔𝑖

= ̃𝑥𝑖𝑦𝑖 − ̃𝑥𝑖𝜋𝑖

= ̃𝑥𝑖(𝑦𝑖 − 𝜋𝑖)
= ̃𝑥𝑖(𝑦𝑖 − 𝜇𝑖)

= ̃𝑥𝑖(𝑦𝑖 − E[𝑌𝑖|𝑋̃𝑖 = ̃𝑥𝑖])

= ̃𝑥𝑖 𝜀(𝑦𝑖|𝑋̃𝑖 = ̃𝑥𝑖)
= ̃𝑥𝑖𝜀𝑖

Theorem 3.24.
ℓ′

𝑖( ̃𝛽) = ̃𝑥𝑖𝜀𝑖 (3.26)

This last expression is essentially the same as we found in linear regression.
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Finally, combining Lemma 3.10 and Theorem 3.24, we have:

Theorem 3.25.
̃ℓ′( ̃𝛽) =

𝑛
∑
𝑖=1

ℓ′
𝑖( ̃𝛽)

=
𝑛

∑
𝑖=1

̃𝑥𝑖𝜀𝑖

= X⊤ ̃𝜀

(3.27)

The score function is vector-valued; its components are:

𝜕ℓ
𝜕 ̃𝛽

=
⎛⎜⎜⎜⎜⎜
⎝

𝜕ℓ
𝜕𝛽0
𝜕ℓ

𝜕𝛽1

⋮
𝜕ℓ

𝜕𝛽𝑝

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

∑𝑛
𝑖=1 1𝜀𝑖

∑𝑛
𝑖=1 𝑥𝑖,1𝜀𝑖

⋮
∑𝑛

𝑖=1 𝑥𝑖,𝑝𝜀𝑖

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̃1 ⋅ ̃𝜀
̃𝑥1 ⋅ ̃𝜀
⋮
̃𝑥𝑝 ⋅ ̃𝜀

⎞⎟⎟⎟⎟
⎠

Thus, the score equation ̃ℓ′ = 0 means that for the MLE ̂̃𝛽:

1. the sum of the errors (aka deviations) equals 0:

𝑛
∑
𝑖=1

𝜀𝑖 = 0

2. the sums of the errors times each covariate also equal 0:

̃𝑥𝑗 ⋅ ̃𝜀 =
𝑛

∑
𝑖=1

𝑥𝑖𝑗𝜀𝑖 = 0,∀𝑗 ∈ {1 ∶ 𝑝}

Example 3.9. In our model for the beetles data, we only have an intercept plus one
covariate, gas concentration (𝑐):

̃𝑥 = (1, 𝑐)

If 𝑐𝑖 is the gas concentration for the beetle in observation 𝑖, and ̃𝑐 = (𝑐1, 𝑐2, ...𝑐𝑛), then the
score equation ̃ℓ′ = 0 means that for the MLE ̂̃𝛽:

1. the sum of the errors (aka deviations) equals 0:

𝑛
∑
𝑖=1

𝜀𝑖 = 0

2. the weighted sum of the error times the gas concentrations equals 0:

𝑛
∑
𝑖=1

𝑐𝑖𝜀𝑖 = 0
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Exercise 3.36. Implement and graph the score function for the beetles data

Solution 3.30.

odds_inv <- function(omega) (1 + omega^-1)^-1

score_fn_beetles_beta0_0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose_c,
omega = exp(eta),
pi = odds_inv(omega),
mu = pi * n,
epsilon = died - mu,
score = epsilon

) |>
pull(score) |>
sum()

}
score_fn_beetles_beta_0 <- Vectorize(score_fn_beetles_beta0_0)

score_fn_beetles_beta1_0 <- function(beta_0, beta_1) {
beetles |>

mutate(
eta = beta_0 + beta_1 * dose_c,
omega = exp(eta),
pi = odds_inv(omega),
mu = pi * n,
epsilon = died - mu,
score = dose_c * epsilon

) |>
pull(score) |>
sum()

}
score_fn_beetles_beta_1 <- Vectorize(score_fn_beetles_beta1_0)

3.9.5. Hessian function

ℓ″( ̃𝛽) =
𝑛

∑
𝑖=1

ℓ″
𝑖 ( ̃𝛽) (3.28)
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ℓ″
𝑖 ( ̃𝛽) = 𝜕

𝜕 ̃𝛽⊤
̃ℓ′

𝑖

= 𝜕
𝜕 ̃𝛽⊤

̃𝑥𝑖𝜀𝑖

= ̃𝑥𝑖
𝜕

𝜕 ̃𝛽⊤
𝜀𝑖

= ̃𝑥𝑖𝜀′
𝑖

(3.29)

Theorem 3.26. Using Lemma 3.12 and Theorem 3.21:

𝜕𝜋
𝜕 ̃𝛽

= 𝜕𝜂
𝜕 ̃𝛽

𝜕𝜋
𝜕𝜂

= ̃𝑥𝜋(1 − 𝜋)

Using Theorem 3.26:

𝜀′
𝑖 =

𝜕𝜀𝑖

𝜕 ̃𝛽⊤

= 𝜕
𝜕 ̃𝛽⊤

𝜀𝑖

= 𝜕
𝜕 ̃𝛽⊤

(𝑦𝑖 − 𝜇𝑖)

= 𝜕
𝜕 ̃𝛽⊤

𝑦𝑖 −
𝜕

𝜕 ̃𝛽⊤
𝜇𝑖

= 0 − 𝜕
𝜕 ̃𝛽⊤

𝜇𝑖

= − 𝜕𝜇𝑖

𝜕 ̃𝛽⊤

= − 𝜕𝜋𝑖

𝜕 ̃𝛽⊤

= −𝜋𝑖(1 − 𝜋𝑖) ̃𝑥⊤
𝑖

= −Var(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) ̃𝑥⊤
𝑖

Returning to Equation 3.29:

ℓ″
𝑖 ( ̃𝛽) = ̃𝑥𝑖𝜀′

𝑖

= − ̃𝑥𝑖Var(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) ̃𝑥⊤
𝑖

(3.30)
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Returning to Equation 3.28:

ℓ″( ̃𝛽) =
𝑛

∑
𝑖=1

ℓ″
𝑖 ( ̃𝛽)

= −
𝑛

∑
𝑖=1

̃𝑥𝑖Var(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) ̃𝑥′
𝑖

= −X⊤DX

(3.31)

where D def= diag(Var(𝑌𝑖|𝑋𝑖 = 𝑥𝑖)) is the diagonal matrix whose 𝑖𝑡ℎ diagonal element is
Var(𝑌𝑖|𝑋𝑖 = 𝑥𝑖).

Compare with Equation 2.6 from linear regression:

ℓ″( ̃𝛽) = − 1
𝜎2

𝑛
∑
𝑖=1

̃𝑥𝑖 ̃𝑥′
𝑖

= −X⊤D−1X
(3.32)

Exercise 3.37. Determine the elements of the Hessian matrix for logistic regression.

Solution 3.31. The components of the Hessian are:

ℓ″(𝛽) = 𝜕2

𝜕𝛽⊤𝜕𝛽
ℓ

= 𝜕
𝜕𝛽⊤ ℓ′

= [ 𝜕ℓ′

𝜕𝛽0

𝜕ℓ′

𝜕𝛽1
⋯ 𝜕ℓ′

𝜕𝛽𝑝
]

=
⎡
⎢
⎢
⎢
⎣

𝜕2ℓ
𝜕𝛽2

0

𝜕2ℓ
𝜕𝛽0𝜕𝛽1

⋯ 𝜕2ℓ
𝜕𝛽0𝜕𝛽𝑝

𝜕2ℓ
𝜕𝛽1𝜕𝛽0

𝜕2ℓ
𝜕𝛽2

1
⋯ 𝜕2ℓ

𝜕𝛽0𝜕𝛽𝑝

⋮ ⋱ ⋱ ⋮
𝜕2ℓ

𝜕𝛽𝑝𝜕𝛽0

𝜕2ℓ
𝜕𝛽𝑝𝜕𝛽1

⋯ 𝜕2ℓ
𝜕𝛽2

𝑝

⎤
⎥
⎥
⎥
⎦

Exercise 3.38. Determine the Hessian for the beetles model.
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Solution 3.32. In the beetles model, the Hessian is:

ℓ″(𝛽) = [ 𝜕ℓ′

𝜕𝛽0

𝜕ℓ′

𝜕𝛽1
]

= [
𝜕2ℓ
𝜕𝛽2

0

𝜕2ℓ
𝜕𝛽0𝜕𝛽1

𝜕2ℓ
𝜕𝛽1𝜕𝛽0

𝜕2ℓ
𝜕𝛽2

1

]

= [
−∑𝑛

𝑖=1 𝜋𝑖(1 − 𝜋𝑖) −∑𝑛
𝑖=1 𝑐𝑖𝜋𝑖(1 − 𝜋𝑖)

−∑𝑛
𝑖=1 𝑐𝑖𝜋𝑖(1 − 𝜋𝑖) −∑𝑛

𝑖=1 𝑐
2
𝑖 𝜋𝑖(1 − 𝜋𝑖)

]

Setting ℓ′( ̃𝛽; ̃𝑦) = 0 gives us:

𝑛
∑
𝑖=1

{ ̃𝑥𝑖(𝑦𝑖 − expit{ ̃𝑥′
𝑖𝛽})} = 0 (3.33)

In general, the estimating equation ℓ′( ̃𝛽; ̃𝑦) = 0 cannot be solved analytically.

Instead, we can use the Newton-Raphson method:

̂𝜃∗ ← ̂𝜃∗ − (ℓ″( ̃𝑦; ̂𝜃∗))
−1

ℓ′( ̃𝑦; ̂𝜃∗)

We make an iterative series of guesses, and each guess helps us make the next guess better
(i.e., higher log-likelihood). You can see some information about this process like so:

beetles_glm_ungrouped <-
beetles_long |>
glm(

control = glm.control(trace = TRUE),
formula = outcome ~ dose,
family = "binomial"

)
#> Deviance = 383.249 Iterations - 1
#> Deviance = 372.921 Iterations - 2
#> Deviance = 372.472 Iterations - 3
#> Deviance = 372.471 Iterations - 4
#> Deviance = 372.471 Iterations - 5

After each iteration of the fitting procedure, the deviance (2(ℓfull − ℓ( ̂𝛽)) ) is printed. You
can see that the algorithm took 5 iterations to converge to a solution where the likelihood
wasn’t changing much anymore.

Table 3.12 and Table 3.13 show the fitted model and the covariance matrix of the estimates,
respectively.
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Table 3.12.: Fitted model for beetles data

beetles_glm_ungrouped |> summary()
#>
#> Call:
#> glm(formula = outcome ~ dose, family = "binomial", data = beetles_long,
#> control = glm.control(trace = TRUE))
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -60.72 5.18 -11.7 <2e-16 ***
#> dose 34.27 2.91 11.8 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 645.44 on 480 degrees of freedom
#> Residual deviance: 372.47 on 479 degrees of freedom
#> AIC: 376.5
#>
#> Number of Fisher Scoring iterations: 5

Table 3.13.: Parameter estimate covariance matrix for beetles data

beetles_glm_ungrouped |> vcov()
#> (Intercept) dose
#> (Intercept) 26.8393 -15.08189
#> dose -15.0819 8.48041
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3.10. Inference for logistic regression models

3.10.1. Inference for individual predictor coefficients

3.10.1.1. Wald tests and confidence intervals

(to be added)

3.10.2. Inference for odds ratios

Exercise 3.39. Given a maximum likelihood estimate ̂𝛽 and a corresponding estimated
covariance matrix Σ̂ def= Ĉov( ̂𝛽), calculate a 95% confidence interval for the odds ratio
comparing covariate patterns ̃𝑥 and ̃𝑥∗, 𝜃( ̃𝑥, ̃𝑥∗).

Solution 3.33.

By Theorem F.6, a 95% confidence interval for 𝜃( ̃𝑥, ̃𝑥∗) can be constructed as:

̂𝜃 ± 1.96 ∗ ŜE( ̂𝜃) (3.34)

However, ŜE( ̂𝜃) seems difficult to compute; doing so would require using the delta method8.

Instead, using the invariance property of MLEs, we can first calculate a confidence interval
for the logarithm of the odds ratio,

log{𝜃( ̃𝑥, ̃𝑥∗)} ∈ (𝐿,𝑅) (3.35)

and then exponentiate the endpoints of that log-odds-scale confidence interval:

𝜃( ̃𝑥, ̃𝑥∗) ∈ (𝑒𝐿, 𝑒𝑅) (3.36)

Exercise 3.40. Find a 95% confidence interval for the natural logarithm of the odds ratio,
log{𝜃( ̃𝑥, ̃𝑥∗)}

8https://en.wikipedia.org/wiki/Delta_method
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Solution 3.34. From Corollary 3.12, we know:

log{𝜃( ̃𝑥, ̃𝑥∗)} = Δ𝜂

By Theorem F.6, a 95% confidence interval for Δ𝜂 can be constructed as:

Δ̂𝜂 ± 1.96 ∗ ŜE(Δ̂𝜂)

Exercise 3.41.

How can we estimate the standard error of Δ̂𝜂?

ŜE(Δ̂𝜂) = ?

Solution 3.35.
SE(Δ̂𝜂) = √Var(Δ̂𝜂) (3.37)

By Lemma 3.8 and Theorem C.17:

Var(Δ̂𝜂) = Var((Δ ̃𝑥) ⋅ ̂𝛽)

= (Δ ̃𝑥)⊤Cov( ̂𝛽)(Δ ̃𝑥)

= (Δ ̃𝑥)⊤Σ(Δ ̃𝑥)

(3.38)

where Σ def= Cov( ̂𝛽).

Expanding Equation 3.38 out of matrix-vector notation, we have:

(Δ ̃𝑥)⊤Σ(Δ ̃𝑥) =
𝑝

∑
𝑖=1

𝑝

∑
𝑗=1

(Δ ̃𝑥)𝑖Σ𝑖𝑗(Δ ̃𝑥)𝑗

=
𝑝

∑
𝑖=1

𝑝

∑
𝑗=1

(Δ𝑥𝑖)Σ𝑖𝑗(Δ𝑥𝑗)

=
𝑝

∑
𝑖=1

𝑝

∑
𝑗=1

(𝑥𝑖 − 𝑥∗
𝑖 )Cov( ̂𝛽𝑖, ̂𝛽𝑗)(𝑥𝑗 − 𝑥∗

𝑗)

Combining Equation 3.38 and MLE invariance:
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Theorem 3.27 (Estimated variance and standard error of difference in log-odds).

V̂ar(Δ ̂𝜂) = Δ ̃𝑥⊤Σ̂(Δ ̃𝑥) (3.39)

ŜE(Δ ̂𝜂) = √Δ ̃𝑥⊤Σ̂(Δ ̃𝑥) (3.40)

Note: on the RHS, we have plugged in Σ̂, our estimate of Σ.

Compare this result with Section 2.7.3.

3.11. Multiple logistic regression

3.11.1. Coronary heart disease (WCGS) study data

Let’s use the data from the Western Collaborative Group Study (WCGS) (Rosenman et al.
(1975)) to explore multiple logistic regression:

From Vittinghoff et al. (2012):

“The Western Collaborative Group Study (WCGS) was a large epidemiological study
designed to investigate the association between the”type A” behavior pattern and coronary
heart disease (CHD)“.

Exercise 3.42. What is “type A” behavior?

Solution 3.36. From Wikipedia, “Type A and Type B personality theory”:

“The hypothesis describes Type A individuals as outgoing, ambitious, rigidly organized,
highly status-conscious, impatient, anxious, proactive, and concerned with time manage-
ment….

The hypothesis describes Type B individuals as a contrast to those of Type A. Type B
personalities, by definition, are noted to live at lower stress levels. They typically work
steadily and may enjoy achievement, although they have a greater tendency to disregard
physical or mental stress when they do not achieve.”
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3.11.1.1. Study design

from ?faraway::wcgs:

3154 healthy young men aged 39-59 from the San Francisco area were assessed for their
personality type. All were free from coronary heart disease at the start of the research.
Eight and a half years later change in CHD status was recorded.

Details (from faraway::wcgs)

The WCGS began in 1960 with 3,524 male volunteers who were employed by 11 California
companies. Subjects were 39 to 59 years old and free of heart disease as determined by
electrocardiogram. After the initial screening, the study population dropped to 3,154 and
the number of companies to 10 because of various exclusions. The cohort comprised both
blue- and white-collar employees.

3.11.2. Baseline data collection

socio-demographic characteristics:

• age
• education
• marital status
• income
• occupation
• physical and physiological including:
• height
• weight
• blood pressure
• electrocardiogram
• corneal arcus

biochemical measurements:

• cholesterol and lipoprotein fractions;
• medical and family history and use of medications;

behavioral data:

• Type A interview,
• smoking,
• exercise
• alcohol use.
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Table 3.14.: wcgs data

wcgs
#> # A tibble: 3,154 x 22
#> age arcus behpat bmi chd69 chol dbp dibpat height id lnsbp lnwght
#> <dbl> <lgl> <fct> <dbl> <fct> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 50 TRUE A1 31.3 No 249 90 Type A 67 2343 4.88 5.30
#> 2 51 FALSE A1 25.3 No 194 74 Type A 73 3656 4.79 5.26
#> 3 59 TRUE A1 28.7 No 258 94 Type A 70 3526 5.06 5.30
#> 4 51 TRUE A1 22.1 No 173 80 Type A 69 22057 4.84 5.01
#> 5 44 FALSE A1 22.3 No 214 80 Type A 71 12927 4.84 5.08
#> 6 47 FALSE A1 27.1 No 206 76 Type A 64 16029 4.75 5.06
#> 7 40 FALSE A1 23.2 No 190 78 Type A 70 3894 4.80 5.09
#> 8 41 FALSE A1 23.0 No 212 84 Type A 70 11389 4.87 5.08
#> 9 50 TRUE A1 27.2 No 130 70 Type A 71 12681 4.72 5.27
#> 10 43 FALSE A1 28.4 No 233 80 Type A 68 10005 4.79 5.23
#> # i 3,144 more rows
#> # i 10 more variables: ncigs <dbl>, sbp <dbl>, smoke <fct>, t1 <dbl>,
#> # time169 <dbl>, typchd69 <fct>, uni <dbl>, weight <dbl>, wghtcat <fct>,
#> # agec <fct>

Later surveys added data on:

• anthropometry
• triglycerides
• Jenkins Activity Survey
• caffeine use

Average follow-up continued for 8.5 years with repeat examinations.

3.11.3. Load the data

Here, I load the data:

### load the data directly from a UCSF website:
library(haven)
url <- paste0(
# I'm breaking up the url into two chunks for readability
"https://regression.ucsf.edu/sites/g/files/",
"tkssra6706/f/wysiwyg/home/data/wcgs.dta"

)
wcgs <- haven::read_dta(url)

3.11.4. Data cleaning

Now let’s do some data cleaning
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library(arsenal) # provides `set_labels()`
library(forcats) # provides `as_factor()`
library(haven)
library(plotly)
wcgs <- wcgs |>
mutate(

age = age |>
arsenal::set_labels("Age (years)"),

arcus = arcus |>
as.logical() |>
arsenal::set_labels("Arcus Senilis"),

time169 = time169 |>
as.numeric() |>
arsenal::set_labels("Observation (follow up) time (days)"),

dibpat = dibpat |>
as_factor() |>
relevel(ref = "Type B") |>
arsenal::set_labels("Behavioral Pattern"),

typchd69 = typchd69 |>
labelled(
label = "Type of CHD Event",
labels =

c(
"None" = 0,
"infdeath" = 1,
"silent" = 2,
"angina" = 3

)
),

# turn stata-style labelled variables in to R-style factors:
across(

where(is.labelled),
haven::as_factor

)
)

3.11.5. What’s in the data

Table 3.15 summarizes the data.

3.11.6. Data by age and personality type

For now, we will look at the interaction between age and personality type (dibpat). To
make it easier to visualize the data, we summarize the event rates for each combination of
age:
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Table 3.15.: Baseline characteristics by CHD status at end of follow-up

library(gtsummary)
wcgs |>
dplyr::select(

-dplyr::all_of(c("id", "uni", "t1"))
) |>
gtsummary::tbl_summary(

by = "chd69",
missing_text = "Missing"

) |>
gtsummary::add_p() |>
gtsummary::add_overall() |>
gtsummary::bold_labels() |>
gtsummary::separate_p_footnotes()

Characteristic Overall N = 3,1541 No N = 2,8971 Yes N = 2571 p-value
Age (years) 45.0 (42.0, 50.0) 45.0 (41.0, 50.0) 49.0 (44.0, 53.0) <0.0012

Arcus Senilis 941 (30%) 839 (29%) 102 (40%) <0.0013

    Missing 2 0 2
Behavioral Pattern <0.0013

    A1 264 (8.4%) 234 (8.1%) 30 (12%)
    A2 1,325 (42%) 1,177 (41%) 148 (58%)
    B3 1,216 (39%) 1,155 (40%) 61 (24%)
    B4 349 (11%) 331 (11%) 18 (7.0%)
Body Mass Index (kg/m2) 24.39 (22.96, 25.84) 24.39 (22.89, 25.84) 24.82 (23.63, 26.50) <0.0012

Total Cholesterol 223 (197, 253) 221 (195, 250) 245 (222, 276) <0.0012

    Missing 12 12 0
Diastolic Blood Pressure 80 (76, 86) 80 (76, 86) 84 (80, 90) <0.0012

Behavioral Pattern <0.0013

    Type B 1,565 (50%) 1,486 (51%) 79 (31%)
    Type A 1,589 (50%) 1,411 (49%) 178 (69%)
Height (inches) 70.00 (68.00, 72.00) 70.00 (68.00, 72.00) 70.00 (68.00, 71.00) 0.42

Ln of Systolic Blood Pressure 4.84 (4.79, 4.91) 4.84 (4.77, 4.91) 4.87 (4.82, 4.97) <0.0012

Ln of Weight 5.14 (5.04, 5.20) 5.13 (5.04, 5.20) 5.16 (5.09, 5.22) <0.0012

Cigarettes per day 0 (0, 20) 0 (0, 20) 20 (0, 30) <0.0012

Systolic Blood Pressure 126 (120, 136) 126 (118, 136) 130 (124, 144) <0.0012

Current smoking 1,502 (48%) 1,343 (46%) 159 (62%) <0.0013

Observation (follow up) time (days) 2,942 (2,842, 3,037) 2,952 (2,864, 3,048) 1,666 (934, 2,400) <0.0012

Type of CHD Event <0.0014

    None 0 (0%) 0 (0%) 0 (0%)
    infdeath 2,897 (92%) 2,897 (100%) 0 (0%)
    silent 135 (4.3%) 0 (0%) 135 (53%)
    angina 71 (2.3%) 0 (0%) 71 (28%)
    4 51 (1.6%) 0 (0%) 51 (20%)
Weight (lbs) 170 (155, 182) 169 (155, 182) 175 (162, 185) <0.0012

Weight Category <0.0013

    < 140 232 (7.4%) 217 (7.5%) 15 (5.8%)
    140-170 1,538 (49%) 1,440 (50%) 98 (38%)
    170-200 1,171 (37%) 1,049 (36%) 122 (47%)
    > 200 213 (6.8%) 191 (6.6%) 22 (8.6%)
RECODE of age (Age) <0.0013

    35-40 543 (17%) 512 (18%) 31 (12%)
    41-45 1,091 (35%) 1,036 (36%) 55 (21%)
    46-50 750 (24%) 680 (23%) 70 (27%)
    51-55 528 (17%) 463 (16%) 65 (25%)
    56-60 242 (7.7%) 206 (7.1%) 36 (14%)
1 Median (Q1, Q3); n (%)
2 Wilcoxon rank sum test
3 Pearson’s Chi-squared test
4 Fisher’s exact test
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library(dplyr)
odds <- function(pi) pi / (1 - pi)
chd_grouped_data <-
wcgs |>
summarize(

.by = c(age, dibpat),
n = sum(chd69 %in% c("Yes", "No")),
x = sum(chd69 == "Yes")

) |>
mutate(

`n - x` = n - x,
`p(chd)` = (x / n) |>

labelled(label = "CHD Event by 1969"),
`odds(chd)` = `p(chd)` / (1 - `p(chd)`),
`logit(chd)` = log(`odds(chd)`)

)

chd_grouped_data
#> # A tibble: 42 x 8
#> age dibpat n x `n - x` `p(chd)` `odds(chd)` `logit(chd)`
#> <dbl> <fct> <int> <int> <int> <dbl+lbl> <dbl> <dbl>
#> 1 50 Type A 76 8 68 0.105 0.118 -2.14
#> 2 51 Type A 67 11 56 0.164 0.196 -1.63
#> 3 59 Type A 30 7 23 0.233 0.304 -1.19
#> 4 44 Type A 113 9 104 0.0796 0.0865 -2.45
#> 5 47 Type A 72 7 65 0.0972 0.108 -2.23
#> 6 40 Type A 133 9 124 0.0677 0.0726 -2.62
#> 7 41 Type A 108 7 101 0.0648 0.0693 -2.67
#> 8 43 Type A 97 7 90 0.0722 0.0778 -2.55
#> 9 54 Type A 53 7 46 0.132 0.152 -1.88
#> 10 48 Type A 80 12 68 0.15 0.176 -1.73
#> # i 32 more rows

3.11.7. Graphical exploration

library(ggplot2)
library(scales)
chd_plot_probs <-
chd_grouped_data |>
ggplot() +
aes(

x = age,
y = `p(chd)`,
col = dibpat

) +
geom_point(aes(size = n), alpha = .7) +
scale_size(range = c(1, 4)) +
geom_line() +
theme_bw() +
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ylab("P(CHD Event by 1969)") +
scale_y_continuous(

labels = scales::label_percent(),
sec.axis = sec_axis(

~ odds(.),
name = "odds(CHD Event by 1969)"

)
) +
theme(legend.position = "bottom")

print(chd_plot_probs)
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Figure 3.12.: CHD rates by age group, probability scale

3.11.7.1. Odds scale

odds_inv <- function(omega) omega / (1 + omega)
trans_odds <- trans_new(
name = "odds",
transform = odds,
inverse = odds_inv

)

chd_plot_odds <- chd_plot_probs +
scale_y_continuous(

trans = trans_odds, # this line changes the vertical spacing
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name = chd_plot_probs$labels$y,
sec.axis = sec_axis(

~ odds(.),
name = "odds(CHD Event by 1969)"

)
)

print(chd_plot_odds)

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.1

0.2

0.3

40 45 50 55 60
Age (years)

P
(C

H
D

 E
ve

nt
 b

y 
19

69
)

odds(C
H

D
 E

vent by 1969)

Behavioral Pattern Type B Type A n 50 100

Figure 3.13.: CHD rates by age group, odds spacing

3.11.7.2. Log-odds (logit) scale

logit <- function(pi) log(odds(pi))
expit <- function(eta) odds_inv(exp(eta))
trans_logit <- trans_new(
name = "logit",
transform = logit,
inverse = expit

)

chd_plot_logit <-
chd_plot_probs +
scale_y_continuous(

trans = trans_logit, # this line changes the vertical spacing
name = chd_plot_probs$labels$y,
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breaks = c(seq(.01, .1, by = .01), .15, .2),
minor_breaks = NULL,
sec.axis = sec_axis(

~ logit(.),
name = "log(odds(CHD Event by 1969))"

)
)

print(chd_plot_logit)
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Figure 3.14.: CHD data (logit-scale)

3.11.8. Logistic regression models for CHD data

For the wgcs dataset, let’s consider a logistic regression model for the outcome of
Coronary Heart Disease (𝑌; chd in computer output):

• 𝑌 = 1 if an individual developed CHD by the end of the study;
• 𝑌 = 0 if they have not developed CHD by the end of the study.

Let’s include an intercept, two covariates, plus their interaction:

• 𝐴: age at study enrollment (age, recorded in years)
• 𝑃: personality type (dibpat):

– 𝑃 = 1 represents “Type A personality”,
– 𝑃 = 0 represents “Type B personality”.

• 𝑃𝐴: the interaction of personality type and age (dibpat:age)
• 𝑋̃ = (1,𝐴, 𝑃 , 𝑃𝐴)
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chd_glm_contrasts <-
wcgs |>
glm(

"data" = _,
"formula" = chd69 == "Yes" ~ dibpat * age,
"family" = binomial(link = "logit")

)

library(equatiomatic)
equatiomatic::extract_eq(chd_glm_contrasts)

log [ 𝑃(chd69 = Yes)
1 − 𝑃(chd69 = Yes)

] = 𝛼 + 𝛽1(dibpatType A) + 𝛽2(age) + 𝛽3(dibpatType A × age)

(3.41)

Or in more formal notation:

𝑌𝑖|𝑋̃𝑖 ∼⟂⟂ Ber(𝜋(𝑋̃𝑖))
𝜋( ̃𝑥) = expit(𝜂( ̃𝑥))
𝜂( ̃𝑥) = 𝛽0 + 𝛽𝑃𝑝 + 𝛽𝐴𝑎 + 𝛽𝑃𝐴𝑝𝑎

(3.42)

3.11.9. Models superimposed on data

We can graph our fitted models on each scale (probability, odds, log-odds).

3.11.9.1. probability scale

curve_type_A <- function(x) { # nolint: object_name_linter
chd_glm_contrasts |> predict(

type = "response",
newdata = tibble(age = x, dibpat = "Type A")

)
}

curve_type_B <- function(x) { # nolint: object_name_linter
chd_glm_contrasts |> predict(

type = "response",
newdata = tibble(age = x, dibpat = "Type B")

)
}

chd_plot_probs_2 <-
chd_plot_probs +
geom_function(
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fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
aes(col = "Type B")

)
print(chd_plot_probs_2)
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chd_plot_odds_2 <-
chd_plot_odds +
geom_function(

fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
aes(col = "Type B")

)
print(chd_plot_odds_2)
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3.11.9.2. log-odds (logit) scale

chd_plot_logit_2 <-
chd_plot_logit +
geom_function(

fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
aes(col = "Type B")

)

print(chd_plot_logit_2)
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Figure 3.15.

3.11.10. Interpreting the model parameters

Exercise 3.43. For Equation 3.42, derive interpretations of 𝛽0, 𝛽𝑃, 𝛽𝐴, and 𝛽𝑃𝐴 on the
odds and log-odds scales, State the interpretations concisely in math and in words.

Solution 3.37.

# include: false
age_offset = 0L

𝜂(𝑃 = 0,𝐴 = 0) = 𝛽0 + 𝛽𝑃0 + 𝛽𝐴0
= 𝛽0 + 0 + 0
= 𝛽0

Therefore:

𝛽0 = 𝜂(𝑃 = 0,𝐴 = 0) (3.43)

𝛽0 is the natural logarithm of the odds (“log-odds”) of experiencing CHD for a 0 year-old
person with a type B personality; that is,
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e𝛽0 is the odds of experiencing CHD for a 0 year-old with a type B personality,

exp{𝛽0} = Pr(𝑌 = 1|𝑃 = 0,𝐴 = 0)
1 − Pr(𝑌 = 1|𝑃 = 0,𝐴 = 0)

= Pr(𝑌 = 1|𝑃 = 0,𝐴 = 0)
Pr(𝑌 = 0|𝑃 = 0,𝐴 = 0)

𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎) = 𝜕
𝜕𝑎

(𝛽0 + 𝛽𝑃0 + 𝛽𝐴𝑎 + 𝛽𝑃𝐴(0 ⋅ 𝑎))

= 𝜕
𝜕𝑎

𝛽0 + 𝜕
𝜕𝑎

𝛽𝑃0 + 𝜕
𝜕𝑎

𝛽𝐴𝑎 + 𝜕
𝜕𝑎

𝛽𝑃𝐴(0 ⋅ 𝑎))

= 0 + 0 + 𝛽𝐴 + 0
= 𝛽𝐴

Therefore:

𝛽𝐴 = 𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎) (3.44)

𝛽𝐴 is the slope of the log-odds of CHD with respect to age, for individuals with personality
type B.

Alternatively:

𝛽𝐴 = 𝜂(𝑃 = 0,𝐴 = 𝑎 + 1) − 𝜂(𝑃 = 0,𝐴 = 𝑎)

That is, 𝛽𝐴 is the difference in log-odds of experiencing CHD experiencing CHD per one-year
difference in age between two individuals with type B personalities.

exp{𝛽𝐴} = exp{𝜂(𝑃 = 0,𝐴 = 𝑎 + 1) − 𝜂(𝑃 = 0,𝐴 = 𝑎)}

= exp{𝜂(𝑃 = 0,𝐴 = 𝑎 + 1)}
exp{𝜂(𝑃 = 0,𝐴 = 𝑎)}

= 𝜔(𝑃 = 0,𝐴 = 𝑎 + 1)
𝜔(𝑃 = 0,𝐴 = 𝑎)

= odds(𝑌 = 1|𝑃 = 0,𝐴 = 𝑎 + 1)
odds(𝑌 = 1|𝑃 = 0,𝐴 = 𝑎)

= 𝜃(Δ𝑎 = 1|𝑃 = 0)

• The odds ratio of experiencing CHD (aka “the odds ratio”) differs by a factor of e𝛽𝐴

per one-year difference in age between individuals with type B personality.
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𝛽𝑃 is the difference in log-odds of experiencing CHD for a 0 year-old person with type A
personality compared to a 0 year-old person with type B personality; that is,

𝛽𝑃 = 𝜂(𝑃 = 1,𝐴 = 0) − 𝜂(𝑃 = 0,𝐴 = 0) (3.45)

• e𝛽𝑃 is the ratio of the odds (aka “the odds ratio”) of experiencing CHD, for a 0-year old
individual with type A personality vs a 0-year old individual with type B personality;
that is,

exp{𝛽𝑃} = odds(𝑌 = 1|𝑃 = 1,𝐴 = 0)
odds(𝑌 = 1|𝑃 = 0,𝐴 = 0)

𝜕
𝜕𝑎

𝜂(𝑃 = 1,𝐴 = 𝑎) = 𝛽𝐴 + 𝛽𝑃𝐴

𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎) = 𝛽𝐴

Therefore:

𝜕
𝜕𝑎

𝜂(𝑃 = 1,𝐴 = 𝑎) − 𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎) = 𝛽𝐴 + 𝛽𝑃𝐴 − 𝛽𝐴

= 𝛽𝑃𝐴

That is,

𝛽𝑃𝐴 = 𝜕
𝜕𝑎

𝜂(𝑃 = 1,𝐴 = 𝑎) − 𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎)

= 𝜕
𝜕𝑎

𝜂(𝑃 = 1,𝐴 = 𝑎) − 𝜕
𝜕𝑎

𝜂(𝑃 = 0,𝐴 = 𝑎)

𝛽𝑃𝐴 is the difference in the slopes of log-odds over age between participants with Type A
personalities and participants with Type B personalities.

Accordingly, the odds ratio of experiencing CHD per one-year difference in age differs by a
factor of e𝛽𝑃𝐴 for participants with type A personality compared to participants with type
B personality; that is,

𝜃(Δ𝑎 = 1|𝑃 = 1) = exp{𝛽𝑃𝐴} × 𝜃(Δ𝑎 = 1|𝑃 = 0)

or equivalently:

exp{𝛽𝑃𝐴} = 𝜃(Δ𝑎 = 1|𝑃 = 1)
𝜃(Δ𝑎 = 1|𝑃 = 0)
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See Section 5.1.19 of Vittinghoff et al. (2012) for another perspective, also using the wcgs
data as an example.

3.11.11. Interpreting the model parameter estimates

Table 3.16 shows the fitted model.

library(parameters)
chd_glm_contrasts |>
parameters() |>
print_md()

Table 3.16.: CHD model (corner-point parametrization)

Parameter Log-Odds SE 95% CI z p

(Intercept) -5.80 0.98 (-7.73, -3.90) -5.95 < .001
dibpat (Type A) 0.30 1.18 (-2.02, 2.63) 0.26 0.797
age 0.06 0.02 (0.02, 0.10) 3.01 0.003
dibpat (Type A) × age 0.01 0.02 (-0.04, 0.06) 0.42 0.674

We can get the corresponding odds ratio estimates (𝑒 ̂𝛽s) by passing exponentiate = TRUE
to parameters():

chd_glm_contrasts |>
parameters(exponentiate = TRUE) |>
print_md()

Table 3.17.: Odds ratio estimates for CHD model

Parameter Odds Ratio SE 95% CI z p

(Intercept) 3.02e-03 2.94e-03 (4.40e-04, 0.02) -5.95 < .001
dibpat (Type A) 1.36 1.61 (0.13, 13.88) 0.26 0.797
age 1.06 0.02 (1.02, 1.11) 3.01 0.003
dibpat (Type A) ×
age

1.01 0.02 (0.96, 1.06) 0.42 0.674

3.11.12. Stratified parametrization

We could instead use a stratified parametrization:

9https://link.springer.com/chapter/10.1007/978-1-4614-1353-0_5#Sec2_5
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chd_glm_strat <- glm(
"formula" = chd69 == "Yes" ~ dibpat + dibpat:age - 1,
"data" = wcgs,
"family" = binomial(link = "logit")

)
equatiomatic::extract_eq(chd_glm_strat)

log [ 𝑃(chd69 = Yes)
1 − 𝑃(chd69 = Yes)

] = 𝛽1(dibpatType B)+𝛽2(dibpatType A)+𝛽3(dibpatType B ×dibpatage)+𝛽4(dibpatType A ×dibpatage)

(3.46)

chd_glm_strat |>
parameters() |>
print_md()

Table 3.18.: CHD model, stratified parametrization

Parameter Log-Odds SE 95% CI z p

dibpat (Type B) -5.80 0.98 (-7.73, -3.90) -5.95 < .001
dibpat (Type A) -5.50 0.67 (-6.83, -4.19) -8.18 < .001
dibpat (Type B) × age 0.06 0.02 (0.02, 0.10) 3.01 0.003
dibpat (Type A) × age 0.07 0.01 (0.05, 0.10) 5.24 < .001

Again, we can get the corresponding odds ratios (𝑒𝛽s) by passing exponentiate = TRUE
to parameters():

chd_glm_strat |>
parameters(exponentiate = TRUE) |>
print_md()

Table 3.19.: Odds ratio estimates for CHD model

Parameter Odds Ratio SE 95% CI z p

dibpat (Type B) 3.02e-03 2.94e-03 (4.40e-04, 0.02) -5.95 < .001
dibpat (Type A) 4.09e-03 2.75e-03 (1.08e-03, 0.02) -8.18 < .001
dibpat (Type B) ×
age

1.06 0.02 (1.02, 1.11) 3.01 0.003

dibpat (Type A) ×
age

1.07 0.01 (1.05, 1.10) 5.24 < .001

Compare with Table 3.16.

Exercise 3.44. If I give you model 1, how would you get the coefficients of model 2?
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3.12. Model comparisons for logistic models

3.12.1. Deviance test

We can compare the maximized log-likelihood of our model, ℓ( ̂𝛽;x), versus the log-likelihood
of the full model (aka saturated model aka maximal model), ℓfull, which has one parameter
per covariate pattern. With enough data, 2(ℓfull − ℓ( ̂𝛽;x))∼̇𝜒2(𝑁 − 𝑝), where 𝑁 is the
number of distinct covariate patterns and 𝑝 is the number of 𝛽 parameters in our model. A
significant p-value for this deviance statistic indicates that there’s some detectable pattern
in the data that our model isn’t flexible enough to catch.

Fire Caution

The deviance statistic needs to have a large amount of data for each covariate
pattern for the 𝜒2 approximation to hold. A guideline from Dobson is that if there
are 𝑞 distinct covariate patterns 𝑥1..., 𝑥𝑞, with 𝑛1, ..., 𝑛𝑞 observations per pattern, then
the expected frequencies 𝑛𝑘 ⋅ 𝜋(𝑥𝑘) should be at least 1 for every pattern 𝑘 ∈ 1 ∶ 𝑞.

If you have covariates measured on a continuous scale, you may not be able to use the
deviance tests to assess goodness of fit.

3.12.2. Hosmer-Lemeshow test

If our covariate patterns produce groups that are too small, a reasonable solution is to make
bigger groups by merging some of the covariate-pattern groups together.

Hosmer and Lemeshow (1980) proposed that we group the patterns by their predicted
probabilities according to the model of interest. For example, you could group all of the
observations with predicted probabilities of 10% or less together, then group the observations
with 11%-20% probability together, and so on; 𝑔 = 10 categories in all.

Then we can construct a statistic

𝑋2 =
𝑔

∑
𝑐=1

(𝑜𝑐 − 𝑒𝑐)2

𝑒𝑐

where 𝑜𝑐 is the number of events observed in group 𝑐, and 𝑒𝑐 is the number of events
expected in group 𝑐 (based on the sum of the fitted values ̂𝜋𝑖 for observations in group 𝑐).

If each group has enough observations in it, you can compare 𝑋2 to a 𝜒2 distribution; by
simulation, the degrees of freedom has been found to be approximately 𝑔 − 2.

For our CHD model, this procedure would be:

wcgs <-
wcgs |>
mutate(

pred_probs_glm1 = chd_glm_contrasts |> fitted(),
pred_prob_cats1 = pred_probs_glm1 |>

cut(
breaks = seq(0, 1, by = .1),
include.lowest = TRUE

)
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)

HL_table <- # nolint: object_name_linter
wcgs |>
summarize(

.by = pred_prob_cats1,
n = n(),
o = sum(chd69 == "Yes"),
e = sum(pred_probs_glm1)

)

library(pander)
HL_table |> pander()

pred_prob_cats1 n o e

(0.1,0.2] 785 116 108
(0.2,0.3] 64 12 13.77
[0,0.1] 2,305 129 135.2

X2 <- HL_table |> # nolint: object_name_linter
summarize(

`X^2` = sum((o - e)^2 / e)
) |>
pull(`X^2`)

print(X2)
#> [1] 1.11029

pval1 <- pchisq(X2, lower = FALSE, df = nrow(HL_table) - 2)

Our statistic is 𝑋2 = 1.110287; 𝑝(𝜒2(1) > 1.110287) = 0.29202, which is our p-value for
detecting a lack of goodness of fit.

Unfortunately that grouping plan left us with just three categories with any observations,
so instead of grouping by 10% increments of predicted probability, typically analysts use
deciles of the predicted probabilities:

wcgs <-
wcgs |>
mutate(

pred_probs_glm1 = chd_glm_contrasts |> fitted(),
pred_prob_cats1 = pred_probs_glm1 |>

cut(
breaks = quantile(pred_probs_glm1, seq(0, 1, by = .1)),
include.lowest = TRUE

)
)

HL_table <- # nolint: object_name_linter
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wcgs |>
summarize(

.by = pred_prob_cats1,
n = n(),
o = sum(chd69 == "Yes"),
e = sum(pred_probs_glm1)

)

HL_table |> pander()

pred_prob_cats1 n o e

(0.114,0.147] 275 48 36.81
(0.147,0.222] 314 51 57.19

(0.0774,0.0942] 371 27 32.56
(0.0942,0.114] 282 30 29.89
(0.0633,0.069] 237 17 15.97
(0.069,0.0774] 306 20 22.95
(0.0487,0.0633] 413 27 24.1
(0.0409,0.0487] 310 14 14.15
[0.0322,0.0363] 407 16 13.91
(0.0363,0.0409] 239 7 9.48

X2 <- HL_table |> # nolint: object_name_linter
summarize(

`X^2` = sum((o - e)^2 / e)
) |>
pull(`X^2`)

print(X2)
#> [1] 6.78114

pval1 <- pchisq(X2, lower = FALSE, df = nrow(HL_table) - 2)

Now we have more evenly split categories. The p-value is 0.56042, still not significant.

Graphically, we have compared:

HL_plot <- # nolint: object_name_linter
HL_table |>
ggplot(aes(x = pred_prob_cats1)) +
geom_line(

aes(y = e, x = pred_prob_cats1, group = "Expected", col = "Expected")
) +
geom_point(aes(y = e, size = n, col = "Expected")) +
geom_point(aes(y = o, size = n, col = "Observed")) +
geom_line(aes(y = o, col = "Observed", group = "Observed")) +
scale_size(range = c(1, 4)) +
theme_bw() +
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ylab("number of CHD events") +
theme(axis.text.x = element_text(angle = 45))

print(HL_plot)
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3.12.3. Comparing models

• AIC = −2 ∗ ℓ( ̂𝜃) + 2 ∗ 𝑝 [lower is better]
• BIC = −2 ∗ ℓ( ̂𝜃) + 𝑝 ∗ log(𝑛) [lower is better]
• likelihood ratio [higher is better]

3.13. Residual-based diagnostics

3.13.1. Logistic regression residuals only work for grouped data

library(haven)
url <- paste0(
# I'm breaking up the url into two chunks for readability
"https://regression.ucsf.edu/sites/g/files/",
"tkssra6706/f/wysiwyg/home/data/wcgs.dta"

)
library(here) # provides the `here()` function
library(fs) # provides the `path()` function
here::here() |>
fs::path("Data/wcgs.rda") |>
load()

chd_glm_contrasts <-
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wcgs |>
glm(

"data" = _,
"formula" = chd69 == "Yes" ~ dibpat * age,
"family" = binomial(link = "logit")

)
library(ggfortify)
chd_glm_contrasts |> autoplot()
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Figure 3.16.: Residual diagnostics for WCGS model with individual-level observations

Residuals only work if there is more than one observation for most covariate patterns.

Here we will create the grouped-data version of our CHD model from the WCGS study:

library(dplyr)
wcgs_grouped <-
wcgs |>
summarize(

.by = c(dibpat, age),
n = n(),
chd = sum(chd69 == "Yes"),
no_chd = sum(chd69 == "No")

) |>
mutate(p_chd = chd/n)

chd_glm_contrasts_grouped <- glm(
"formula" = cbind(chd, no_chd) ~ dibpat*age,
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"data" = wcgs_grouped,
"family" = binomial(link = "logit")

)
chd_glm_contrasts_grouped |> equatiomatic::extract_eq()

log [ 𝑃(chd)
1 − 𝑃(chd)

] = 𝛼 + 𝛽1(dibpatType A) + 𝛽2(age) + 𝛽3(dibpatType A × age) (3.47)

library(parameters)
chd_glm_contrasts_grouped |>
parameters() |>
print_md()

Table 3.22.: CHD model with grouped wcgs data

Parameter Log-Odds SE 95% CI z p

(Intercept) -5.80 0.98 (-7.73, -3.90) -5.95 < .001
dibpat (Type A) 0.30 1.18 (-2.02, 2.63) 0.26 0.797
age 0.06 0.02 (0.02, 0.10) 3.01 0.003
dibpat (Type A) × age 0.01 0.02 (-0.04, 0.06) 0.42 0.674

chd_glm_contrasts_grouped |>
sjPlot::plot_model(type = "pred", terms = c("age", "dibpat")) +
geom_point(data = wcgs_grouped |> mutate(group_col = dibpat),

aes(x = age, y = p_chd))
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Figure 3.17.: CHD model with grouped wcgs data
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library(ggfortify)
chd_glm_contrasts_grouped |> autoplot()
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3.13.2. (Response) residuals

𝑒𝑘
def= ̄𝑦𝑘 − ̂𝜋(𝑥𝑘)

(𝑘 indexes the covariate patterns)

We can graph these residuals 𝑒𝑘 against the fitted values ̂𝜋(𝑥𝑘):

odds <- function(pi) pi/(1-pi)
logit <- function(pi) log(odds(pi))
wcgs_grouped <-
wcgs_grouped |>
mutate(

fitted = chd_glm_contrasts_grouped |> fitted(),
fitted_logit = fitted |> logit(),
response_resids = chd_glm_contrasts_grouped |> resid(type = "response")

)

wcgs_response_resid_plot <-
wcgs_grouped |>
ggplot(

mapping = aes(
x = fitted,
y = response_resids

)
) +
geom_point(
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aes(col = dibpat)
) +
geom_hline(yintercept = 0) +
geom_smooth( 1

se = TRUE,
method.args = list(

span = 2 / 3,
degree = 1,
family = "symmetric",
iterations = 3

),
method = stats::loess

)

1 Don’t worry about these options for now; I chose them to match autoplot() as closely
as I can. plot.glm and autoplot use stats::lowess instead of stats::loess;
stats::lowess is older, hard to use with geom_smooth, and hard to match exactly
with stats::loess; see https://support.bioconductor.org/p/2323/.]

wcgs_response_resid_plot |> print()
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Figure 3.18.: residuals plot for wcgs model

We can see a slight fan-shape here: observations on the right have larger variance (as
expected since 𝑣𝑎𝑟( ̄𝑦) = 𝜋(1 − 𝜋)/𝑛 is maximized when 𝜋 = 0.5).

3.13.3. Pearson residuals

The fan-shape in the response residuals plot isn’t necessarily a concern here, since we
haven’t made an assumption of constant residual variance, as we did for linear regression.

However, we might want to divide by the standard error in order to make the graph easier
to interpret. Here’s one way to do that:

The Pearson (chi-squared) residual for covariate pattern 𝑘 is:

𝑋𝑘 = ̄𝑦𝑘 − ̂𝜋𝑘

√ ̂𝜋𝑘(1 − ̂𝜋𝑘)/𝑛𝑘
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where
̂𝜋𝑘

def= ̂𝜋(𝑥𝑘)
def= ̂𝑃 (𝑌 = 1|𝑋 = 𝑥𝑘)
def= expit(𝑥′

𝑖
̂𝛽)

def= expit( ̂𝛽0 +
𝑝

∑
𝑗=1

̂𝛽𝑗𝑥𝑖𝑗)

Let’s take a look at the Pearson residuals for our CHD model from the WCGS data (graphed
against the fitted values on the logit scale):

library(ggfortify)

autoplot(chd_glm_contrasts_grouped, which = 1, ncol = 1) |> print()

12

31
28

−2

−1

0

1

2

−3.5 −3.0 −2.5 −2.0 −1.5
Predicted values

R
es

id
ua

ls

Residuals vs Fitted

The fan-shape is gone, and these residuals don’t show any obvious signs of model fit issues.
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3.13.3.1. Pearson residuals plot for beetles data

If we create the same plot for the beetles model, we see some strong evidence of a lack of
fit:

library(glmx)
library(dplyr)
data(BeetleMortality)
beetles <- BeetleMortality |>
mutate(

pct = died / n,
survived = n - died,
dose_c = dose - mean(dose)

)
beetles_glm_grouped <- beetles |>
glm(

formula = cbind(died, survived) ~ dose,
family = "binomial"

)
autoplot(beetles_glm_grouped, which = 1, ncol = 1) |> print()
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3.13.3.2. Pearson residuals with individual (ungrouped) data

What happens if we try to compute residuals without grouping the data by covariate
pattern?

library(ggfortify)
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chd_glm_strat <- glm(
"formula" = chd69 == "Yes" ~ dibpat + dibpat:age - 1,
"data" = wcgs,
"family" = binomial(link = "logit")

)

autoplot(chd_glm_strat, which = 1, ncol = 1) |> print()
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Meaningless.

3.13.3.3. Residuals plot by hand (optional section)

If you want to check your understanding of what these residual plots are, try building them
yourself:

wcgs_grouped <-
wcgs_grouped |>
mutate(

fitted = chd_glm_contrasts_grouped |> fitted(),
fitted_logit = fitted |> logit(),
resids = chd_glm_contrasts_grouped |> resid(type = "pearson")

)

wcgs_resid_plot1 <-
wcgs_grouped |>
ggplot(

mapping = aes(
x = fitted_logit,
y = resids

)
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) +
geom_point(

aes(col = dibpat)
) +
geom_hline(yintercept = 0) +
geom_smooth(

se = FALSE,
method.args = list(

span = 2 / 3,
degree = 1,
family = "symmetric",
iterations = 3,
surface = "direct"

),
method = stats::loess

)
# plot.glm and autoplot use stats::lowess, which is hard to use with
# geom_smooth and hard to match exactly;
# see https://support.bioconductor.org/p/2323/

wcgs_resid_plot1 |> print()
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3.13.4. Pearson chi-squared goodness of fit test

The Pearson chi-squared goodness of fit statistic is:

𝑋2 =
𝑚
∑
𝑘=1

𝑋2
𝑘

Under the null hypothesis that the model in question is correct (i.e., sufficiently complex),
𝑋2 ∼̇ 𝜒2(𝑁 − 𝑝).

x_pearson <- chd_glm_contrasts_grouped |>
resid(type = "pearson")

chisq_stat <- sum(x_pearson^2)

pval <- pchisq(
chisq_stat,
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lower = FALSE,
df = length(x_pearson) - length(coef(chd_glm_contrasts_grouped))

)

For our CHD model, the p-value for this test is 0.265236; no significant evidence of a lack
of fit at the 0.05 level.

3.13.4.1. Standardized Pearson residuals

Especially for small data sets, we might want to adjust our residuals for leverage (since
outliers in 𝑋 add extra variance to the residuals):

𝑟𝑃𝑘
= 𝑋𝑘

√1− ℎ𝑘

where ℎ𝑘 is the leverage of 𝑋𝑘. The functions autoplot() and plot.lm() use these for
some of their graphs.

3.13.5. Deviance residuals

For large sample sizes, the Pearson and deviance residuals will be approximately the same.
For small sample sizes, the deviance residuals from covariate patterns with small sample
sizes can be unreliable (high variance).

𝑑𝑘 = sign(𝑦𝑘 − 𝑛𝑘 ̂𝜋𝑘) {√2[ℓfull(𝑥𝑘) − ℓ( ̂𝛽; 𝑥𝑘)]}

3.13.5.1. Standardized deviance residuals

𝑟𝐷𝑘
= 𝑑𝑘

√1− ℎ𝑘

3.13.6. Diagnostic plots

Let’s take a look at the full set of autoplot() diagnostics now for our CHD model:

chd_glm_contrasts_grouped |>
autoplot(which = 1:6) |>
print()
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Figure 3.19.: Diagnostics for CHD model

Things look pretty good here. The QQ plot is still usable; with large samples; the residuals
should be approximately Gaussian.

3.13.6.1. Beetles

Let’s look at the beetles model diagnostic plots for comparison:

beetles_glm_grouped |>
autoplot(which = 1:6) |>
print()
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Figure 3.20.: Diagnostics for logistic model of BeetleMortality data

Hard to tell much from so little data, but there might be some issues here.

3.14. Alternatives to reporting odds ratios

3.14.1. Objections to odds ratios

Some scholars have raised objections to the use of odds ratios as an effect measurement
(Sackett, Deeks, and Altman 1996; Norton et al. 2024).

As we saw in Figure 3.3, the odds ratio is not very closely correlated with the risk difference,
and the risk difference is typically the metric that ultimately matters for policy decisions.
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Another objection is that odds ratios (and risk ratios, and risk differences) depend on the
set of covariates in a logistic regression model, even when those covariates are independent
of the exposure of interest and do not interact with that exposure. For example, consider
the following model:

P(𝑌 = 𝑦|𝑋 = 𝑥,𝐶 = 𝑐) = 𝜋(𝑥, 𝑐)𝑦(1 − 𝜋(𝑥, 𝑐))1−𝑦

𝜋(𝑥, 𝑐) = expit{𝜂0 + 𝛽𝑋𝑥 + 𝛽𝐶𝑐}

Then:

E[𝑌 |𝑋 = 𝑥] = E[E[𝑌 |𝑋,𝐶]|𝑋 = 𝑥]
= E[𝜋(𝑋,𝐶)|𝑋 = 𝑥]
= E[expit{𝜂0 + 𝛽𝑋𝑋 + 𝛽𝐶𝐶}|𝑋 = 𝑥]

= ∫
𝑐

expit{𝜂0 + 𝛽𝑋𝑥 + 𝛽𝐶𝑐} p(𝐶 = 𝑐|𝑋 = 𝑥) 𝜕𝑐

= ∫
𝑐
𝜋(𝑥, 𝑐) p(𝐶 = 𝑐|𝑋 = 𝑥) 𝜕𝑐

Since the expit{} function is nonlinear, we can’t change the order of the expectation and
expit{} operators:

E[expit{𝜂0 + 𝛽𝑋𝑋 + 𝛽𝐶𝐶}|𝑋] ≠ expit{E[𝜂0 + 𝛽𝑋𝑋 + 𝛽𝐶𝐶]|𝑋}

In contrast, consider a model with an identity link function:

P(𝑌 = 𝑦|𝑋 = 𝑥,𝐶 = 𝑐) = 𝜋(𝑥, 𝑐)𝑦(1 − 𝜋(𝑥, 𝑐))1−𝑦

𝜋(𝑥, 𝑐) = 𝜂0 + 𝛽𝑋𝑥 + 𝛽𝐶𝑐

Then:

E[𝑌 |𝑋 = 𝑥] = E[E[𝑌 |𝑋,𝐶]|𝑋 = 𝑥]
= E[𝜂0 + 𝛽𝑋𝑋 + 𝛽𝐶𝐶|𝑋 = 𝑥]
= E[𝜂0|𝑋 = 𝑥] + E[𝛽𝑋𝑋|𝑋 = 𝑥] + E[𝛽𝐶𝐶|𝑋 = 𝑥]
= 𝜂0 + 𝛽𝑋𝑥 + 𝛽𝐶E[𝐶|𝑋 = 𝑥]
= (𝜂0 + 𝛽𝐶E[𝐶|𝑋 = 𝑥]) + 𝛽𝑋𝑥

If 𝐶 ⟂⟂ 𝑋, then E[𝐶|𝑋 = 𝑥] = E[𝐶], and we can simplify further:

E[𝑌 |𝑋 = 𝑥] = (𝜂0 + 𝛽𝐶E[𝐶|𝑋 = 𝑥]) + 𝛽𝑋𝑥
= (𝜂0 + 𝛽𝐶E[𝐶]) + 𝛽𝑋𝑥
= 𝜂∗

0 + 𝛽𝑋𝑥
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3. Models for Binary Outcomes

Then:

𝜕
𝜕𝑥

E[𝑌 |𝑋 = 𝑥] = 𝛽𝑋 = 𝜕
𝜕𝑥

E[𝑌 |𝑋 = 𝑥,𝐶 = 𝑐]

In other words, for a model with an identity link function, if covariates 𝑋 and 𝐶 are
independent, then the slope with respect to 𝑋 doesn’t depend on whether 𝐶 is included in
the model (and an analogous result holds if 𝑋 is discrete or categorical).

Exercise 3.45. What are the expressions for E[𝑌 |𝑋 = 𝑥] and 𝜕
𝜕𝑥E[𝑌 |𝑋 = 𝑥] for the model

above, if E[𝐶|𝑋 = 𝑥] = 𝛾0 + 𝛾𝑥𝑥?

Solution 3.38. Left to the reader.

Exercise 3.46. What are the expressions for E[𝑌 |𝑋 = 𝑥] and 𝜕
𝜕𝑥E[𝑌 |𝑋 = 𝑥], if instead of

the model above,
𝜋(𝑥, 𝑐) = 𝜂0 + 𝛽𝑋𝑥 + 𝛽𝐶𝑐 + 𝛽𝑋𝐶𝑥𝑐

and E[𝐶|𝑋 = 𝑥] = 𝛾0 + 𝛾𝑥𝑥?

Solution 3.39. Left to the reader.

Hint: does adding the interaction term change the functional form of E[𝑌 |𝑋 = 𝑥]?

3.14.2. Deriving risk ratios and risk differences from logistic regression models

If you want to report risk differences or risk ratios instead of odds ratios, you can obtain
estimates from logistic regression models, as long as you didn’t stratify sampling by the
outcome; in other words, not in case-control studies (see Section 3.4.3.4).

To compute risk ratios from logistic regression models:

• Apply the expit function to the linear predictor for each covariate pattern to compute
the (estimated) risks,

• Then take the differences or ratios of the risks, as needed.

To quantify uncertainty for risk difference or risk ratio estimates derived from logistic
regression models (e.g., to calculate SEs, CIs, and p-values), you will need to use the
bootstrap, the multivariate delta method, or some other special technique.
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3.14.3. Other link functions for Bernoulli outcomes

Alternatively, if you want to estimate risk ratios more directly from the model, you can
sometimes change the link function from logit{} to log{}; then you can obtain risk ratios
by exponentiating coefficients 10, just like we did for odds ratios with the logit link:

data(anthers, package = "dobson")
anthers_sum <- aggregate(
anthers[c("n", "y")],
by = anthers[c("storage")], FUN = sum

)

anthers_glm_log <- glm(
formula = cbind(y, n - y) ~ storage,
data = anthers_sum,
family = binomial(link = "log")

)

anthers_glm_log |>
parameters() |>
print_md()

Parameter Log-Risk SE 95% CI z p

(Intercept) -0.80 0.12 (-1.04, -0.58) -6.81 < .001
storage 0.17 0.07 (0.02, 0.31) 2.31 0.021

Now exp{𝛽} gives us risk ratios instead of odds ratios:

anthers_glm_log |>
parameters(exponentiate = TRUE) |>
print_md()

Parameter Risk Ratio SE 95% CI z p

(Intercept) 0.45 0.05 (0.35, 0.56) -6.81 < .001
storage 1.18 0.09 (1.03, 1.36) 2.31 0.021

Let’s compare this model with a logistic model:

10or linear combinations of coefficients, depending on what covariate patterns you are contrasting
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anthers_glm_logit <- glm(
formula = cbind(y, n - y) ~ storage,
data = anthers_sum,
family = binomial(link = "logit")

)

anthers_glm_logit |>
parameters(exponentiate = TRUE) |>
print_md()

Parameter Odds Ratio SE 95% CI z p

(Intercept) 0.76 0.20 (0.45, 1.27) -1.05 0.296
storage 1.49 0.26 (1.06, 2.10) 2.29 0.022

[to add: fitted plots on each outcome scale]

When I try to use link ="log" in practice, I often get errors about not finding good
starting values for the estimation procedure. This is likely because the model is producing
fitted probabilities greater than 1.

When this happens, you can try to fit Poisson regression models instead (we will see those
soon!). But then the outcome distribution isn’t quite right, and you won’t get warnings
about fitted probabilities greater than 1. In my opinion, the Poisson model for binary
outcomes is confusing and not very appealing.

3.14.4. WCGS: link functions

wcgs_glm_logit_link <- chd_grouped_data |>
mutate(type = relevel(dibpat, ref = "Type B")) |>
glm(

"formula" = cbind(x, `n - x`) ~ dibpat * age,
"data" = _,
"family" = binomial(link = "logit")

)

wcgs_glm_identity_link <-
chd_grouped_data |>
mutate(type = relevel(dibpat, ref = "Type B")) |>
glm(

"formula" = cbind(x, `n - x`) ~ dibpat * age,
"data" = _,
"family" = binomial(link = "identity")

)
wcgs_glm_identity_link |>
coef() |>
pander()
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(Intercept) dibpatType A age dibpatType A:age

-0.08257 -0.1374 0.002906 0.004194

library(ggfortify)
wcgs_glm_logit_link |> autoplot(which = c(1), ncol = 1) + facet_wrap(~dibpat)
wcgs_glm_identity_link |> autoplot(which = c(1), ncol = 1) + facet_wrap(~dibpat)
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Figure 3.21.: Residuals vs Fitted plot for wcgs models

beetles_lm <-
beetles_long |>
lm(formula = died ~ dose)

beetles_glm_grouped <- beetles |>
glm(formula = cbind(died, survived) ~ dose, family = "binomial")

beetles <-
beetles |> mutate(

resid_logit = beetles_glm_grouped |> resid(type = "response")
)

beetles_glm_grouped |> autoplot(which = c(1), ncol = 1)
beetles_lm |> autoplot(which = c(1), ncol = 1)
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Figure 3.22.: Residuals vs Fitted plot for BeetleMortality models
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3.14.5. Quasibinomial

See Hua Zhou11’s lecture notes12

3.15. Further reading

• Hosmer, Lemeshow, and Sturdivant (2013) is a classic textbook on logistic regression

11https://hua-zhou.github.io/
12https://ucla-biostat-200c-2020spring.github.io/slides/04-binomial/binomial.html#:~:text=0.05%20%27.

%27%200.1%20%27%20%27%201-,Quasi%2Dbinomial,-Another%20way%20to

220

https://hua-zhou.github.io/
https://ucla-biostat-200c-2020spring.github.io/slides/04-binomial/binomial.html#:~:text=0.05%20%27.%27%200.1%20%27%20%27%201-,Quasi%2Dbinomial,-Another%20way%20to
https://ucla-biostat-200c-2020spring.github.io/slides/04-binomial/binomial.html#:~:text=0.05%20%27.%27%200.1%20%27%20%27%201-,Quasi%2Dbinomial,-Another%20way%20to


4. Models for Count Outcomes

Poisson regression and variations

Acknowledgements

This content is adapted from:

• Dobson and Barnett (2018), Chapter 9
• Vittinghoff et al. (2012), Chapter 8

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
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library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(

legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

4.1. Introduction

This chapter presents models for count data outcomes. With covariates, the event rate 𝜆
becomes a function of the covariates 𝑋̃ = (𝑋1,… ,𝑋𝑛). Typically, count data models use a
log{} link function, and thus an exp{} inverse-link function. That is:

E[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡] = 𝜇( ̃𝑥, 𝑡)
𝜇( ̃𝑥, 𝑡) = 𝜆( ̃𝑥) ⋅ 𝑡
𝜆( ̃𝑥) = exp{𝜂( ̃𝑥)}

𝜂( ̃𝑥) = ̃𝑥′ ̃𝛽 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

(4.1)

𝑇 = 𝑡 is called the exposure magnitude (Definition C.4) and has a special role in this
model.
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Exercise 4.1. Where have we seen a relationship like

𝜇 = 𝜆 ⋅ 𝑡

before?

Solution 4.1. The relationship
𝜇 = 𝜆 ⋅ 𝑡

in count regression models is analogous to the relationship

𝜇 = 𝑛𝜋

in Binomial models.

We can also think of 𝑡 as a special part of the linear component:

log{E[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡]} = log{𝜇( ̃𝑥)}

= log{𝜆( ̃𝑥) ⋅ 𝑡}
= log{𝜆( ̃𝑥)} + log 𝑡
= log{exp{𝜂( ̃𝑥)}} + log 𝑡
= 𝜂( ̃𝑥) + log 𝑡

= ̃𝑥′ ̃𝛽 + log 𝑡
= (𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝) + log 𝑡

In contrast with the other covariates (represented by 𝑋̃), 𝑡 enters this expression with a
log transformation and without a corresponding 𝛽 coefficient; in other words, log{𝑡} is an
offset term (Definition C.8).

Exercise 4.2. What are the units of 𝜇 in Equation 4.1?

Solution 4.2. 𝜇 is the mean of 𝑌, and 𝑌 is a count, so 𝜇 is also a count; for example:

• 3.1 cyclones,
• 10.23 ER visits
• 15.01 infections
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Exercise 4.3. What are the units of 𝜆 in Equation 4.1?

Solution 4.3. 𝜆 = 𝜇/𝑡, so 𝜆 is a rate of counts per unit of 𝑡. For example:

• 3.1 cyclones per year
• 2.023 ER visits per 10 person-years
• 15.01 infections per 1000 person-years at risk

4.2. Interpreting Poisson regression models

Differences on the log-rate scale become ratios on the rate scale, because

exp{𝑎 − 𝑏} = exp{𝑎}
exp{𝑏}

(recall from Algebra 2)

Therefore, according to this model, differences of 𝛿 in covariate 𝑥𝑗 correspond to rate
ratios of exp{𝛽𝑗 ⋅ 𝛿}.

That is, letting 𝑋̃−𝑗 denote vector 𝑋̃ with element 𝑗 removed:

{
log E[𝑌 |𝑋𝑗 = 𝑎, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]
− log E[𝑌 |𝑋𝑗 = 𝑏, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]

}

= {
log 𝑡 + 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑗(𝑎) + ... + 𝛽𝑝𝑥𝑝
− log 𝑡 + 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑗(𝑏) + ... + 𝛽𝑝𝑥𝑝

}

= 𝛽𝑗(𝑎 − 𝑏)

And accordingly,

𝔼[𝑌 |𝑋𝑗 = 𝑎, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]
E[𝑌 |𝑋𝑗 = 𝑏, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]

= exp{𝛽𝑗(𝑎 − 𝑏)}

4.3. Example: needle-sharing

(adapted from Vittinghoff et al. (2012), §8)
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library(tidyverse)
library(haven)
needles =
"inst/extdata/needle_sharing.dta" |>
read_dta() |>
as_tibble() |>
mutate(

hivstat =
hivstat |>
case_match(
1 ~ "HIV+",
0 ~ "HIV-") |>

factor() |>
relevel(ref = "HIV-"),

polydrug =
polydrug |>
case_match(
1 ~ "multiple drugs used",
0 ~ "one drug used") |>

factor() |>
relevel(ref = "one drug used"),

homeless =
homeless |>
case_match(
1 ~ "homeless",
0 ~ "not homeless") |>

factor() |>
relevel(ref = "not homeless"),

ethn = ethn |> factor() |> relevel(ref = "White"),
sex = sex |> factor() |> relevel(ref = "M")

) |>
labelled::set_variable_labels(

"sex" = "sex (reference = Male)",
"ethn" = "ethnicity (reference = White)",
"shsyryn" = "shared syringe yes/no (1 = yes, 0 = no)",
"logshsyr" = "log(No. of shared needles)",
"polydrug" = "how many drugs used?",
"sqrtninj" = "sqrt(No. of infections in 30 days)",
"homeless" = "Homeless (1 = yes, 0 = no)",
"hivstat" = "HIV status (reference = HIV-)"

)

dict <- tibble(
variable = names(needles),
description = labelled::get_variable_labels(needles) |>

sapply(function(x) ifelse(is.null(x), "", x)),
)
dict |> pander::pander()
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Table 4.2.: Needle-sharing data

needles
#> # A tibble: 128 x 17
#> id sex ethn age dprsn_dx sexabuse shared_syr hivstat hplsns nivdu
#> <dbl> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>
#> 1 2104 M White 47 5 0 1 HIV- 6 90
#> 2 2009 M White 39 1 0 1 HIV+ 2 4
#> 3 2032 M White 52 1 0 1 HIV- 18 90
#> 4 2063 M AA 47 1 1 1 HIV- 1 120
#> 5 2059 M Hispanic 32 1 0 2 HIV- 12 120
#> 6 2077 M Hispanic 54 1 0 2 HIV- 10 120
#> 7 2042 F White 32 5 0 2 HIV- 8 15
#> 8 2017 M White 26 5 0 2 HIV- 11 120
#> 9 2119 M White 54 1 0 3 HIV- 2 90
#> 10 2085 F White 19 5 0 3 HIV- 7 90
#> # i 118 more rows
#> # i 7 more variables: shsyryn <dbl>, sqrtnivd <dbl>, logshsyr <dbl>,
#> # polydrug <fct>, sqrtninj <dbl>, homeless <fct>, shsyr <dbl>

Table 4.1.: Data dictionary for needles data

variable description

id ID
sex sex (reference = Male)

ethn ethnicity (reference = White)
age Age at 1st interview

dprsn_dx DPRSN_DX
sexabuse Sexually abused?

shared_syr Shared syringe
hivstat HIV status (reference = HIV-)
hplsns HPLSNS
nivdu No of injections (in 30 days)

shsyryn shared syringe yes/no (1 = yes, 0 = no)
sqrtnivd sqrt(No ivdu 30 days)
logshsyr log(No. of shared needles)
polydrug how many drugs used?
sqrtninj sqrt(No. of infections in 30 days)
homeless Homeless (1 = yes, 0 = no)

shsyr No. of shared needles
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library(ggplot2)

needles |>
ggplot(

aes(
x = age,
y = shsyryn,
shape = sex,
col = ethn

)
) +
geom_point(

aes(size = nivdu),
alpha = .5) +

scale_size_area(max_size = 4) +
facet_grid(

cols = vars(polydrug),
rows = vars(homeless)) +

theme(legend.position = "bottom")
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Figure 4.1.: Rates of needle sharing

4.3.0.1. Covariate counts
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Table 4.3.: Counts of observations in needles dataset by sex, unhoused status, and multiple
drug use

needles |>
dplyr::select(sex, homeless, polydrug) |>
summary()

#> sex homeless polydrug
#> M :97 not homeless:63 one drug used :109
#> F :30 homeless :61 multiple drugs used: 19
#> Trans: 1 NA's : 4

There’s only one individual with sex = Trans, which unfortunately isn’t enough data to
analyze. We will remove that individual:

needles = needles |> filter(sex != "Trans")

4.3.1. Model

glm1 =
needles |>
dplyr::filter(nivdu > 0) |>
glm(

offset = log(nivdu),
family = stats::poisson,
formula = shared_syr ~ age + sex + homeless*polydrug

)
library(equatiomatic)
equatiomatic::extract_eq(glm1)

log(𝐸(sharedsyr)) = 𝛼+𝛽1(age)+𝛽2(sexF)+𝛽3(homeless)+𝛽4(polydrug)+𝛽5(homeless×polydrug)+(offset)
(4.2)

library(parameters)
glm1 |> parameters(exponentiate = TRUE) |>
print_md()
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Table 4.4.: Poisson model for needle-sharing data

Parameter IRR SE 95% CI z p

(Intercept) 0.02 4.02e-
03

(9.09e-03, 0.03) -
15.87

<
.001

age 1.00 5.85e-
03

(0.99, 1.01) 0.42 0.673

sex (F) 1.37 0.16 (1.09, 1.72) 2.73 0.006
homeless (homeless) 2.77 0.34 (2.18, 3.53) 8.30 <

.001
polydrug (multiple drugs used) 2.85e-

07
8.71e-

05
(1.59e-267,
5.11e+253)

-0.05 0.961

homeless (homeless) × polydrug
(multiple drugs used)

6.21e+05 1.90e+08 (3.47e-255,
1.11e+266)

0.04 0.965

library(sjPlot)
glm1 |>
sjPlot::plot_model(

type = "pred",
terms = c("age", "sex", "homeless", "polydrug"),
show.data = TRUE

) +
theme(legend.position = "bottom")
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4.4. Inference for count regression models

4.4.1. Confidence intervals for regression coefficients and rate ratios

As usual:

𝛽 ∈ [ ̂𝛽±𝑧1− 𝛼
2
⋅ ŝe( ̂𝛽)]

Rate ratios: exponentiate CI endpoints

exp{𝛽} ∈ [exp{ ̂𝛽±𝑧1− 𝛼
2
⋅ ŝe( ̂𝛽)}]

4.4.2. Hypothesis tests for regression coefficients

𝑧 =
̂𝛽 − 𝛽0

ŝe( ̂𝛽)

Compare 𝑧 or |𝑧| to the tails of the standard Gaussian distribution, according to the null
hypothesis.

4.4.3. Comparing nested models

log(likelihood ratio) tests, as usual.

4.5. Prediction

̂𝑦 def= Ê[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡]
= ̂𝜇( ̃𝑥, 𝑡)

= 𝜆̂( ̃𝑥) ⋅ 𝑡
= exp{ ̂𝜂( ̃𝑥)} ⋅ 𝑡

= exp{ ̃𝑥′ ̂̃𝛽} ⋅ 𝑡

4.6. Diagnostics

4.6.1. Residuals

4.6.1.1. Observation residuals

𝑒 def= 𝑦 − ̂𝑦

4.6.1.2. Pearson residuals

𝑟 = 𝑒
ŝe(𝑒)

≈ 𝑒
√ ̂𝑦
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Table 4.5.: Diagnostics for Poisson model

262423

−10

0

10

−15 −10 −5 0 5
Predicted values

R
es

id
ua

ls

Residuals vs Fitted
262423

−10

0

10

−2 −1 0 1 2
Theoretical Quantiles

S
td

. d
ev

ia
nc

e 
re

si
d. Normal Q−Q

262423

0

1

2

3

4

−15 −10 −5 0 5
Predicted values

St
d.

 d
ev

ia
nc

e 
re

si
d. Scale−Location

108

26
25

−10

0

10

0.0 0.2 0.4 0.6
Leverage

S
td

. P
ea

rs
on

 r
es

id
.

Residuals vs Leverage

4.6.1.3. Standardized Pearson residuals

𝑟𝑝 = 𝑟√
1 − ℎ

where ℎ is the “leverage” (which we will continue to leave undefined).

4.6.1.4. Deviance residuals

𝑑𝑘 = sign(𝑦 − ̂𝑦) {√2[ℓfull(𝑦) − ℓ( ̂𝛽; 𝑦)]}

INFO Note

sign(𝑥) def= 𝑥
|𝑥|

In other words:

• sign(𝑥) = −1 if 𝑥 < 0
• sign(𝑥) = 0 if 𝑥 = 0
• sign(𝑥) = 1 if 𝑥 > 0

library(ggfortify)
autoplot(glm1)
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4.7. Zero-inflation

4.7.1. Models for zero-inflated counts

We assume a latent (unobserved) binary variable, 𝑍, which we model using logistic regres-
sion:

𝑃(𝑍 = 1|𝑋 = 𝑥) = 𝜋(𝑥) = expit(𝛾0 + 𝛾1𝑥1 + ...)

According to this model, if 𝑍 = 1, then 𝑌 will always be zero, regardless of 𝑋 and 𝑇:

𝑃(𝑌 = 0|𝑍 = 1,𝑋 = 𝑥, 𝑇 = 𝑡) = 1

Otherwise (if 𝑍 = 0), 𝑌 will have a Poisson distribution, conditional on 𝑋 and 𝑇, as above.

Even though we never observe 𝑍, we can estimate the parameters 𝛾0-𝛾𝑝, via maximum
likelihood:

P(𝑌 = 𝑦|𝑋 = 𝑥, 𝑇 = 𝑡) = P(𝑌 = 𝑦, 𝑍 = 1|...) + P(𝑌 = 𝑦, 𝑍 = 0|...)

(by the Law of Total Probability)

where
𝑃(𝑌 = 𝑦, 𝑍 = 𝑧|...) = 𝑃(𝑌 = 𝑦|𝑍 = 𝑧, ...)𝑃 (𝑍 = 𝑧|...)

Exercise 4.4. Expand 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝑇 = 𝑡), 𝑃(𝑌 = 1|𝑋 = 𝑥, 𝑇 = 𝑡) and 𝑃(𝑌 = 𝑦|𝑋 =
𝑥, 𝑇 = 𝑡) into expressions involving 𝑃(𝑍 = 1|𝑋 = 𝑥, 𝑇 = 𝑡) and 𝑃(𝑌 = 𝑦|𝑍 = 0,𝑋 =
𝑥, 𝑇 = 𝑡).

Exercise 4.5. Derive the expected value and variance of 𝑌, conditional on 𝑋 and 𝑇, as
functions of 𝑃(𝑍 = 1|𝑋 = 𝑥, 𝑇 = 𝑡) and E[𝑌 |𝑍 = 0,𝑋 = 𝑥, 𝑇 = 𝑡].

4.8. Over-dispersion

The Poisson distribution model forces the variance to equal the mean. In practice, many
count distributions will have a variance substantially larger than the mean (or occasionally,
smaller).

Definition 4.1 (Overdispersion). A random variable 𝑋 is overdispersed relative to a
model p(𝑋 = 𝑥) if if its empirical variance in a dataset is larger than the value is predicted
by the fitted model p̂(𝑋 = 𝑥).
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c.f. Dobson and Barnett (2018) §3.2.1, 7.7, 9.8; Vittinghoff et al. (2012) §8.1.5; and
https://en.wikipedia.org/wiki/Overdispersion.

When we encounter overdispersion, we can try to reduce the residual variance by adding
more covariates.

INFO Note

Logistic regression is named after the (inverse) link function. Poisson regression is
named after the outcome distribution. I think this naming convention reflects the
strongest (most questionable assumption) in the model. In binary data regression,
the outcome distribution essentially must be Bernoulli (or Binomial), but the link
function could be logit, log, identity, probit, or something more unusual. In count
data regression, the outcome distribution could have many different shapes, but the
link function will probably end up being log, so that covariates have multiplicative
effects on the rate.

4.8.1. Negative binomial models

There are alternatives to the Poisson model. Most notably, the negative binomial model.

We can still model 𝜇 as a function of 𝑋 and 𝑇 as before, and we can combine this model
with zero-inflation (as the conditional distribution for the non-zero component).

4.8.1.1. Example: needle-sharing

library(MASS) #need this for glm.nb()
glm1.nb = glm.nb(
data = needles,
shared_syr ~ age + sex + homeless*polydrug

)

equatiomatic::extract_eq(glm1.nb)

log(𝐸(sharedsyr)) = 𝛼+𝛽1(age)+𝛽2(sexF)+𝛽3(homeless)+𝛽4(polydrug)+𝛽5(homeless×polydrug)
(4.3)
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Table 4.6.: Negative binomial model for needle-sharing data

summary(glm1.nb)
#>
#> Call:
#> glm.nb(formula = shared_syr ~ age + sex + homeless * polydrug,
#> data = needles, init.theta = 0.08436295825, link = log)
#>
#> Coefficients:
#> Estimate Std. Error z value
#> (Intercept) 9.91e-01 1.71e+00 0.58
#> age -2.76e-02 3.82e-02 -0.72
#> sexF 1.06e+00 8.07e-01 1.32
#> homelesshomeless 1.65e+00 7.22e-01 2.29
#> polydrugmultiple drugs used -2.46e+01 3.61e+04 0.00
#> homelesshomeless:polydrugmultiple drugs used 2.32e+01 3.61e+04 0.00
#> Pr(>|z|)
#> (Intercept) 0.563
#> age 0.469
#> sexF 0.187
#> homelesshomeless 0.022 *
#> polydrugmultiple drugs used 0.999
#> homelesshomeless:polydrugmultiple drugs used 0.999
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Negative Binomial(0.0844) family taken to be 1)
#>
#> Null deviance: 69.193 on 119 degrees of freedom
#> Residual deviance: 57.782 on 114 degrees of freedom
#> (7 observations deleted due to missingness)
#> AIC: 315.5
#>
#> Number of Fisher Scoring iterations: 1
#>
#>
#> Theta: 0.0844
#> Std. Err.: 0.0197
#>
#> 2 x log-likelihood: -301.5060
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Table 4.7.: Poisson versus Negative Binomial Regression coefficient estimates

tibble(name = names(coef(glm1)), poisson = coef(glm1), nb = coef(glm1.nb))
#> # A tibble: 6 x 3
#> name poisson nb
#> <chr> <dbl> <dbl>
#> 1 (Intercept) -4.18 0.991
#> 2 age 0.00247 -0.0276
#> 3 sexF 0.316 1.06
#> 4 homelesshomeless 1.02 1.65
#> 5 polydrugmultiple drugs used -15.1 -24.6
#> 6 homelesshomeless:polydrugmultiple drugs used 13.3 23.2

4.8.1.2. zero-inflation

library(glmmTMB)
zinf_fit1 = glmmTMB(
family = "poisson",
data = needles,
formula = shared_syr ~ age + sex + homeless*polydrug,
ziformula = ~ age + sex + homeless + polydrug # fit won't converge with interaction

)

zinf_fit1 |>
parameters(exponentiate = TRUE) |>
print_md()

Table 4.8.: Zero-inflated poisson model

Table 4.8.: # Fixed Effects
Parameter IRR SE 95% CI z p

(Intercept) 3.16 0.82 (1.90,
5.25)

4.44 <
.001

age 1.01 5.88e-
03

(1.00,
1.02)

1.74 0.081

sex [F] 3.43 0.44 (2.67,
4.40)

9.68 <
.001

homeless [homeless] 3.44 0.47 (2.63,
4.50)

9.03 <
.001

polydrug [multiple drugs used] 1.85e-
09

1.21e-
05

(0.00, Inf) -3.08e-
03

0.998

homeless [homeless] × polydrug
[multiple drugs used]

1.38e+08 9.04e+11 (0.00, Inf) 2.87e-03 0.998

235



Acknowledgements

Table 4.9.: Zero-inflated poisson model

Table 4.9.: # Zero-Inflation
Parameter Odds Ratio SE 95% CI z p

(Intercept) 0.49 0.54 (0.06, 4.25) -0.65 0.514
age 1.05 0.03 (1.00, 1.10) 1.95 0.051
sex [F] 1.44 0.84 (0.46, 4.50) 0.62 0.533
homeless [homeless] 0.68 0.34 (0.26, 1.80) -0.78 0.436
polydrug [multiple drugs used] 1.15 0.91 (0.24, 5.43) 0.18 0.858

Another R package for zero-inflated models is pscl1 (Zeileis, Kleiber, and Jackman
(2008)).

4.8.1.3. zero-inflated negative binomial model

library(glmmTMB)
zinf_fit1 = glmmTMB(
family = nbinom2,
data = needles,
formula = shared_syr ~ age + sex + homeless*polydrug,
ziformula = ~ age + sex + homeless + polydrug
# fit won't converge with interaction

)

zinf_fit1 |>
parameters(exponentiate = TRUE) |>
print_md()

Table 4.10.: Zero-inflated negative binomial model

Table 4.10.: # Fixed Effects
Parameter IRR SE 95% CI z p

(Intercept) 1.06 1.48 (0.07,
16.52)

0.04 0.969

age 1.02 0.03 (0.96,
1.08)

0.53 0.599

sex [F] 6.86 6.36 (1.12,
42.16)

2.08 0.038

homeless [homeless] 6.44 4.59 (1.60,
26.01)

2.62 0.009

polydrug [multiple drugs used] 8.25e-
10

7.07e-
06

(0.00, Inf) -2.44e-
03

0.998

homeless [homeless] × polydrug
[multiple drugs used]

2.36e+08 2.02e+12 (0.00, Inf) 2.25e-03 0.998

1https://cran.r-project.org/web/packages/pscl/index.html
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Table 4.11.: Zero-inflated negative binomial model

Table 4.11.: # Zero-Inflation
Parameter Odds Ratio SE 95% CI z p

(Intercept) 0.10 0.20 (1.47e-03, 6.14) -1.11 0.269
age 1.07 0.04 (0.99, 1.15) 1.78 0.075
sex [F] 2.72 2.40 (0.48, 15.33) 1.13 0.258
homeless [homeless] 1.15 0.86 (0.27, 4.96) 0.19 0.853
polydrug [multiple drugs
used]

0.75 0.86 (0.08, 7.12) -0.25 0.799

Table 4.12.: Zero-inflated negative binomial model

Table 4.12.: # Dispersion
Parameter Coefficient 95% CI

(Intercept) 0.44 (0.11, 1.71)

4.8.2. Quasipoisson

An alternative to Negative binomial is the “quasipoisson” distribution. I’ve never used it,
but it seems to be a method-of-moments type approach rather than maximum likelihood.
It models the variance as Var(𝑌) = 𝜇𝜃, and estimates 𝜃 accordingly.

See ?quasipoisson in R for more.

4.9. More on count regression

• https://bookdown.org/roback/bookdown-BeyondMLR/ch-poissonreg.html
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5. Introduction to multi-level models for
correlated data

For more, see:

• David Rocke1’s materials from the 2021 edition of this course2

– May 25 - June 1 lectures

• Other UC Davis courses:

– EVE 2253: “Linear Mixed Modeling in Ecology & Evolution”
∗ usually taught every other winter or spring by Kate Laskowski4
∗ materials, including syllabus and lecture videos: https://laskowskilab.faculty.

ucdavis.edu/teaching-2/
– STA/BST 2245: “Analysis of Longitudinal Data”

∗ usually taught every spring by Shuai Chen6

∗ should be accessible after completing Epi 204
– EPI 2267 “Methods for Longitudinal & Repeated Measurement Data”

∗ usually taught by Heejung Bang8

– PSC 205D9 “Multilevel Models”
– PSC 205G10 “Applied Longitudinal Data Analysis”
– STA 10111 “Advanced Applied Statistics for the Biological Sciences”
– STA 20712 “Statistical Methods for Research II”
– STA 232B13 “Applied Statistics II”

∗ usually taught every winter by Jiming Jiang14

– PLS 20715: “Applied Statistical Modeling for the Environmental Sciences”
– EDU 23616: “Application of Hierarchical Linear Models in Education Research”
– HDE 20517: “Longitudinal Data Analysis”

• Books:
1https://dmrocke.ucdavis.edu/
2https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
3https://catalog.ucdavis.edu/search/?q=EVE+225
4https://eve.ucdavis.edu/people/kate-laskowski
5https://catalog.ucdavis.edu/search/?P=BST%20224
6https://shuaichen.weebly.com/
7https://catalog.ucdavis.edu/search/?P=EPI+226
8https://biostat.ucdavis.edu/people/heejung-bang
9https://catalog.ucdavis.edu/search/?q=PSC+205D

10https://catalog.ucdavis.edu/search/?q=PSC+205G
11https://catalog.ucdavis.edu/search/?q=STA+101
12https://catalog.ucdavis.edu/search/?q=STA+207
13https://www.stat.ucdavis.edu/~jiang/sta232b.html
14https://www.stat.ucdavis.edu/~jiang/
15https://catalog.ucdavis.edu/search/?q=PLS+207
16https://catalog.ucdavis.edu/search/?q=EDU+236
17https://catalog.ucdavis.edu/search/?q=HDE+205
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5. Introduction to multi-level models for correlated data

– Dobson and Barnett (2018) Chapter 1118

– Vittinghoff et al. (2012) Chapter 719

– Gelman and Hill (2007)
– Jiang and Nguyen (2021)

∗ by UC Davis Statistics Professor and GGE faculty member Jiming Jiang20

– Faraway (2016)
– McCulloch, Searle, and Neuhaus (2008)
– Hedeker and Gibbons (2006)
– Wakefield (2013)
– Zuur (2009)
– Diggle et al. (2013)
– Fitzmaurice, Laird, and Ware (2012)
– Fitzmaurice et al. (2009)
– Gałecki and Burzykowski (2013)
– Congdon (2020)
– Molenberghs and Verbeke (2005)
– Verbeke and Molenberghs (2000)
– Jewell and Hubbard (2016)

∗ by UC Berkeley professors

18https://www.taylorfrancis.com/chapters/mono/10.1201/9781315182780-11/clustered-longitudinal-data-
annette-dobson-adrian-barnett?context=ubx&refId=95f6c50e-093a-4488-a042-92a9f151a4b5

19https://link.springer.com/chapter/10.1007/978-1-4614-1353-0_7
20https://www.stat.ucdavis.edu/~jiang/
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Part II.

Time to Event Models
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In many health sciences applications, binary outcomes are incompletely observed. For
example, if we are studying whether cancer patients experience a relapse after a initial
remission, we may may not be able to follow patients to the end of their lives; instead, we
may only know whether each patient has relapsed before the end of the study. If a patient
has not relapsed by that point, we might not know if they will relapse at some other date
or if they will stay cancer-free for the rest of their lives. 21 Their recurrence status at
end-of-life is missing data. If some study participants withdraw from a study before the
end date in the study design, there will be even more missing data. All of this missing data
will make logistic regression difficult for this type of data.

However, these outcome observations are not entirely missing. We know that those patients
stayed relapse free at least until the time point when we last saw them. If we also know
the time-to-event for the participants who did experience events while under study, we can
analyze time-to-event-or-study-exit, combined with the indicator of which of these two cases
occurred, using survival analysis. The survival analysis framework is the subject of the rest
of these course notes.

21Binary outcomes are typically defined for a specific time-point. It is important to clearly define whether
we are interested in outcome status at end of study, at end of life, or at some other time.
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6. Introduction to Survival Analysis

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
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6. Introduction to Survival Analysis

legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

6.1. Overview

6.1.1. Time-to-event outcomes

Survival analysis is a framework for modeling time-to-event outcomes. It is used in:

• clinical trials, where the event is often death or recurrence of disease.
• engineering reliability analysis, where the event is failure of a device or system.
• insurance, particularly life insurance, where the event is death.

INFO Note

The term survival analysis is a bit misleading. Survival outcomes can sometimes be
analyzed using binomial models (logistic regression). Time-to-event models or survival
time analysis might be a better name.

6.2. Time-to-event outcome distributions

6.2.1. Distributions of Time-to-Event Data

• The distribution of event times is asymmetric and can be long-tailed, and starts at 0
(that is, 𝑃(𝑇 < 0) = 0).

• The base distribution is not normal, but exponential.
• There are usually censored observations, which are ones in which the failure time is

not observed.
• Often, these are right-censored, meaning that we know that the event occurred

after some known time 𝑡, but we don’t know the actual event time, as when a patient
is still alive at the end of the study.

• Observations can also be left-censored, meaning we know the event has already
happened at time 𝑡, or interval-censored, meaning that we only know that the
event happened between times 𝑡1 and 𝑡2.

• Analysis is difficult if censoring is associated with treatment.
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6. Introduction to Survival Analysis

6.2.2. Right Censoring

• Patients are in a clinical trial for cancer, some on a new treatment and some on
standard of care.

• Some patients in each group have died by the end of the study. We know the survival
time (measured for example from time of diagnosis—each person on their own clock).

• Patients still alive at the end of the study are right censored.
• Patients who are lost to follow-up or withdraw from the study may be right-censored.

6.2.3. Left and Interval Censoring

• An individual tests positive for HIV.
• If the event is infection with HIV, then we only know that it has occurred before the

testing time 𝑡, so this is left censored.
• If an individual has a negative HIV test at time 𝑡1 and a positive HIV test at time 𝑡2,

then the infection event is interval censored.

6.3. Distribution functions for time-to-event variables

6.3.1. The Probability Density Function (PDF)

For a time-to-event variable 𝑇 with a continuous distribution, the probability density
function is defined as usual (see Section C.4.1).

In most time-to-event models, this density is assumed to be 0 for all 𝑡 < 0; that is,
𝑓(𝑡) = 0, ∀𝑡 < 0. In other words, the support of 𝑇 is typically [0,∞).

Example 6.1 (exponential distribution). Recall from Epi 202: the pdf of the exponential
distribution family of models is:

𝑝(𝑇 = 𝑡) = 1𝑡≥0 ⋅ 𝜆e−𝜆𝑡

where 𝜆 > 0.

Here are some examples of exponential pdfs:

244



6. Introduction to Survival Analysis

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5
Time (t)

p(T=t)

λ

0.5

p = 1

p = 1.5

p = 5

6.3.2. The Cumulative Distribution Function (CDF)

The cumulative distribution function is defined as:

𝐹(𝑡) def= Pr(𝑇 ≤ 𝑡)

= ∫
𝑡

𝑢=−∞
𝑓(𝑢)𝑑𝑢

Example 6.2 (exponential distribution). Recall from Epi 202: the cdf of the exponential
distribution family of models is:

𝑃(𝑇 ≤ 𝑡) = 𝟙𝑡≥0 ⋅ (1 − e−𝜆𝑡)

where 𝜆 > 0.

Here are some examples of exponential cdfs:
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6.3.3. The Survival Function

For survival data, a more important quantity is the survival function:

Definition 6.1 (Survival function).

Given a random time-to-event variable 𝑇, the survival function or survivor function,
denoted S(𝑡), is the probability that the event time is later than 𝑡. If the event in a clinical
trial is death, then S(𝑡) is the expected fraction of the original population at time 0 who
have survived up to time 𝑡 and are still alive at time 𝑡; that is:

S(𝑡) def= Pr(𝑇 > 𝑡)

Theorem 6.1.
S(𝑡)

def
= Pr(𝑇 > 𝑡)

= ∫
∞

𝑢=𝑡
𝑝(𝑢)𝑑𝑢

= 1 − 𝐹(𝑡)

Example 6.3 (exponential distribution). Since S(𝑡) = 1 − 𝐹(𝑡), the survival function of
the exponential distribution family of models is:

𝑃(𝑇 > 𝑡) = {e−𝜆𝑡, 𝑡 ≥ 0
1, 𝑡 ≤ 0
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where 𝜆 > 0.

Figure 6.1 shows some examples of exponential survival functions.

library(ggplot2)
ggplot() +
geom_function(

aes(col = "0.5"),
fun = pexp,
args = list(lower = FALSE, rate = 0.5)

) +
geom_function(

aes(col = "p = 1"),
fun = pexp,
args = list(lower = FALSE, rate = 1)

) +
geom_function(

aes(col = "p = 1.5"),
fun = pexp,
args = list(lower = FALSE, rate = 1.5)

) +
geom_function(

aes(col = "p = 5"),
fun = pexp,
args = list(lower = FALSE, rate = 5)

) +
theme_bw() +
ylab("S(t)") +
guides(col = guide_legend(title = expr(lambda))) +
xlab("Time (t)") +
xlim(0, 2.5) +
theme(

legend.position = "bottom",
axis.title.x =

element_text(
angle = 0,
vjust = 1,
hjust = 1

),
axis.title.y =

element_text(
angle = 0,
vjust = 1,
hjust = 1

)
)
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Figure 6.1.: Exponential Survival Functions

Theorem 6.2. If 𝐴𝑡 represents survival status at time 𝑡, with 𝐴𝑡 = 1 denoting alive at
time 𝑡 and 𝐴𝑡 = 0 denoting deceased at time 𝑡, then:

S(𝑡) = Pr(𝐴𝑡 = 1) = E[𝐴𝑡]

Theorem 6.3. If 𝑇 is a nonnegative random variable, then:

E[𝑇 ] = ∫
∞

𝑡=0
S(𝑡)𝑑𝑡

Proof. See https://statproofbook.github.io/P/mean-nnrvar.html or

6.3.4. The Hazard Function

Another important quantity is the hazard function:
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6. Introduction to Survival Analysis

Definition 6.2 (Hazard function, hazard rate, hazard rate function).

The hazard function, hazard rate, hazard rate function, for a random variable 𝑇
at value 𝑡, typically denoted as h(𝑡) 1 or 𝜆(𝑡), 2 is the conditional density of 𝑇 at 𝑡, given
𝑇 ≥ 𝑡. That is:

𝜆(𝑡) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡)

If 𝑇 represents the time at which an event occurs, then 𝜆(𝑡) is the probability that the event
occurs at time 𝑡, given that it has not occurred prior to time 𝑡.

Definition 6.3 (Incidence rate). Given a population of 𝑁 individuals indexed by 𝑖, each
with their own hazard rate 𝜆𝑖(𝑡), the incidence rate for that population is the mean
hazard rate:

𝜆̄(𝑡) def= 1
𝑁

𝑁
∑
𝑖=1

𝜆𝑖(𝑡)

Theorem 6.4 (Incidence rate in a homogenous population). If a population of individuals
indexed by 𝑖 all have identical hazard rates 𝜆𝑖(𝑡) = 𝜆(𝑡), then the incidence rate for that
population is equal to the hazard rate:

𝜆̄(𝑡) = 𝜆(𝑡)

The hazard function has an important relationship to the density and survival functions,
which we can use to derive the hazard function for a given probability distribution (Theo-
rem 6.5).

Lemma 6.1 (Joint probability of a variable with itself).

𝑝(𝑇 = 𝑡, 𝑇 ≥ 𝑡) = 𝑝(𝑇 = 𝑡)

Proof. Recall from Epi 202: if 𝐴 and 𝐵 are statistical events and 𝐴 ⊆ 𝐵, then 𝑝(𝐴,𝐵) =
𝑝(𝐴). In particular, {𝑇 = 𝑡} ⊆ {𝑇 ≥ 𝑡}, so 𝑝(𝑇 = 𝑡, 𝑇 ≥ 𝑡) = 𝑝(𝑇 = 𝑡).

1for example in Dobson and Barnett (2018), Vittinghoff et al. (2012), Klein and Moeschberger (2003), and
David G. Kleinbaum and Klein (2012)

2for example, in Rothman et al. (2021) and Kalbfleisch and Prentice (2011)
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Theorem 6.5 (Hazard equals density over survival).

𝜆(𝑡) = 𝑓(𝑡)
S(𝑡)

Proof.
𝜆(𝑡) = 𝑝(𝑇 = 𝑡|𝑇 ≥ 𝑡)

= 𝑝(𝑇 = 𝑡, 𝑇 ≥ 𝑡)
𝑝(𝑇 ≥ 𝑡)

= 𝑝(𝑇 = 𝑡)
𝑝(𝑇 ≥ 𝑡)

= 𝑓(𝑡)
S(𝑡)

Example 6.4 (exponential distribution). The hazard function of the exponential distribu-
tion family of models is:

𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡) = 𝑓(𝑡)
S(𝑡)

=
𝟙𝑡≥0 ⋅ 𝜆e−𝜆𝑡

e−𝜆𝑡

= 𝟙𝑡≥0 ⋅ 𝜆

Figure 6.2 shows some examples of exponential hazard functions.
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Figure 6.2.: Examples of hazard functions for exponential distributions

We can also view the hazard function as the derivative of the negative of the logarithm of
the survival function:

Theorem 6.6 (transform survival to hazard).

𝜆(𝑡) = 𝜕
𝜕𝑡

{− log S(𝑡)}

Proof.

𝜆(𝑡) = 𝑓(𝑡)
S(𝑡)

= −𝑆′(𝑡)
S(𝑡)

= −𝑆′(𝑡)
S(𝑡)

= − 𝜕
𝜕𝑡

log S(𝑡)

= 𝜕
𝜕𝑡

{− log S(𝑡)}

Definition 6.4 (hazard ratio).

𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) def= 𝜆(𝑡| ̃𝑥)
𝜆(𝑡| ̃𝑥∗)
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6.3.5. The Cumulative Hazard Function

Since 𝜆(𝑡) = 𝜕
𝜕𝑡{− log S(𝑡)} (see Theorem 6.6), we also have:

Corollary 6.1.

S(𝑡) = exp{−∫
𝑡

𝑢=0
𝜆(𝑢)𝑑𝑢} (6.1)

The integral in Equation 6.1 is important enough to have its own name: cumulative
hazard.

Definition 6.5 (cumulative hazard). The cumulative hazard function, often denoted
Λ(𝑡) or H(𝑡), is defined as:

Λ(𝑡) def= ∫
𝑡

𝑢=0
𝜆(𝑢)𝑑𝑢

As we will see below, Λ(𝑡) is tractable to estimate, and we can then derive an estimate of
the hazard function using an approximate derivative of the estimated cumulative hazard.

Example 6.5. The cumulative hazard function for the exponential distribution with rate
parameter 𝜆 is:

Λ(𝑡) = 𝟙𝑡≥0 ⋅ 𝜆𝑡

Figure 6.3 shows some examples of exponential cumulative hazard functions.
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Figure 6.3.: Examples of exponential cumulative hazard functions

6.3.6. Some Key Mathematical Relationships among Survival Concepts

6.3.6.1. Diagram:

f(𝑡)
−𝑆′(𝑡)

←−−−−
S(𝑡)𝜆(𝑡)

S(𝑡)
exp{−Λ(𝑡)}
←−−−−−− Λ(𝑡)

∫𝑡
𝑢=0

𝜆(𝑢)𝑑𝑢
←−−−−−−− 𝜆(𝑡)

exp{𝜂(𝑡)}
←−−−−− 𝜂(𝑡)

f(𝑡)
f(𝑡)/𝜆(𝑡)

−−−−−−→
∫∞
𝑢=𝑡

f(𝑢)𝑑𝑢
S(𝑡) −−−−−→

− log S(𝑡)
Λ(𝑡) −−−→

Λ′(𝑡)
𝜆(𝑡) −−−−−→

log{𝜆(𝑡)}
𝜂(𝑡)

6.3.6.2. Identities:

S(𝑡) = 1 − F(𝑡)
= exp{−Λ(𝑡)}

S′(𝑡) = −𝑓(𝑡)
Λ(𝑡) = −log{S(𝑡)}
Λ′(𝑡) = 𝜆(𝑡)

𝜆(𝑡) = f(𝑡)
S(𝑡)

= − 𝜕
𝜕𝑡

log S(𝑡)

𝑓(𝑡) = 𝜆(𝑡) ⋅ S(𝑡)
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Some proofs (others left as exercises):

𝑆′(𝑡) = 𝜕
𝜕𝑡

(1 − 𝐹(𝑡))

= −𝐹 ′(𝑡)
= −𝑓(𝑡)

𝜕
𝜕𝑡

log S(𝑡) = 𝑆′(𝑡)
S(𝑡)

= −𝑓(𝑡)
S(𝑡)

= −𝜆(𝑡)

Λ(𝑡) def= ∫
𝑡

𝑢=0
ℎ(𝑢)𝑑𝑢

= ∫
𝑡

0
− 𝜕
𝜕𝑢

log {𝑆(𝑢)} 𝑑𝑢

= [−log {𝑆(𝑢)}]𝑢=𝑡
𝑢=0

= [log {𝑆(𝑢)}]𝑢=0
𝑢=𝑡

= log{S(0)} − log{S(𝑡)}
= log{1} − log{S(𝑡)}
= 0 − log{S(𝑡)}
= −log{S(𝑡)}

Corollary:

S(𝑡) = exp {−Λ(𝑡)}

6.3.6.3. Example: Time to death the US in 2004

The first day is the most dangerous:
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# download `survexp.rda` from:
# paste0(
# "https://github.com/therneau/survival/raw/",
# "f3ac93704949ff26e07720b56f2b18ffa8066470/",
# "Data/survexp.rda")

# (newer versions of `survival` don't have the first-year breakdown; see:
# https://cran.r-project.org/web/packages/survival/news.html)

fs::path(
here::here(),
"Data",
"survexp.rda"

) |>
load()

s1 <- survexp.us[, "female", "2004"]
age1 <- c(
0.5 / 365.25,
4 / 365.25,
17.5 / 365.25,
196.6 / 365.25,
1:109 + 0.5

)
s2 <- 365.25 * s1[5:113]
s2 <- c(s1[1], 6 * s1[2], 22 * s1[3], 337.25 * s1[4], s2)
cols <- rep(1, 113)
cols[1] <- 2
cols[2] <- 3
cols[3] <- 4

plot(age1, s1, type = "b", lwd = 2, xlab = "Age", ylab = "Daily Hazard Rate", col = cols)

text(10, .003, "First Day", col = 2)
text(18, .00030, "Rest of First Week", col = 3)
text(18, .00015, "Rest of First month", col = 4)
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Figure 6.4.: Daily Hazard Rates in 2004 for US Females

Exercise 6.1. Hypothesize why the male and female hazard functions in Figure 6.5 differ
where they do?

yrs <- 1:40
s1 <- survexp.us[5:113, "male", "2004"]
s2 <- survexp.us[5:113, "female", "2004"]

age1 <- 1:109

plot(age1[yrs], s1[yrs], type = "l", lwd = 2, xlab = "Age", ylab = "Daily Hazard Rate")
lines(age1[yrs], s2[yrs], col = 2, lwd = 2)
legend(5, 5e-6, c("Males", "Females"), col = 1:2, lwd = 2)
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Figure 6.5.: Daily Hazard Rates in 2004 for US Males and Females 1-40

Exercise 6.2. Compare and contrast Figure 6.6 with Figure 6.4.

s1 <- survexp.us[, "female", "2004"]

s2 <- 365.25 * s1[5:113]
s2 <- c(s1[1], 6 * s1[2], 21 * s1[3], 337.25 * s1[4], s2)
cs2 <- cumsum(s2)
age2 <- c(1 / 365.25, 7 / 365.25, 28 / 365.25, 1:110)
plot(age2, exp(-cs2), type = "l", lwd = 2, xlab = "Age", ylab = "Survival")
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Figure 6.6.: Survival Curve in 2004 for US Females

6.3.7. Likelihood with censoring

If an event time 𝑇 is observed exactly as 𝑇 = 𝑡, then the likelihood of that observation is
just its probability density function:

ℒ(𝑡) = f(𝑇 = 𝑡)
def= f𝑇(𝑡)
= 𝜆𝑇(𝑡)S𝑇(𝑡)

ℓ(𝑡) def= log{ℒ(𝑡)}
= log{𝜆𝑇(𝑡)S𝑇(𝑡)}
= log{𝜆𝑇(𝑡)} + log{S𝑇(𝑡)}
= log{𝜆𝑇(𝑡)} − Λ𝑇(𝑡)

If instead the event time 𝑇 is censored and only known to be after time 𝑦, then the likelihood
of that censored observation is instead the survival function evaluated at the censoring
time:

ℒ(𝑦) = 𝑝𝑇(𝑇 > 𝑦)
def= S𝑇(𝑦)

ℓ(𝑦) def= log{ℒ(𝑦)}
= log{S(𝑦)}
= −Λ(𝑦)
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What’s written above is incomplete. We also observed whether or not the observation
was censored. Let 𝐶 denote the time when censoring would occur (if the event did not
occur first); let 𝑓𝐶(𝑦) and 𝑆𝐶(𝑦) be the corresponding density and survival functions for
the censoring event.

Let 𝑌 denote the time when observation ended (either by censoring or by the event of
interest occurring), and let 𝐷 be an indicator variable for the event occurring at 𝑌 (so
𝐷 = 0 represents a censored observation and 𝐷 = 1 represents an uncensored observation).
In other words, let 𝑌 def= min(𝑇 , 𝐶) and 𝐷 def= 𝟙{𝑇 <= 𝐶}.

Then the complete likelihood of the observed data (𝑌 ,𝐷) is:

ℒ(𝑦, 𝑑) = p(𝑌 = 𝑦,𝐷 = 𝑑)

= [p(𝑇 = 𝑦,𝐶 > 𝑦)]𝑑 ⋅ [p(𝑇 > 𝑦,𝐶 = 𝑦)]1−𝑑

Typically, survival analyses assume that 𝐶 and 𝑇 are mutually independent; this assumption
is called “non-informative” censoring.

Then the joint likelihood p(𝑌 ,𝐷) factors into the product p(𝑌 ),p(𝐷), and the likelihood
reduces to:

ℒ(𝑦, 𝑑) = [p(𝑇 = 𝑦,𝐶 > 𝑦)]𝑑 ⋅ [p(𝑇 > 𝑦,𝐶 = 𝑦)]1−𝑑

= [p(𝑇 = 𝑦)p(𝐶 > 𝑦)]𝑑 ⋅ [p(𝑇 > 𝑦)p(𝐶 = 𝑦)]1−𝑑

= [f𝑇(𝑦)S𝐶(𝑦)]
𝑑 ⋅ [S(𝑦)f𝐶(𝑦)]

1−𝑑

= [f𝑇(𝑦)𝑑S𝐶(𝑦)𝑑] ⋅ [S𝑇(𝑦)1−𝑑f𝐶(𝑦)1−𝑑]
= (f𝑇(𝑦)𝑑 ⋅ S𝑇(𝑦)1−𝑑) ⋅ (f𝐶(𝑦)1−𝑑 ⋅ S𝐶(𝑦)𝑑)

The corresponding log-likelihood is:

ℓ(𝑦, 𝑑) = log{ℒ(𝑦, 𝑑)}
= log{(𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑) ⋅ (𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑)}
= log{𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑} + log{𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑}

Let

• 𝜃𝑇 represent the parameters of 𝑝𝑇(𝑡),
• 𝜃𝐶 represent the parameters of 𝑝𝐶(𝑐),
• 𝜃 = (𝜃𝑇, 𝜃𝐶) be the combined vector of all parameters.
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The corresponding score function is:

ℓ′(𝑦, 𝑑) = 𝜕
𝜕𝜃

[log{𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑} + log{𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑}]

= ( 𝜕
𝜕𝜃

log{𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑}) + ( 𝜕
𝜕𝜃

log{𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑})

As long as 𝜃𝐶 and 𝜃𝑇 don’t share any parameters, then if censoring is non-informative, the
partial derivative with respect to 𝜃𝑇 is:

ℓ′
𝜃𝑇
(𝑦, 𝑑) def= 𝜕

𝜕𝜃𝑇
ℓ(𝑦, 𝑑)

= ( 𝜕
𝜕𝜃𝑇

log {𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑}) + ( 𝜕
𝜕𝜃𝑇

log {𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑})

= ( 𝜕
𝜕𝜃𝑇

log {𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑}) + 0

= 𝜕
𝜕𝜃𝑇

log {𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑}

Thus, the MLE for 𝜃𝑇 won’t depend on 𝜃𝐶, and we can ignore the distribution of 𝐶 when
estimating the parameters of 𝑓𝑇(𝑡) = 𝑝(𝑇 = 𝑡).

Then:

ℒ(𝑦, 𝑑) = 𝑓𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑

= (ℎ𝑇(𝑦)𝑑𝑆𝑇(𝑦)𝑑) ⋅ 𝑆𝑇(𝑦)1−𝑑

= ℎ𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)1−𝑑

= ℎ𝑇(𝑦)𝑑 ⋅ 𝑆𝑇(𝑦)
= 𝑆𝑇(𝑦) ⋅ ℎ𝑇(𝑦)𝑑

That is, if the event occurred at time 𝑦 (i.e., if 𝑑 = 1), then the likelihood of (𝑌 ,𝐷) = (𝑦, 𝑑)
is equal to the hazard function at 𝑦 times the survival function at 𝑦. Otherwise, the
likelihood is equal to just the survival function at 𝑦.

The corresponding log-likelihood is:

ℓ(𝑦, 𝑑) = log {ℒ(𝑦, 𝑑)}
= log {𝑆𝑇(𝑦) ⋅ ℎ𝑇(𝑦)𝑑}
= log {𝑆𝑇(𝑦)} + log {ℎ𝑇(𝑦)𝑑}
= log {𝑆𝑇(𝑦)} + 𝑑 ⋅ log {ℎ𝑇(𝑦)}
= −𝐻𝑇(𝑦) + 𝑑 ⋅ log {ℎ𝑇(𝑦)}
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In other words, the log-likelihood contribution from a single observation (𝑌 ,𝐷) = (𝑦, 𝑑) is
equal to the negative cumulative hazard at 𝑦, plus the log of the hazard at 𝑦 if the event
occurred at time 𝑦.

6.4. Parametric Models for Time-to-Event Outcomes

6.4.1. Exponential Distribution

• The exponential distribution is the base distribution for survival analysis.
• The distribution has a constant hazard 𝜆
• The mean survival time is 𝜆−1

6.4.1.1. Mathematical details of exponential distribution

𝑓(𝑡) = 𝜆e−𝜆𝑡

𝐹(𝑡) = 1 − e−𝜆𝑡

S(𝑡) = e−𝜆𝑡

ln(S(𝑡)) = −𝜆𝑡

𝜆(𝑡) = −𝑓(𝑡)
S(𝑡)

= −𝜆e−𝜆𝑡

e−𝜆𝑡 = 𝜆

𝐸(𝑡) = 𝜆−1

𝑉 𝑎𝑟(𝑡) = 𝜆−2

log{𝑓(𝑡)} = log{𝜆} − 𝜆𝑡
𝜕
𝜕𝜆

log{𝑓(𝑡)} = 𝜆−1 − 𝑡

= E[𝑡] − 𝑡
= −(E[𝑡] − 𝑡)
= −𝜀

6.4.1.2. Prediction intervals for time-to-event outcomes

Exercise 6.3 (Construct a prediction interval). Suppose a cancer patient is predicted to
have an expected (mean) lifetime of 7 years after diagnosis, and suppose the distribution is
exponential.

Construct a 95% prediction interval for survival.

LIGHTBULB Tip

Use the quantiles of the exponential distribution.
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Solution 6.1. If the mean is 7 years until death, then the rate parameter 𝜆 = 1/7 events
(deaths) per year.

The 0.025 quantile of the exponential distribution with 𝜆 = 1/7 is qexp(p 0.025, rate =
1/7) = 0.177225 and the 0.975 quantile is qexp(p 0.975, rate = 1/7) = 25.822156, so
the prediction interval is qexp(p c(.025, 0.975), rate = 1/7) = (0.177225, 25.822156).

Exercise 6.4. Graph the prediction interval as a function of the mean, for Gaussian
(𝜎 = 1), Binomial, Poisson, and Exponential.

Solution 6.2. Left to the reader for now.

Exercise 6.5 (Explain the results). Why do time-to-event models have such wide predictive
intervals?

LIGHTBULB Tip

Consider the relationship between the mean, variance, and standard deviation of the
exponential distribution, and contrast that relationship with the Poisson distribution
and the Bernoulli distribution.

Solution 6.3. In the exponential distribution, variance is the square of the mean (hence SD
is equal to mean); as opposed to Poisson, where variance was equal to the mean (and SD is
the square-root of the mean), or the Bernoulli, where the variance is the mean minus the
square of the mean (so the SD is smaller than the square-root of the mean).
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6.4.1.3. Estimating 𝜆

• Suppose we have 𝑚 exponential survival times of 𝑡1, 𝑡2,… , 𝑡𝑚 and 𝑘 right-censored
values at 𝑢1, 𝑢2,… , 𝑢𝑘.

• A survival time of 𝑡𝑖 = 10 means that subject 𝑖 died at time 10. A right-censored
time 𝑢𝑖 = 10 means that at time 10, subject 𝑖 was still alive and that we have no
further follow-up.

• For the moment we will assume that the survival distribution is exponential and that
all the subjects have the same parameter 𝜆.

We have 𝑚 exponential survival times of 𝑡1, 𝑡2,… , 𝑡𝑚 and 𝑘 right-censored values at
𝑢1, 𝑢2,… , 𝑢𝑘. The log-likelihood of an observed survival time 𝑡𝑖 is

log {𝜆e−𝜆𝑡𝑖} = log {𝜆} − 𝜆𝑡𝑖

and the likelihood of a censored value is the probability of that outcome (survival greater
than 𝑢𝑗) so the log-likelihood is

ℓ𝑗(𝜆) = log {𝜆e𝑢𝑗}
= −𝜆𝑢𝑗

Theorem 6.7. Let 𝑇 = ∑𝑡𝑖 and 𝑈 = ∑𝑢𝑗. Then:

𝜆̂𝑀𝐿 = 𝑚
𝑇 + 𝑈

(6.2)

Proof.

ℓ(𝜆) =
𝑚
∑
𝑖=1

(ln𝜆 − 𝜆𝑡𝑖) +
𝑘

∑
𝑗=1

(−𝜆𝑢𝑗)

= 𝑚 ln𝜆 − (𝑇 + 𝑈)𝜆
ℓ′(𝜆) = 𝑚𝜆−1 − (𝑇 + 𝑈)

𝜆̂ = 𝑚
𝑇 + 𝑈

ℓ″ = −𝑚/𝜆2

< 0
̂𝐸[𝑇 ] = 𝜆̂−1

= 𝑇 + 𝑈
𝑚
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6.4.1.4. Fisher Information and Standard Error

𝐸[−ℓ″] = 𝑚/𝜆2

Var(𝜆̂) ≈ (𝐸[−ℓ″])−1

= 𝜆2/𝑚

SE (𝜆̂) = √Var(𝜆̂)

≈ 𝜆/
√
𝑚

𝜆̂ depends on the censoring times of the censored observations, but Var(𝜆̂) only depends on
the number of uncensored observations, 𝑚, and not on the number of censored observations
(𝑘).

6.4.2. Other Parametric Survival Distributions

• Any density on [0,∞) can be a survival distribution, but the most useful ones are all
skew right.

• The most frequently used generalization of the exponential is the Weibull.
• Other common choices are the gamma, log-normal, log-logistic, Gompertz, inverse

Gaussian, and Pareto.
• Most of what we do going forward is non-parametric or semi-parametric, but sometimes

these parametric distributions provide a useful approach.

6.5. Nonparametric Survival Analysis

6.5.1. Basic ideas

• Mostly, we work without a parametric model.

• The first task is to estimate a survival function from data listing survival times, and
censoring times for censored data.

• For example one patient may have relapsed at 10 months. Another might have been
followed for 32 months without a relapse having occurred (censored).

• The minimum information we need for each patient is a time and a censoring variable
which is 1 if the event occurred at the indicated time and 0 if this is a censoring time.

6.6. Example: clinical trial for pediatric acute leukemia

6.6.1. Overview of study

This is from a clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in
42 children.

• Pairs of children:
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• matched by remission status at the time of treatment (remstat: 1 = partial, 2 =
complete)

• randomized to 6-MP (exit times in t2) or placebo (exit times in t1)

• Followed until relapse or end of study.

• All of the placebo group relapsed, but some of the 6-MP group were censored (which
means they were still in remission); indicated by relapse variable (0 = censored, 1
= relapse).

• 6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer (“antineoplastic” or “cyto-
toxic”) chemotherapy drug used currently for Acute lymphoblastic leukemia (ALL).
It is classified as an antimetabolite.

6.6.2. Study design

• Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia in 42 children.
• Pairs of children:
• matched by remission status at the time of treatment (remstat)
• remstat = 1: partial
• remstat = 2: complete
• randomized to 6-MP (exit time: t2) or placebo (t1).
• Followed until relapse or end of study.
• All of the placebo group relapsed,
• Some of the 6-MP group were censored.

6.6.3. Data documentation for drug6mp

# library(printr) # inserts help-file output into markdown output
library(KMsurv)
?drug6mp

6.6.4. Descriptive Statistics

• The average time in each group is not useful. Some of the 6-MP patients have not
relapsed at the time recorded, while all of the placebo patients have relapsed.

• The median time is not really useful either because so many of the 6-MP patients
have not relapsed (12/21).

• Both are biased down in the 6-MP group. Remember that lower times are worse since
they indicate sooner recurrence.
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Table 6.1.: drug6mp pediatric acute leukemia data

library(KMsurv)
data(drug6mp)
drug6mp <- drug6mp |>
tibble::as_tibble() |>
print()

#> # A tibble: 21 x 5
#> pair remstat t1 t2 relapse
#> <int> <int> <int> <int> <int>
#> 1 1 1 1 10 1
#> 2 2 2 22 7 1
#> 3 3 2 3 32 0
#> 4 4 2 12 23 1
#> 5 5 2 8 22 1
#> 6 6 1 17 6 1
#> 7 7 2 2 16 1
#> 8 8 2 11 34 0
#> 9 9 2 8 32 0
#> 10 10 2 12 25 0
#> # i 11 more rows

Table 6.2.: Summary statistics for drug6mp data

summary(drug6mp)
#> pair remstat t1 t2 relapse
#> Min. : 1 Min. :1.00 Min. : 1.00 Min. : 6.0 Min. :0.000
#> 1st Qu.: 6 1st Qu.:2.00 1st Qu.: 4.00 1st Qu.: 9.0 1st Qu.:0.000
#> Median :11 Median :2.00 Median : 8.00 Median :16.0 Median :0.000
#> Mean :11 Mean :1.76 Mean : 8.67 Mean :17.1 Mean :0.429
#> 3rd Qu.:16 3rd Qu.:2.00 3rd Qu.:12.00 3rd Qu.:23.0 3rd Qu.:1.000
#> Max. :21 Max. :2.00 Max. :23.00 Max. :35.0 Max. :1.000
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6.6.5. Exponential model

• We can compute the hazard rate, assuming an exponential model: number of relapses
divided by the sum of the exit times (Equation 6.2).

𝜆̂ =
∑𝑛

𝑖=1 𝐷𝑖

∑𝑛
𝑖=1 𝑌𝑖

• For the placebo, that is just the reciprocal of the mean time:

𝜆̂placebo =
∑𝑛

𝑖=1 𝐷𝑖

∑𝑛
𝑖=1 𝑌𝑖

=
∑𝑛

𝑖=1 1
∑𝑛

𝑖=1 𝑌𝑖

= 𝑛
∑𝑛

𝑖=1 𝑌𝑖

= 1
̄𝑌

= 1
8.666667

= 0.115385

• For the 6-MP group, 𝜆̂ = 9/359 = 0.025

𝜆̂6-MP =
∑𝑛

𝑖=1 𝐷𝑖

∑𝑛
𝑖=1 𝑌𝑖

= 9
359

= 0.02507

• The estimated hazard in the placebo group is 4.6 times as large as in the 6-MP group
(assuming the hazard is constant over time).

6.7. The Kaplan-Meier Product Limit Estimator

6.7.1. Estimating survival in datasets without censoring

In the drug6mp dataset, the estimated survival function for the placebo patients is easy to
compute. For any time 𝑡 in months, S(𝑡) is the fraction of patients with times greater than
𝑡:
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6.7.2. Estimating survival in datasets with censoring

• For the 6-MP patients, we cannot ignore the censored data because we know that the
time to relapse is greater than the censoring time.

• For any time 𝑡 in months, we know that 6-MP patients with times greater than 𝑡
have not relapsed, and those with relapse time less than 𝑡 have relapsed, but we don’t
know if patients with censored time less than 𝑡 have relapsed or not.

• The procedure we usually use is the Kaplan-Meier product-limit estimator of the
survival function.

• The Kaplan-Meier estimator is a step function (like the empirical cdf), which changes
value only at the event times, not at the censoring times.

• At each event time 𝑡, we compute the at-risk group size 𝑌, which is all those observations
whose event time or censoring time is at least 𝑡.

• If 𝑑 of the observations have an event time (not a censoring time) of 𝑡, then the group
of survivors immediately following time 𝑡 is reduced by the fraction

𝑌 − 𝑑
𝑌

= 1 − 𝑑
𝑌

Definition 6.6 (Kaplan-Meier Product-Limit Estimator of Survival Function). If a time-
to-event data set contains 𝑘 event times 𝑡𝑖, (𝑖 ∈ 1 ∶ 𝑘), where 𝑛𝑖 is the number of individuals
at risk at time 𝑡𝑖 and 𝑑𝑖 is the number of events at time 𝑡𝑖, then the Kaplan-Meier
Product-Limit Estimator of the survival function is:

𝜆̂𝑖 =
𝑑𝑖
𝑛𝑖

Ŝ𝐾𝑀(𝑡) def= ∏
{𝑖∶ 𝑡𝑖<𝑡}

[1 − 𝜆̂𝑖]

Theorem 6.8 (Kaplan-Meier Estimate with No Censored Observations). If there are no
censored data, and there are 𝑛 data points, then just after (say) the third event time

Ŝ(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]

= [𝑛 − 𝑑1
𝑛

][𝑛 − 𝑑1 − 𝑑2
𝑛 − 𝑑1

][𝑛 − 𝑑1 − 𝑑2 − 𝑑3
𝑛 − 𝑑1 − 𝑑2

]

= 𝑛 − 𝑑1 − 𝑑2 − 𝑑3
𝑛

= 1 − 𝑑1 + 𝑑2 + 𝑑3
𝑛

= 1 − ̂𝐹 (𝑡)

where ̂𝐹 (𝑡) is the usual empirical CDF estimate.
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6.7.3. Kaplan-Meier curve for drug6mp data

Here is the Kaplan-Meier estimated survival curve for the patients who received 6-MP in
the drug6mp dataset (we will see code to produce figures like this one shortly):

# | echo: false

require(KMsurv)
data(drug6mp)
library(dplyr)
library(survival)

drug6mp_km_model1 <-
drug6mp |>
mutate(surv = Surv(t2, relapse)) |>
survfit(formula = surv ~ 1, data = _)

library(ggfortify)
drug6mp_km_model1 |>
autoplot(

mark.time = TRUE,
conf.int = FALSE

) +
expand_limits(y = 0) +
xlab("Time since diagnosis (months)") +
ylab("KM Survival Curve")

+
+

+ +

+ + +

+ + + +
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Figure 6.7.: Kaplan-Meier Survival Curve for 6-MP Patients
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6.7.4. Kaplan-Meier calculations

Let’s compute these estimates and build the chart by hand:

library(KMsurv)
library(dplyr)
data(drug6mp)

drug6mp.v2 <-
drug6mp |>
as_tibble() |>
mutate(

remstat = remstat |>
case_match(
1 ~ "partial",
2 ~ "complete"

),
# renaming to "outcome" while relabeling is just a style choice:
outcome = relapse |>

case_match(
0 ~ "censored",
1 ~ "relapsed"

)
)

km.6mp <-
drug6mp.v2 |>
summarize(

.by = t2,
Relapses = sum(outcome == "relapsed"),
Censored = sum(outcome == "censored")

) |>
# here we add a start time row, so the graph starts at time 0:
bind_rows(

tibble(
t2 = 0,
Relapses = 0,
Censored = 0

)
) |>
# sort in time order:
arrange(t2) |>
mutate(

Exiting = Relapses + Censored,
`Study Size` = sum(Exiting),
Exited = cumsum(Exiting) |> dplyr::lag(default = 0),
`At Risk` = `Study Size` - Exited,
Hazard = Relapses / `At Risk`,
`KM Factor` = 1 - Hazard,
`Cumulative Hazard` = cumsum(`Hazard`),
`KM Survival Curve` = cumprod(`KM Factor`)
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)

library(pander)
pander(km.6mp)

t2
Re-

lapses
Cen-
sored

Exit-
ing

Study
Size

Ex-
ited

At
Risk

Haz-
ard

KM
Fac-
tor

Cumula-
tive

Hazard

KM
Survival
Curve

0 0 0 0 21 0 21 0 1 0 1
6 3 1 4 21 0 21 0.1429 0.8571 0.1429 0.8571
7 1 0 1 21 4 17 0.058820.9412 0.2017 0.8067
9 0 1 1 21 5 16 0 1 0.2017 0.8067
10 1 1 2 21 6 15 0.066670.9333 0.2683 0.7529
11 0 1 1 21 8 13 0 1 0.2683 0.7529
13 1 0 1 21 9 12 0.083330.9167 0.3517 0.6902
16 1 0 1 21 10 11 0.090910.9091 0.4426 0.6275
17 0 1 1 21 11 10 0 1 0.4426 0.6275
19 0 1 1 21 12 9 0 1 0.4426 0.6275
20 0 1 1 21 13 8 0 1 0.4426 0.6275
22 1 0 1 21 14 7 0.1429 0.8571 0.5854 0.5378
23 1 0 1 21 15 6 0.1667 0.8333 0.7521 0.4482
25 0 1 1 21 16 5 0 1 0.7521 0.4482
32 0 2 2 21 17 4 0 1 0.7521 0.4482
34 0 1 1 21 19 2 0 1 0.7521 0.4482
35 0 1 1 21 20 1 0 1 0.7521 0.4482

6.7.4.1. Summary

For the 6-MP patients at time 6 months, there are 21 patients at risk. At 𝑡 = 6 there are 3
relapses and 1 censored observations.

The Kaplan-Meier factor is (21 − 3)/21 = 0.857. The number at risk for the next time
(𝑡 = 7) is 21 − 3 − 1 = 17.

At time 7 months, there are 17 patients at risk. At 𝑡 = 7 there is 1 relapse and 0 censored
observations. The Kaplan-Meier factor is (17 − 1)/17 = 0.941. The Kaplan Meier estimate
is 0.857 × 0.941 = 0.807. The number at risk for the next time (𝑡 = 9) is 17 − 1 = 16.

Now, let’s graph this estimated survival curve using ggplot():

library(ggplot2)
conflicts_prefer(dplyr::filter)
km.6mp |>
ggplot(aes(x = t2, y = `KM Survival Curve`)) +
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geom_step() +
geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) +
expand_limits(y = c(0, 1), x = 0) +
xlab("Time since diagnosis (months)") +
ylab("KM Survival Curve") +
scale_y_continuous(labels = scales::percent)
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Figure 6.8.: KM curve for 6MP patients, calculated by hand

6.8. Using the survival package in R

We don’t have to do these calculations by hand every time; the survival package and
several others have functions available to automate many of these tasks (full list: https:
//cran.r-project.org/web/views/Survival.html).

6.8.1. The Surv function

To use the survival package, the first step is telling R how to combine the exit time
and exit reason (censoring versus event) columns. The Surv() function accomplishes this
task.

6.8.1.1. Example: Surv() with drug6mp data

1 library(survival)
2 drug6mp.v3 <-
3 drug6mp.v2 |>
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4 mutate(
5 surv2 = Surv(
6 time = t2,
7 event = (outcome == "relapsed")
8 )
9 )

10

11 print(drug6mp.v3)
12 #> # A tibble: 21 x 7
13 #> pair remstat t1 t2 relapse outcome surv2
14 #> <int> <chr> <int> <int> <int> <chr> <Surv>
15 #> 1 1 partial 1 10 1 relapsed 10
16 #> 2 2 complete 22 7 1 relapsed 7
17 #> 3 3 complete 3 32 0 censored 32+
18 #> 4 4 complete 12 23 1 relapsed 23
19 #> 5 5 complete 8 22 1 relapsed 22
20 #> 6 6 partial 17 6 1 relapsed 6
21 #> 7 7 complete 2 16 1 relapsed 16
22 #> 8 8 complete 11 34 0 censored 34+
23 #> 9 9 complete 8 32 0 censored 32+
24 #> 10 10 complete 12 25 0 censored 25+
25 #> # i 11 more rows

The output of Surv() is a vector of objects with class Surv. When we print this vector:

• observations where the event was observed are printed as the event time (for example,
surv2 = 10 on line 1)

• observations where the event was right-censored are printed as the censoring time
with a plus sign (+; for example, surv2 = 32+ on line 3).

6.8.2. The survfit function

Once we have constructed our Surv variable, we can calculate the Kaplan-Meier estimate
of the survival curve using the survfit() function.

INFO Note

The documentation for ?survfit isn’t too helpful; the survfit.formula documenta-
tion is better.

6.8.2.1. Example: survfit() with drug6mp data

Here we use survfit() to create a survfit object, which contains the Kaplan-Meier
estimate:
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drug6mp.km_model <- survfit(
formula = surv2 ~ 1,
data = drug6mp.v3

)

print.survfit() just gives some summary statistics:

print(drug6mp.km_model)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> n events median 0.95LCL 0.95UCL
#> [1,] 21 9 23 16 NA

summary.survfit() shows us the underlying Kaplan-Meier table:

summary(drug6mp.km_model)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 7 17 1 0.807 0.0869 0.653 0.996
#> 10 15 1 0.753 0.0963 0.586 0.968
#> 13 12 1 0.690 0.1068 0.510 0.935
#> 16 11 1 0.627 0.1141 0.439 0.896
#> 22 7 1 0.538 0.1282 0.337 0.858
#> 23 6 1 0.448 0.1346 0.249 0.807

We can specify which time points we want using the times argument:

summary(
drug6mp.km_model,
times = c(0, drug6mp.v3$t2)

)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 0 21 0 1.000 0.0000 1.000 1.000
#> 10 15 1 0.753 0.0963 0.586 0.968
#> 7 17 1 0.807 0.0869 0.653 0.996
#> 32 4 0 0.448 0.1346 0.249 0.807
#> 23 6 1 0.448 0.1346 0.249 0.807
#> 22 7 1 0.538 0.1282 0.337 0.858
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 16 11 1 0.627 0.1141 0.439 0.896
#> 34 2 0 0.448 0.1346 0.249 0.807
#> 32 4 0 0.448 0.1346 0.249 0.807
#> 25 5 0 0.448 0.1346 0.249 0.807
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#> 11 13 0 0.753 0.0963 0.586 0.968
#> 20 8 0 0.627 0.1141 0.439 0.896
#> 19 9 0 0.627 0.1141 0.439 0.896
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 17 10 0 0.627 0.1141 0.439 0.896
#> 35 1 0 0.448 0.1346 0.249 0.807
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 13 12 1 0.690 0.1068 0.510 0.935
#> 9 16 0 0.807 0.0869 0.653 0.996
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 10 15 1 0.753 0.0963 0.586 0.968

?summary.survfit

6.8.3. Plotting estimated survival functions

We can plot survfit objects with plot(), autoplot(), or ggsurvplot():

library(ggfortify)
autoplot(drug6mp.km_model)

+

+

+ +

+ + +

+ + + +
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Figure 6.9.: Kaplan-Meier Survival Curve for 6-MP Patients

# not shown:
# plot(drug6mp.km_model)
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# library(survminer)
# ggsurvplot(drug6mp.km_model)

6.8.3.1. quantiles of survival curve

We can extract quantiles with quantile():

1 drug6mp.km_model |>
2 quantile(p = c(.25, .5)) |>
3 as_tibble() |>
4 mutate(p = c(.25, .5)) |>
5 relocate(p, .before = everything())
6 #> # A tibble: 2 x 4
7 #> p quantile lower upper
8 #> <dbl> <dbl> <dbl> <dbl>
9 #> 1 0.25 13 6 NA

10 #> 2 0.5 23 16 NA

6.9. The log-rank test

(a.k.a. the Mantel-Cox test)

Exercise 6.6. How do we test the null hypothesis that two or more groups have the same
time-to-event distribution?

Solution 6.4. One option is the log-rank test comparing the Kaplan-Meier estimates of the
survival functions of those groups.

Adapted from David G. Kleinbaum and Klein (2012) p68:

• The log–rank test is a large-sample chi-square test.

• The log–rank test uses a test statistic that compares KM curves between groups across
all survival times.

• Like many other statistics used in other kinds of chi-square tests, the log–rank statistic
makes use of observed versus expected cell counts over categories of outcomes.

• The categories for the log–rank statistic are defined by each of the ordered failure
times for the entire set of data being analyzed.
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For 𝑡 ∈ 𝑡1, ..., 𝑡𝑛:

𝜆̂𝑡 =
∑𝑥 𝑚𝑥,𝑡

∑𝑥 𝑛𝑥,𝑡

̂𝐸𝑡,𝑥 = 𝜆̂𝑡 ∗ 𝑛𝑥,𝑡

6.9.1. The survdiff function

?survdiff

6.9.2. Example: survdiff() with drug6mp data

Now we are going to compare the placebo and 6-MP data. We need to reshape the data to
make it usable with the standard survival workflow:

library(survival)
library(tidyr)
drug6mp.v4 <-
drug6mp.v3 |>
select(pair, remstat, t1, t2, outcome) |>
# here we are going to change the data from a wide format to long:
pivot_longer(

cols = c(t1, t2),
names_to = "treatment",
values_to = "exit_time"

) |>
mutate(

treatment = treatment |>
case_match(
"t1" ~ "placebo",
"t2" ~ "6-MP"

),
outcome = if_else(

treatment == "placebo",
"relapsed",
outcome

),
surv = Surv(

time = exit_time,
event = (outcome == "relapsed")

)
)

Using this long data format, we can fit a Kaplan-Meier curve for each treatment group
simultaneously:
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drug6mp.km_model2 <-
survfit(

formula = surv ~ treatment,
data = drug6mp.v4

)

We can plot the curves in the same graph:

drug6mp.km_model2 |> autoplot()
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We can also perform something like a t-test, where the null hypothesis is that the curves
are the same:

o_e_summ <- o_e |>
summarize(

across(starts_with("expected"), sum),
across(starts_with("n_events_"), sum)

)
pander::pander(o_e_summ)
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Table 6.4.: Observed and expected event counts for the 6-MP data, for log-rank test

o_e <- drug6mp.v4 |>
arrange(exit_time) |>
mutate(

.by = treatment,
n_exited = row_number(),
n_at_risk = n() - n_exited + 1

) |>
dplyr::summarize(

.by = all_of(c("exit_time", "treatment")),
n_at_risk = max(n_at_risk),
n_events = sum(outcome == "relapsed")

) |>
tidyr::pivot_wider(

names_from = "treatment",
values_from = c(n_at_risk, n_events)

) |>
tidyr::fill(

starts_with("n_at_risk"),
.direction = "up"

) |>
replace_na(list("n_events_placebo" = 0,

"n_events_6-MP" = 0)) |>
mutate(

n_at_risk = rowSums(across(starts_with("n_at_risk"))),
n_events = rowSums(across(starts_with("n_events"))),
marginal_hazard = n_events / n_at_risk,
expected_6mp = marginal_hazard * `n_at_risk_6-MP`,
expected_plc = marginal_hazard * n_at_risk_placebo,
diff_6mp = `n_events_6-MP` - expected_6mp,
diff_plc = n_events_placebo - expected_plc

) |>
filter(n_events > 0)

o_e
#> # A tibble: 17 x 12
#> exit_time n_at_risk_placebo `n_at_risk_6-MP` n_events_placebo `n_events_6-MP`
#> <int> <dbl> <dbl> <int> <int>
#> 1 1 21 21 2 0
#> 2 2 19 21 2 0
#> 3 3 17 21 1 0
#> 4 4 16 21 2 0
#> 5 5 14 21 2 0
#> 6 6 12 21 0 3
#> 7 7 12 17 0 1
#> 8 8 12 16 4 0
#> 9 10 8 15 0 1
#> 10 11 8 13 2 0
#> 11 12 6 12 2 0
#> 12 13 4 12 0 1
#> 13 15 4 11 1 0
#> 14 16 3 11 0 1
#> 15 17 3 10 1 0
#> 16 22 2 7 1 1
#> 17 23 1 6 1 1
#> # i 7 more variables: n_at_risk <dbl>, n_events <dbl>, marginal_hazard <dbl>,
#> # expected_6mp <dbl>, expected_plc <dbl>, diff_6mp <dbl>, diff_plc <dbl>
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Table 6.5.: Observed and expected sums for the 6-MP data, for log-rank test

expected_6mp expected_plc n_events_placebo n_events_6-MP

19.25 10.75 21 9

The exact variance formula for each of two groups is:

Var(𝑂𝑖 −𝐸𝑖) = ∑
𝑗

𝑛1𝑗𝑛2𝑗(𝑚𝑗)(𝑛𝑗 −𝑚𝑗)
(𝑛𝑗)2(𝑛𝑗 − 1)

See David G. Kleinbaum and Klein (2012), Chapter 2 Appendix for the exact variance
formula for more than two groups.

Or we can use an approximate statistic:

𝑋2 ≈
𝑝

∑
𝑖=1

(𝑂𝑖 −𝐸𝑖)2

𝐸𝑖

with(
o_e_summ,
tibble(

"6mp" = (`n_events_6-MP` - expected_6mp)^2 / expected_6mp,
"placebo" = (n_events_placebo - expected_plc)^2 / expected_plc,
sum = `6mp` + placebo

)
) |>
pander::pander()

6mp placebo sum

5.458 9.775 15.23

R gives us both the exact and approximate results:

survdiff(
formula = surv ~ treatment,
data = drug6mp.v4

)
#> Call:
#> survdiff(formula = surv ~ treatment, data = drug6mp.v4)
#>
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#> N Observed Expected (O-E)^2/E (O-E)^2/V
#> treatment=6-MP 21 9 19.3 5.46 16.8
#> treatment=placebo 21 21 10.7 9.77 16.8
#>
#> Chisq= 16.8 on 1 degrees of freedom, p= 4e-05

By default, survdiff() ignores any pairing, but we can use strata() to perform something
similar to a paired t-test:

lrank_test <- survdiff(
formula = surv ~ treatment + strata(pair),
data = drug6mp.v4

)
lrank_test
#> Call:
#> survdiff(formula = surv ~ treatment + strata(pair), data = drug6mp.v4)
#>
#> N Observed Expected (O-E)^2/E (O-E)^2/V
#> treatment=6-MP 21 9 16.5 3.41 10.7
#> treatment=placebo 21 21 13.5 4.17 10.7
#>
#> Chisq= 10.7 on 1 degrees of freedom, p= 0.001

Interestingly, accounting for pairing reduces the significance of the difference.

6.10. Example: Bone Marrow Transplant Data

Data from Copelan et al. (1991)
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Figure 6.10.: Recovery process from a bone marrow transplant (Fig. 1.1 from Klein and
Moeschberger (2003))

6.10.1. Study design

Treatment

• allogeneic (from a donor) bone marrow transplant therapy

Inclusion criteria

• acute myeloid leukemia (AML)
• acute lymphoblastic leukemia (ALL).

Possible intermediate events

• graft vs. host disease (GVHD): an immunological rejection response to the
transplant
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• platelet recovery: a return of platelet count to normal levels.

One or the other, both in either order, or neither may occur.

End point events

• relapse of the disease
• death

Any or all of these events may be censored.

6.10.2. KMsurv::bmt data in R

library(KMsurv)
?bmt

6.10.3. Analysis plan

• We concentrate for now on disease-free survival (t2 and d3) for the three risk groups,
ALL, AML Low Risk, and AML High Risk.

• We will construct the Kaplan-Meier survival curves, compare them, and test for
differences.

• We will construct the cumulative hazard curves and compare them.
• We will estimate the hazard functions, interpret, and compare them.

6.10.4. Survival Function Estimate and Variance

Ŝ(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]

where 𝑌𝑖 is the group at risk at time 𝑡𝑖.

The estimated variance of Ŝ(𝑡) is:

Theorem 6.9 (Greenwood’s estimator for variance of Kaplan-Meier survival estimator).

V̂ar(Ŝ(𝑡)) = Ŝ(𝑡)2 ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

(6.3)

We can use Equation 6.3 for confidence intervals for a survival function or a difference of
survival functions.

Kaplan-Meier survival curves
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library(KMsurv)
library(survival)
data(bmt)

bmt <-
bmt |>
as_tibble() |>
mutate(

group =
group |>
factor(
labels = c("ALL", "Low Risk AML", "High Risk AML")

),
surv = Surv(t2, d3)

)

km_model1 <- survfit(
formula = surv ~ group,
data = bmt

)

library(ggfortify)
autoplot(
km_model1,
conf.int = TRUE,
ylab = "Pr(disease-free survival)",
xlab = "Time since transplant (days)"

) +
theme_bw() +
theme(legend.position = "bottom")
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Figure 6.11.: Disease-Free Survival by Disease Group

6.10.5. Understanding Greenwood’s formula (optional)

To see where Greenwood’s formula comes from, let 𝑥𝑖 = 𝑌𝑖 − 𝑑𝑖. We approximate the
solution treating each time as independent, with 𝑌𝑖 fixed and ignore randomness in times
of failure and we treat 𝑥𝑖 as independent binomials Bin(𝑌𝑖, 𝑝𝑖). Letting S(𝑡) be the “true”
survival function

Ŝ(𝑡) = ∏
𝑡𝑖<𝑡

𝑥𝑖/𝑌𝑖

S(𝑡) = ∏
𝑡𝑖<𝑡

𝑝𝑖

Ŝ(𝑡)
S(𝑡)

= ∏
𝑡𝑖<𝑡

𝑥𝑖
.
𝑝𝑖𝑌𝑖

= ∏
𝑡𝑖<𝑡

̂𝑝𝑖
𝑝𝑖

= ∏
𝑡𝑖<𝑡

(1 + ̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖

)

≈ 1 +∑
𝑡𝑖<𝑡

̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖
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Var( Ŝ(𝑡)
S(𝑡)

) ≈ Var(1 +∑
𝑡𝑖<𝑡

̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖

)

= ∑
𝑡𝑖<𝑡

1
𝑝2

𝑖

𝑝𝑖(1 − 𝑝𝑖)
𝑌𝑖

= ∑
𝑡𝑖<𝑡

(1 − 𝑝𝑖)
𝑝𝑖𝑌𝑖

≈ ∑
𝑡𝑖<𝑡

(1 − 𝑥𝑖/𝑌𝑖)
𝑥𝑖

= ∑
𝑡𝑖<𝑡

𝑌𝑖 − 𝑥𝑖
𝑥𝑖𝑌𝑖

= ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

∴Var(Ŝ(𝑡)) ≈ Ŝ(𝑡)2 ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

6.10.6. Test for differences among the disease groups

Here we compute a chi-square test for assocation between disease group (group) and
disease-free survival:

survdiff(surv ~ group, data = bmt)
#> Call:
#> survdiff(formula = surv ~ group, data = bmt)
#>
#> N Observed Expected (O-E)^2/E (O-E)^2/V
#> group=ALL 38 24 21.9 0.211 0.289
#> group=Low Risk AML 54 25 40.0 5.604 11.012
#> group=High Risk AML 45 34 21.2 7.756 10.529
#>
#> Chisq= 13.8 on 2 degrees of freedom, p= 0.001

6.10.7. Cumulative Hazard

𝜆(𝑡) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡)

= p(𝑇 = 𝑡)
P(𝑇 ≥ 𝑡)

= − 𝜕
𝜕𝑡

log{S(𝑡)}

The cumulative hazard (or integrated hazard) function is

Λ(𝑡) def= ∫
𝑡

0
𝜆(𝑡)𝑑𝑡

Since 𝜆(𝑡) = − 𝜕
𝜕𝑡 log{S(𝑡)} as shown above, we have:
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Λ(𝑡) = −log{S(𝑡)}

So we can estimate Λ(𝑡) as:

Λ̂(𝑡) = −log{Ŝ(𝑡)}

= −log{∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]}

= −∑
𝑡𝑖<𝑡

log{1 − 𝑑𝑖
𝑌𝑖

}

This is the Kaplan-Meier (product-limit) estimate of cumulative hazard.

6.10.7.1. Example: Cumulative Hazard Curves for Bone-Marrow Transplant (bmt) data

autoplot(
fun = "cumhaz",
km_model1,
conf.int = FALSE,
ylab = "Cumulative hazard (disease-free survival)",
xlab = "Time since transplant (days)"

) +
theme_bw() +
theme(legend.position = "bottom")
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Figure 6.12.: Disease-Free Cumulative Hazard by Disease Group

6.11. Nelson-Aalen Estimates of Cumulative Hazard and Survival

Definition 6.7 (Nelson-Aalen Cumulative Hazard Estimator).

The point hazard at time 𝑡𝑖 can be estimated by 𝑑𝑖/𝑌𝑖, which leads to the Nelson-Aalen
estimator of the cumulative hazard:

Λ̂𝑁𝐴(𝑡) def= ∑
{𝑖∶ 𝑡𝑖<𝑡}

𝜆̂𝑖

Theorem 6.10 (Variance of Nelson-Aalen estimator).

The variance of this estimator is approximately:

̂Var (𝐻̂𝑁𝐴(𝑡)) = ∑
𝑡𝑖<𝑡

(𝑑𝑖/𝑌𝑖)(1 − 𝑑𝑖/𝑌𝑖)
𝑌𝑖

≈ ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌 2

𝑖

(6.4)
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Since S(𝑡) = exp {−Λ(𝑡)}, the Nelson-Aalen cumulative hazard estimate can be converted
into an alternate estimate of the survival function:

̂𝑆𝑁𝐴(𝑡) = exp{−𝐻̂𝑁𝐴(𝑡)}

= exp{−∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖

}

= ∏
𝑡𝑖<𝑡

exp{−𝑑𝑖
𝑌𝑖

}

Compare these with the corresponding Kaplan-Meier estimates:

𝐻̂𝐾𝑀(𝑡) = −∑
𝑡𝑖<𝑡

log{1 − 𝑑𝑖
𝑌𝑖

}

̂𝑆𝐾𝑀(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]

The product limit estimate and the Nelson-Aalen estimate often do not differ by much.
The latter is considered more accurate in small samples and also directly estimates the
cumulative hazard. The "fleming-harrington" method for survfit() reduces to Nelson-
Aalen when the data are unweighted. We can also estimate the cumulative hazard as the
negative log of the KM survival function estimate.

6.11.1. Application to bmt dataset

na_fit <- survfit(
formula = surv ~ group,
type = "fleming-harrington",
data = bmt

)

km_fit <- survfit(
formula = surv ~ group,
type = "kaplan-meier",
data = bmt

)

km_and_na <-
bind_rows(

.id = "model",
"Kaplan-Meier" = km_fit |> fortify(surv.connect = TRUE),
"Nelson-Aalen" = na_fit |> fortify(surv.connect = TRUE)

) |>
as_tibble()
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km_and_na |>
ggplot(aes(x = time, y = surv, col = model)) +
geom_step() +
facet_grid(. ~ strata) +
theme_bw() +
ylab("S(t) = P(T>=t)") +
xlab("Survival time (t, days)") +
theme(legend.position = "bottom")
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Figure 6.13.: Kaplan-Meier and Nelson-Aalen Survival Function Estimates, stratified by
disease group

The Kaplan-Meier and Nelson-Aalen survival estimates are very similar for this dataset.
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

7.1. Introduction

Exercise 7.1. Recall the key characteristics of the exponential distribution:

• density function f(𝑡)
• survival function S(𝑡)
• hazard function 𝜆(𝑡)

Solution 7.1.
p(𝑡) = 𝜆𝑒−𝜆𝑡

S(𝑡) = 𝑒−𝜆𝑡

𝜆(𝑡) = 𝜆

Note that the exponential distribution has constant hazard.

7.2. Understanding proportional hazards models

Let’s make two generalizations. First, we let the hazard depend on some covariates
𝑥1, 𝑥2,… , 𝑥𝑝; we will indicate this dependence by extending our notation for hazard:

Definition 7.1 (conditional hazard). The conditional hazard of outcome 𝑇 at value 𝑡,
given covariate vector ̃𝑥, is the conditional density of the event 𝑇 = 𝑡, given 𝑇 ≥ 𝑡 and
𝑋̃ = ̃𝑥:

𝜆(𝑡| ̃𝑥) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡, 𝑋̃ = ̃𝑥) (7.1)
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Definition 7.2 (baseline hazard).

The baseline hazard, base hazard, or reference hazard, denoted 𝜆0(𝑡) or 𝜆0(𝑡), is the
hazard function for the subpopulation of individuals whose covariates are all equal to their
reference levels:

𝜆0(𝑡)
def= 𝜆(𝑡|𝑋̃ = ̃0) (7.2)

The baseline hazard is somewhat analogous to the intercept term in linear regression, but it
is not a mean.

Similarly:

Definition 7.3 (baseline cumulative hazard).

The baseline cumulative hazard, base cumulative hazard, or reference cumulative
hazard, denoted 𝐻0(𝑡) or Λ0(𝑡), is the cumulative hazard function (Definition 6.5) for the
subpopulation of individuals whose covariates are all equal to their reference levels:

Λ0(𝑡)
def= Λ(𝑡|𝑋̃ = ̃0) (7.3)

Also:

Definition 7.4 (Baseline survival function). The baseline survival function is the
survival function for an individual whose covariates are all equal to their default values.

S0(𝑡)
def= S(𝑡|𝑋̃ = ̃0)

Now, let’s define how the hazard function depends on covariates. We typically use a log link
to model the relationship between the hazard function, 𝜆(𝑡| ̃𝑥), and the linear component,
𝜂(𝑡| ̃𝑥), as we did for Poisson models in Chapter 4; that is:

Definition 7.5 (log-hazard).

The log-hazard function, denoted 𝜂(𝑡), is the natural logarithm of the hazard function:

𝜂(𝑡) def= log{𝜆(𝑡)}
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Definition 7.6 (conditional log-hazard).

The conditional log-hazard function, denoted 𝜂(𝑡| ̃𝑥), is the natural logarithm of the
conditional hazard function:

𝜂(𝑡| ̃𝑥) def= log{𝜆(𝑡| ̃𝑥)}

In contrast with Poisson regression, here 𝜂(𝑡| ̃𝑥) depends on both 𝑡 and ̃𝑥.

Definition 7.7 (baseline log-hazard).

The baseline log-hazard, denoted 𝜂0(𝑡), log-hazard function for the subpopulation of
individuals whose covariates are all equal to their reference levels:

𝜂0(𝑡)
def= 𝜂(𝑡|𝑋̃ = ̃0)

Theorem 7.1.
𝜆(𝑡| ̃𝑥) = exp{𝜂(𝑡| ̃𝑥)}

Definition 7.8 (difference in log-hazards). The difference in log-hazards between
covariate patterns ̃𝑥 and ̃𝑥∗ at time 𝑡 is:

Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗) def= 𝜂(𝑡| ̃𝑥) − 𝜂(𝑡| ̃𝑥∗)

Theorem 7.2 (Difference of log-hazards vs hazard ratio). If Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗) is the difference
in log-hazard between covariate patterns ̃𝑥 and ̃𝑥∗ at time 𝑡, and 𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) is corresponding
hazard ratio, then:

Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗) = log{𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗)}

Proof. Using Definition 6.4:

Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗) def= 𝜂(𝑡| ̃𝑥) − 𝜂(𝑡| ̃𝑥∗)
= log{𝜆(𝑡| ̃𝑥)} − log{𝜆(𝑡| ̃𝑥∗)}

= log{ 𝜆(𝑡| ̃𝑥)
𝜆(𝑡| ̃𝑥∗)

}

= log{𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗)}
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Corollary 7.1 (Hazard ratio vs difference of log-odds).

𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) = exp{Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗)}

Definition 7.9 (difference in log-hazard from baseline).

The difference in log-hazard for covariate pattern ̃𝑥 compared to the baseline covariate
pattern ̃0 is:

Δ𝜂(𝑡| ̃𝑥) def= Δ𝜂(𝑡| ̃𝑥 ∶ ̃0)

Theorem 7.3 (Decomposition of log-hazard).

𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + Δ𝜂(𝑡| ̃𝑥)

Definition 7.10 (Hazard ratio versus baseline).

𝜃(𝑡| ̃𝑥) def= 𝜃(𝑡| ̃𝑥 ∶ ̃0) (7.4)

Corollary 7.2.
𝜃(𝑡| ̃𝑥) = exp{Δ𝜂(𝑡| ̃𝑥)}

Proof.
𝜃(𝑡| ̃𝑥) def= 𝜃(𝑡| ̃𝑥 ∶ ̃0)

= exp{Δ𝜂(𝑡| ̃𝑥)}

Corollary 7.3.
Δ𝜂(𝑡| ̃𝑥) = log{𝜃(𝑡| ̃𝑥)}
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As the second generalization, we let the base hazard, cumulative hazard, and survival
functions depend on 𝑡, but not on any covariates (for now). We can do this using either
parametric or semi-parametric approaches.

Definition 7.11 (Proportional hazards model). A proportional hazards model for a
time-to-event outcome 𝑇 is a model where the difference in log-hazard from the baseline
log-hazard is equal to a linear combination of the predictors:

Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽 (7.5)

Equivalently:

Lemma 7.1. In a proportional hazards model (that is, if Equation 7.5 holds):

𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + ̃𝑥 ⋅ ̃𝛽
= 𝜂0(𝑡) + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

(7.6)

In a proportional hazards model, the baseline log-hazard is analogous to the intercept term
in a generalized linear model, except that the baseline log-hazard depends on time, 𝑡.

Lemma 7.2. If 𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + ̃𝑥 ⋅ ̃𝛽, then:

Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗) = ( ̃𝑥 − ̃𝑥∗) ⋅ 𝛽

Theorem 7.4. If 𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + ̃𝑥 ⋅ ̃𝛽, then:

𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) = exp{Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗)}
= exp{( ̃𝑥 − ̃𝑥∗) ⋅ 𝛽}

So for proportional hazards models, we can write the hazard ratio using a shorthand
notation:

𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) = 𝜃( ̃𝑥 ∶ ̃𝑥∗)

Lemma 7.3.
Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽 (7.7)
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Theorem 7.5. If 𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + ̃𝑥 ⋅ ̃𝛽, then:

𝜃(𝑡| ̃𝑥) = exp{ ̃𝑥 ⋅ ̃𝛽}

Proof.
𝜃(𝑡| ̃𝑥) def= 𝜃(𝑡| ̃𝑥 ∶ ̃0)

= exp{Δ𝜂(𝑡| ̃𝑥)}

= exp{ ̃𝑥 ⋅ ̃𝛽}

Theorem 7.6.
𝜆(𝑡|𝑥) = 𝜆0(𝑡)𝜃(𝑥)

Also:

Theorem 7.7.
𝜃(𝑥) = exp{Δ𝜂(𝑥)}

log𝜆(𝑡|𝑥) = log𝜆0(𝑡) + Δ𝜂(𝑥)
= 𝜂0(𝑡) + Δ𝜂(𝑥)

Δ𝜂(𝑥) = ̃𝑥 ⋅ ̃𝛽
def
= 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

This model is semi-parametric, because the linear predictor depends on estimated
parameters but the base hazard function is unspecified. There is no constant term in 𝜂(𝑥),
because it is absorbed in the base hazard.

Alternatively, we could define 𝛽0(𝑡) = log𝜆0(𝑡), and then:

𝜂(𝑥, 𝑡) = 𝛽0(𝑡) + 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝
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For two different individuals with covariate patterns ̃𝑥1 and ̃𝑥2, the ratio of the hazard
functions (a.k.a. hazard ratio, a.k.a. relative hazard) is:

𝜆(𝑡| ̃𝑥1)
𝜆(𝑡| ̃𝑥2)

= 𝜆0(𝑡)𝜃( ̃𝑥1)
𝜆0(𝑡)𝜃( ̃𝑥2)

= 𝜃( ̃𝑥1)
𝜃( ̃𝑥2)

Under the proportional hazards model, this ratio (a.k.a. proportion) does not depend on 𝑡.
This property is a structural limitation of the model; it is called the proportional hazards
assumption.

Definition 7.12 (proportional hazards). A conditional probability distribution 𝑝(𝑇 |𝑋)
has proportional hazards if the hazard ratio 𝜆(𝑡| ̃𝑥1)/𝜆(𝑡| ̃𝑥2) does not depend on 𝑡.
Mathematically, it can be written as:

𝜆(𝑡| ̃𝑥1)
𝜆(𝑡| ̃𝑥2)

= 𝜃( ̃𝑥1, ̃𝑥2)

As we saw above, Cox’s proportional hazards model has this property, with 𝜃( ̃𝑥1, ̃𝑥2) =
𝜃(𝑥̃1)
𝜃(𝑥̃2) .

Theorem 7.8.

We are using two similar notations, 𝜃( ̃𝑥, ̃𝑥∗) and 𝜃( ̃𝑥). We can link these notations:

𝜃( ̃𝑥)
def
= 𝜃( ̃𝑥, ̃0)

Then:

𝜃( ̃𝑥, ̃𝑥∗) = 𝜃( ̃𝑥)
𝜃( ̃𝑥∗)

𝜃( ̃0) = 𝜃( ̃0, ̃0) = 1

The proportional hazards model also has additional notable properties:

𝜆(𝑡| ̃𝑥1)
𝜆(𝑡| ̃𝑥2)

= 𝜃( ̃𝑥1)
𝜃( ̃𝑥2)

= exp{𝜂( ̃𝑥1)}
exp{𝜂( ̃𝑥2)}

= exp{𝜂( ̃𝑥1) − 𝜂( ̃𝑥2)}
= exp{ ̃𝑥′

1𝛽 − ̃𝑥′
2𝛽}

= exp{( ̃𝑥1 − ̃𝑥2)′𝛽}
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Hence on the log scale, we have:

Theorem 7.9.
log 𝜆(𝑡| ̃𝑥)

𝜆(𝑡| ̃𝑥∗)
= Δ𝜂(𝑡| ̃𝑥 ∶ ̃𝑥∗)

def
= 𝜂(𝑡| ̃𝑥) − 𝜂(𝑡| ̃𝑥∗)
= 𝜂( ̃𝑥1) − 𝜂( ̃𝑥2)
= ̃𝑥′

1𝛽 − ̃𝑥′
2𝛽

= ( ̃𝑥1 − ̃𝑥2)′𝛽

If only one covariate 𝑥𝑗 is changing, then:

log 𝜆(𝑡| ̃𝑥1)
𝜆(𝑡| ̃𝑥2)

= (𝑥1𝑗 − 𝑥2𝑗) ⋅ 𝛽𝑗

∝ (𝑥1𝑗 − 𝑥2𝑗)

That is, under Cox’s model 𝜆(𝑡| ̃𝑥) = 𝜆0(𝑡)exp{ ̃𝑥′𝛽}, the log of the hazard ratio is propor-
tional to the difference in 𝑥𝑗, with the proportionality coefficient equal to 𝛽𝑗.

Further,

log𝜆(𝑡| ̃𝑥) = log𝜆0(𝑡) + 𝑥′𝛽

That is, the covariate effects are additive on the log-hazard scale; hazard functions for
different covariate patterns should be vertical shifts of each other.

See also:

https://en.wikipedia.org/wiki/Proportional_hazards_model#Why_it_is_called_
%22proportional%22

7.2.1. Additional properties of the proportional hazards model

If 𝜆(𝑡|𝑥) = 𝜆0(𝑡)𝜃(𝑥), then:
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Theorem 7.10 (Cumulative hazards are also proportional to Λ0(𝑡)).

Λ(𝑡|𝑥)
def
= ∫

𝑡

𝑢=0
𝜆(𝑢)𝑑𝑢

= ∫
𝑡

𝑢=0
𝜆0(𝑢)𝜃(𝑥)𝑑𝑢

= 𝜃(𝑥)∫
𝑡

𝑢=0
𝜆0(𝑢)𝑑𝑢

= 𝜃(𝑥)Λ0(𝑡)

where Λ0(𝑡)
def
= Λ(𝑡|0) = ∫𝑡

𝑢=0
𝜆0(𝑢)𝑑𝑢.

Theorem 7.11 (The logarithms of cumulative hazard should be parallel).

log{Λ(𝑡| ̃𝑥)} = log{Λ0(𝑡)} + ̃𝑥 ⋅ ̃𝛽

Corollary 7.4 (linear model for log-negative-log survival).

log{−log{S(𝑡| ̃𝑥)}} = log{−log{S0(𝑡)}} + ̃𝑥 ⋅ ̃𝛽

Theorem 7.12 (Survival functions are exponential multiples of S0(𝑡)).

S(𝑡|𝑥) = [S0(𝑡)]
𝜃(𝑥)

Proof.
S(𝑡|𝑥) = exp{−Λ(𝑡|𝑥)}

= exp{−𝜃(𝑥) ⋅ Λ0(𝑡)}

= (exp{−Λ0(𝑡)})
𝜃(𝑥)

= [S0(𝑡)]
𝜃(𝑥)
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7.2.2. Summary of proportional hazards model structure and assumptions

Joint likelihood of data set: ℒ def= p( ̃𝑌 = ̃𝑦, 𝐷̃ = ̃𝑑|X = x)

Marginal likelihood contribution of obs. i : ℒ𝑖
def= p(𝑌𝑖 = 𝑦𝑖, 𝐷𝑖 = 𝑑𝑖|𝑋̃𝑖 = ̃𝑥𝑖)

Independent Observations Assumption: ℒ = ∏𝑛
𝑖=1 ℒ𝑖

Non-Informative Censoring Assumption: 𝑇𝑖 ⟂⟂ 𝐶𝑖|𝑋̃𝑖

ℒ𝑖 ∝ [f𝑇(𝑦𝑖| ̃𝑥𝑖)]𝑑𝑖 [S𝑇(𝑦𝑖| ̃𝑥𝑖)]1−𝑑𝑖 = S𝑇(𝑦𝑖| ̃𝑥𝑖) ⋅ [𝜆𝑇(𝑦𝑖| ̃𝑥𝑖)]𝑑𝑖

Survival function: S(𝑡| ̃𝑥) def= P(𝑇 > 𝑡|𝑋̃ = ̃𝑥) = ∫∞
𝑢=𝑡

f(𝑢| ̃𝑥)𝑑𝑢 = exp{−Λ(𝑡| ̃𝑥)}

Probability density function: f(𝑡| ̃𝑥) def= p(𝑇 = 𝑡|𝑋̃ = ̃𝑥) = −S′(𝑡| ̃𝑥) = 𝜆(𝑡| ̃𝑥)S(𝑡| ̃𝑥)

Cumulative hazard function: Λ(𝑡| ̃𝑥) def= ∫𝑡
𝑢=0

𝜆(𝑢| ̃𝑥)𝑑𝑢 = −log{S(𝑡| ̃𝑥)}

Hazard function: 𝜆(𝑡| ̃𝑥) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡, 𝑋̃ = ̃𝑥) = Λ′(𝑡| ̃𝑥) = f(𝑡|𝑥̃)
S(𝑡|𝑥̃)

Hazard ratio: 𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) def= 𝜆(𝑡|𝑥̃)
𝜆(𝑡|𝑥̃∗)

Log-Hazard function: 𝜂(𝑡| ̃𝑥) def= log{𝜆(𝑡| ̃𝑥)} = 𝜂0(𝑡) + Δ𝜂(𝑡| ̃𝑥)

Proportional Hazards Assumption:

𝜆(𝑡| ̃𝑥) = 𝜆0(𝑡) ⋅ 𝜃( ̃𝑥)
Λ(𝑡| ̃𝑥) = Λ0(𝑡) ⋅ 𝜃( ̃𝑥)
𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + Δ𝜂( ̃𝑥)

Logarithmic Link Function Assumption:

• Link function:
log{𝜆(𝑡| ̃𝑥)} = 𝜂(𝑡| ̃𝑥)

log{𝜃( ̃𝑥)} = Δ𝜂( ̃𝑥)

• Inverse link function:
𝜆(𝑡| ̃𝑥) = exp{𝜂(𝑡| ̃𝑥)}

𝜃( ̃𝑥) = exp{Δ𝜂( ̃𝑥)}

Linear Predictor Component:

𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + Δ𝜂(𝑡| ̃𝑥)

Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽

Linear Predictor Component Functional Form Assumption:

Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽 def= 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝
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7.3. Testing the proportional hazards assumption

The Nelson-Aalen estimate of the cumulative hazard is usually used for estimates of the
hazard and often the cumulative hazard.

If the hazards of the three groups are proportional, that means that the ratio of the hazards
is constant over 𝑡. We can test this using the ratios of the estimated cumulative hazards,
which also would be proportional, as shown above.

library(KMsurv)
library(survival)
library(dplyr)
data(bmt)

bmt =
bmt |>
as_tibble() |>
mutate(

group =
group |>
factor(
labels = c("ALL","Low Risk AML","High Risk AML")))

nafit = survfit(
formula = Surv(t2,d3) ~ group,
type = "fleming-harrington",
data = bmt)

bmt_curves = tibble(timevec = 1:1000)
sf1 <- with(nafit[1], stepfun(time,c(1,surv)))
sf2 <- with(nafit[2], stepfun(time,c(1,surv)))
sf3 <- with(nafit[3], stepfun(time,c(1,surv)))

bmt_curves =
bmt_curves |>
mutate(

cumhaz1 = -log(sf1(timevec)),
cumhaz2 = -log(sf2(timevec)),
cumhaz3 = -log(sf3(timevec)))

library(ggplot2)
bmt_rel_hazard_plot =
bmt_curves |>
ggplot(

aes(
x = timevec,
y = cumhaz1/cumhaz2)

) +
geom_line(aes(col = "ALL/Low Risk AML")) +
ylab("Hazard Ratio") +
xlab("Time") +
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ylim(0,6) +
geom_line(aes(y = cumhaz3/cumhaz1, col = "High Risk AML/ALL")) +
geom_line(aes(y = cumhaz3/cumhaz2, col = "High Risk AML/Low Risk AML")) +
theme_bw() +
labs(colour = "Comparison") +
theme(legend.position="bottom")

print(bmt_rel_hazard_plot)
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Figure 7.1.: Hazard Ratios by Disease Group for bmt data

We can zoom in on the first 300 days to take a closer look:

bmt_rel_hazard_plot + xlim(c(0,300))
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Figure 7.2.: Hazard Ratios by Disease Group (0-300 Days)

The cumulative hazard curves should also be proportional

library(ggfortify)
plot_cuhaz_bmt =
bmt |>
survfit(formula = Surv(t2, d3) ~ group) |>
autoplot(fun = "cumhaz",

mark.time = TRUE) +
ylab("Cumulative hazard")

plot_cuhaz_bmt |> print()
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Figure 7.3.: Disease-Free Cumulative Hazard by Disease Group

plot_cuhaz_bmt +
scale_y_log10() +
scale_x_log10()
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Figure 7.4.: Disease-Free Cumulative Hazard by Disease Group (log-scale)
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7.3.1. Smoothed hazard functions

The Nelson-Aalen estimate of the cumulative hazard is usually used for estimates of the
hazard. Since the hazard is the derivative of the cumulative hazard, we need a smooth
estimate of the cumulative hazard, which is provided by smoothing the step-function
cumulative hazard.

The R package muhaz handles this for us. What we are looking for is whether the hazard
function is more or less the same shape, increasing, decreasing, constant, etc. Are the
hazards “proportional”?

library(muhaz)

muhaz(bmt$t2,bmt$d3,bmt$group=="High Risk AML") |> plot(lwd=2,col=3)
muhaz(bmt$t2,bmt$d3,bmt$group=="ALL") |> lines(lwd=2,col=1)
muhaz(bmt$t2,bmt$d3,bmt$group=="Low Risk AML") |> lines(lwd=2,col=2)
legend("topright",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)
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Figure 7.5.: Smoothed Hazard Rate Estimates by Disease Group

Group 3 was plotted first because it has the highest hazard.

Except for an initial blip in the high risk AML group, the hazards look roughly proportional.
They are all strongly decreasing.

7.4. Fitting proportional hazards models to data
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How do we fit a proportional hazards regression model? We need to estimate the coefficients
of the covariates, and we need to estimate the base hazard 𝜆0(𝑡). For the covariates,
supposing for simplicity that there are no tied event times, let the event times for the whole
data set be 𝑡1, 𝑡2,… , 𝑡𝐷. Let the risk set at time 𝑡𝑖 be 𝑅(𝑡𝑖) and

𝜂( ̃𝑥) = 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝

𝜃( ̃𝑥) = 𝑒𝜂(𝑥̃)

𝜆(𝑡|𝑋 = 𝑥) = 𝜆0(𝑡)𝑒𝜂(𝑥̃) = 𝜃( ̃𝑥)𝜆0(𝑡)

Conditional on a single failure at time 𝑡, the probability that the event is due to subject
𝑓 ∈ 𝑅(𝑡) is approximately

Pr(𝑓 fails|1 failure at 𝑡) = 𝜆0(𝑡)𝑒𝜂(𝑥̃𝑓)

∑𝑘∈𝑅(𝑡) 𝜆0(𝑡)𝑒𝜂(𝑥̃𝑓)

=
𝜃( ̃𝑥𝑓)

∑𝑘∈𝑅(𝑡) 𝜃( ̃𝑥𝑘)

The logic behind this has several steps. We first fix (ex post) the failure times and note
that in this discrete context, the probability 𝑝𝑗 that a subject 𝑗 in the risk set fails at time
𝑡 is just the hazard of that subject at that time.

If all of the 𝑝𝑗 are small, the chance that exactly one subject fails is

∑
𝑘∈𝑅(𝑡)

𝑝𝑘 [ ∏
𝑚∈𝑅(𝑡),𝑚≠𝑘

(1 − 𝑝𝑚)] ≈ ∑
𝑘∈𝑅(𝑡)

𝑝𝑘

If subject 𝑖 is the one who experiences the event of interest at time 𝑡𝑖, then the partial
likelihood is

ℒ∗
𝑖 = 𝜃( ̃𝑥𝑖)

∑𝑘∈𝑅(𝑡𝑖) 𝜃( ̃𝑥𝑘)

ℒ∗ = ∏
{𝑖∶ 𝑑𝑖=1}

ℒ∗
𝑖

and we can numerically maximize this with respect to the coefficients ̃𝛽 that specify
𝜂( ̃𝑥) = ̃𝑥′ ̃𝛽. When there are tied event times adjustments need to be made, but the
likelihood is still similar. Note that we don’t need to know the base hazard to solve for the
coefficients.

Once we have coefficient estimates ̂̃𝛽 = ( ̂𝛽1,… , ̂𝛽𝑝), this also defines ̂𝜂(𝑥) and ̂𝜃(𝑥), and
then the estimated base cumulative hazard function is

Λ̂0(𝑡) = ∑
𝑡𝑖<𝑡

𝑑𝑖
∑𝑘∈𝑅(𝑡𝑖) 𝜃(𝑥𝑘)
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which reduces to the Nelson-Aalen estimate when there are no covariates. There are
numerous other estimates that have been proposed as well.

7.5. Example: Proportional hazards model for the bmt data

7.5.1. Fit the model

library(survival)
bmt.cox <- coxph(Surv(t2, d3) ~ group, data = bmt)
summary(bmt.cox)
#> Call:
#> coxph(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> n= 137, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -0.574 0.563 0.287 -2.00 0.046 *
#> groupHigh Risk AML 0.383 1.467 0.267 1.43 0.152
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.563 1.776 0.321 0.989
#> groupHigh Risk AML 1.467 0.682 0.869 2.478
#>
#> Concordance= 0.625 (se = 0.03 )
#> Likelihood ratio test= 13.4 on 2 df, p=0.001
#> Wald test = 13 on 2 df, p=0.001
#> Score (logrank) test = 13.8 on 2 df, p=0.001

The table provides hypothesis tests comparing groups 2 and 3 to group 1. Group 3 has the
highest hazard, so the most significant comparison is not directly shown.

The coefficient 0.3834 is on the log-hazard-ratio scale, as in log-risk-ratio. The next column
gives the hazard ratio 1.4673, and a hypothesis (Wald) test.

The (not shown) group 3 vs. group 2 log hazard ratio is 0.3834 + 0.5742 = 0.9576. The
hazard ratio is then exp(0.9576) or 2.605.

Inference on all coefficients and combinations can be constructed using coef(bmt.cox) and
vcov(bmt.cox) as with logistic and poisson regression.

Concordance is agreement of first failure between pairs of subjects and higher predicted
risk between those subjects, omitting non-informative pairs.

The Rsquare value is Cox and Snell’s pseudo R-squared and is not very useful.
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7.5.2. Tests for nested models

summary() prints three tests for whether the model with the group covariate is better than
the one without

• Likelihood ratio test (chi-squared)
• Wald test (also chi-squared), obtained by adding the squares of the z-scores
• Score = log-rank test, as with comparison of survival functions.

The likelihood ratio test is probably best in smaller samples, followed by the Wald test.

7.5.3. Survival Curves from the Cox Model

We can take a look at the resulting group-specific curves:

km_fit = survfit(Surv(t2, d3) ~ group, data = as.data.frame(bmt))

cox_fit = survfit(
bmt.cox,
newdata =

data.frame(
group = unique(bmt$group),
row.names = unique(bmt$group)))

library(survminer)

list(KM = km_fit, Cox = cox_fit) |>
survminer::ggsurvplot(

# facet.by = "group",
legend = "bottom",
legend.title = "",
combine = TRUE,
fun = 'pct',
size = .5,
ggtheme = theme_bw(),
conf.int = FALSE,
censor = FALSE) |>

suppressWarnings() # ggsurvplot() throws some warnings that aren't too worrying
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Figure 7.6.: Survival Functions for Three Groups by KM and Cox Model

When we use survfit() with a Cox model, we have to specify the covariate levels we are
interested in; the argument newdata should include a data.frame with the same named
columns as the predictors in the Cox model and one or more levels of each.

From ?survfit.coxph:

If the newdata argument is missing, a curve is produced for a single “pseudo”
subject with covariate values equal to the means component of the fit. The
resulting curve(s) almost never make sense, but the default remains due to an
unwarranted attachment to the option shown by some users and by other pack-
ages. Two particularly egregious examples are factor variables and interactions.
Suppose one were studying interspecies transmission of a virus, and the data
set has a factor variable with levels (“pig”, “chicken”) and about equal numbers
of observations for each. The “mean” covariate level will be 0.5 – is this a flying
pig?

7.5.4. Examining survfit

survfit(Surv(t2, d3) ~ group, data = bmt)
#> Call: survfit(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> n events median 0.95LCL 0.95UCL
#> group=ALL 38 24 418 194 NA
#> group=Low Risk AML 54 25 2204 704 NA
#> group=High Risk AML 45 34 183 115 456
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survfit(Surv(t2, d3) ~ group, data = bmt) |> summary()
#> Call: survfit(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> group=ALL
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 1 38 1 0.974 0.0260 0.924 1.000
#> 55 37 1 0.947 0.0362 0.879 1.000
#> 74 36 1 0.921 0.0437 0.839 1.000
#> 86 35 1 0.895 0.0498 0.802 0.998
#> 104 34 1 0.868 0.0548 0.767 0.983
#> 107 33 1 0.842 0.0592 0.734 0.966
#> 109 32 1 0.816 0.0629 0.701 0.949
#> 110 31 1 0.789 0.0661 0.670 0.930
#> 122 30 2 0.737 0.0714 0.609 0.891
#> 129 28 1 0.711 0.0736 0.580 0.870
#> 172 27 1 0.684 0.0754 0.551 0.849
#> 192 26 1 0.658 0.0770 0.523 0.827
#> 194 25 1 0.632 0.0783 0.495 0.805
#> 230 23 1 0.604 0.0795 0.467 0.782
#> 276 22 1 0.577 0.0805 0.439 0.758
#> 332 21 1 0.549 0.0812 0.411 0.734
#> 383 20 1 0.522 0.0817 0.384 0.709
#> 418 19 1 0.494 0.0819 0.357 0.684
#> 466 18 1 0.467 0.0818 0.331 0.658
#> 487 17 1 0.439 0.0815 0.305 0.632
#> 526 16 1 0.412 0.0809 0.280 0.605
#> 609 14 1 0.382 0.0803 0.254 0.577
#> 662 13 1 0.353 0.0793 0.227 0.548
#>
#> group=Low Risk AML
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 10 54 1 0.981 0.0183 0.946 1.000
#> 35 53 1 0.963 0.0257 0.914 1.000
#> 48 52 1 0.944 0.0312 0.885 1.000
#> 53 51 1 0.926 0.0356 0.859 0.998
#> 79 50 1 0.907 0.0394 0.833 0.988
#> 80 49 1 0.889 0.0428 0.809 0.977
#> 105 48 1 0.870 0.0457 0.785 0.965
#> 211 47 1 0.852 0.0483 0.762 0.952
#> 219 46 1 0.833 0.0507 0.740 0.939
#> 248 45 1 0.815 0.0529 0.718 0.925
#> 272 44 1 0.796 0.0548 0.696 0.911
#> 288 43 1 0.778 0.0566 0.674 0.897
#> 381 42 1 0.759 0.0582 0.653 0.882
#> 390 41 1 0.741 0.0596 0.633 0.867
#> 414 40 1 0.722 0.0610 0.612 0.852
#> 421 39 1 0.704 0.0621 0.592 0.837
#> 481 38 1 0.685 0.0632 0.572 0.821
#> 486 37 1 0.667 0.0642 0.552 0.805
#> 606 36 1 0.648 0.0650 0.533 0.789
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#> 641 35 1 0.630 0.0657 0.513 0.773
#> 704 34 1 0.611 0.0663 0.494 0.756
#> 748 33 1 0.593 0.0669 0.475 0.739
#> 1063 26 1 0.570 0.0681 0.451 0.720
#> 1074 25 1 0.547 0.0691 0.427 0.701
#> 2204 6 1 0.456 0.1012 0.295 0.704
#>
#> group=High Risk AML
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 2 45 1 0.978 0.0220 0.936 1.000
#> 16 44 1 0.956 0.0307 0.897 1.000
#> 32 43 1 0.933 0.0372 0.863 1.000
#> 47 42 2 0.889 0.0468 0.802 0.986
#> 48 40 1 0.867 0.0507 0.773 0.972
#> 63 39 1 0.844 0.0540 0.745 0.957
#> 64 38 1 0.822 0.0570 0.718 0.942
#> 74 37 1 0.800 0.0596 0.691 0.926
#> 76 36 1 0.778 0.0620 0.665 0.909
#> 80 35 1 0.756 0.0641 0.640 0.892
#> 84 34 1 0.733 0.0659 0.615 0.875
#> 93 33 1 0.711 0.0676 0.590 0.857
#> 100 32 1 0.689 0.0690 0.566 0.838
#> 105 31 1 0.667 0.0703 0.542 0.820
#> 113 30 1 0.644 0.0714 0.519 0.801
#> 115 29 1 0.622 0.0723 0.496 0.781
#> 120 28 1 0.600 0.0730 0.473 0.762
#> 157 27 1 0.578 0.0736 0.450 0.742
#> 162 26 1 0.556 0.0741 0.428 0.721
#> 164 25 1 0.533 0.0744 0.406 0.701
#> 168 24 1 0.511 0.0745 0.384 0.680
#> 183 23 1 0.489 0.0745 0.363 0.659
#> 242 22 1 0.467 0.0744 0.341 0.638
#> 268 21 1 0.444 0.0741 0.321 0.616
#> 273 20 1 0.422 0.0736 0.300 0.594
#> 318 19 1 0.400 0.0730 0.280 0.572
#> 363 18 1 0.378 0.0723 0.260 0.550
#> 390 17 1 0.356 0.0714 0.240 0.527
#> 422 16 1 0.333 0.0703 0.221 0.504
#> 456 15 1 0.311 0.0690 0.201 0.481
#> 467 14 1 0.289 0.0676 0.183 0.457
#> 625 13 1 0.267 0.0659 0.164 0.433
#> 677 12 1 0.244 0.0641 0.146 0.409

survfit(bmt.cox)
#> Call: survfit(formula = bmt.cox)
#>
#> n events median 0.95LCL 0.95UCL
#> [1,] 137 83 422 268 NA
survfit(bmt.cox, newdata = tibble(group = unique(bmt$group)))
#> Call: survfit(formula = bmt.cox, newdata = tibble(group = unique(bmt$group)))
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#>
#> n events median 0.95LCL 0.95UCL
#> 1 137 83 422 268 NA
#> 2 137 83 NA 625 NA
#> 3 137 83 268 162 467

bmt.cox |>
survfit(newdata = tibble(group = unique(bmt$group))) |>
summary()

#> Call: survfit(formula = bmt.cox, newdata = tibble(group = unique(bmt$group)))
#>
#> time n.risk n.event survival1 survival2 survival3
#> 1 137 1 0.993 0.996 0.989
#> 2 136 1 0.985 0.992 0.978
#> 10 135 1 0.978 0.987 0.968
#> 16 134 1 0.970 0.983 0.957
#> 32 133 1 0.963 0.979 0.946
#> 35 132 1 0.955 0.975 0.935
#> 47 131 2 0.941 0.966 0.914
#> 48 129 2 0.926 0.957 0.893
#> 53 127 1 0.918 0.953 0.882
#> 55 126 1 0.911 0.949 0.872
#> 63 125 1 0.903 0.944 0.861
#> 64 124 1 0.896 0.940 0.851
#> 74 123 2 0.881 0.931 0.830
#> 76 121 1 0.873 0.926 0.819
#> 79 120 1 0.865 0.922 0.809
#> 80 119 2 0.850 0.913 0.788
#> 84 117 1 0.843 0.908 0.778
#> 86 116 1 0.835 0.903 0.768
#> 93 115 1 0.827 0.899 0.757
#> 100 114 1 0.820 0.894 0.747
#> 104 113 1 0.812 0.889 0.737
#> 105 112 2 0.797 0.880 0.717
#> 107 110 1 0.789 0.875 0.707
#> 109 109 1 0.782 0.870 0.697
#> 110 108 1 0.774 0.866 0.687
#> 113 107 1 0.766 0.861 0.677
#> 115 106 1 0.759 0.856 0.667
#> 120 105 1 0.751 0.851 0.657
#> 122 104 2 0.735 0.841 0.637
#> 129 102 1 0.727 0.836 0.627
#> 157 101 1 0.720 0.831 0.617
#> 162 100 1 0.712 0.826 0.607
#> 164 99 1 0.704 0.821 0.598
#> 168 98 1 0.696 0.815 0.588
#> 172 97 1 0.688 0.810 0.578
#> 183 96 1 0.680 0.805 0.568
#> 192 95 1 0.672 0.800 0.558
#> 194 94 1 0.664 0.794 0.549
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#> 211 93 1 0.656 0.789 0.539
#> 219 92 1 0.648 0.783 0.530
#> 230 90 1 0.640 0.778 0.520
#> 242 89 1 0.632 0.773 0.511
#> 248 88 1 0.624 0.767 0.501
#> 268 87 1 0.616 0.761 0.492
#> 272 86 1 0.608 0.756 0.482
#> 273 85 1 0.600 0.750 0.473
#> 276 84 1 0.592 0.745 0.464
#> 288 83 1 0.584 0.739 0.454
#> 318 82 1 0.576 0.733 0.445
#> 332 81 1 0.568 0.727 0.436
#> 363 80 1 0.560 0.722 0.427
#> 381 79 1 0.552 0.716 0.418
#> 383 78 1 0.544 0.710 0.409
#> 390 77 2 0.528 0.698 0.392
#> 414 75 1 0.520 0.692 0.383
#> 418 74 1 0.512 0.686 0.374
#> 421 73 1 0.504 0.680 0.366
#> 422 72 1 0.496 0.674 0.357
#> 456 71 1 0.488 0.667 0.349
#> 466 70 1 0.480 0.661 0.340
#> 467 69 1 0.472 0.655 0.332
#> 481 68 1 0.464 0.649 0.324
#> 486 67 1 0.455 0.642 0.315
#> 487 66 1 0.447 0.636 0.307
#> 526 65 1 0.439 0.629 0.299
#> 606 63 1 0.431 0.623 0.291
#> 609 62 1 0.423 0.616 0.283
#> 625 61 1 0.415 0.609 0.275
#> 641 60 1 0.407 0.603 0.267
#> 662 59 1 0.399 0.596 0.260
#> 677 58 1 0.391 0.589 0.252
#> 704 57 1 0.383 0.582 0.244
#> 748 56 1 0.374 0.575 0.237
#> 1063 47 1 0.365 0.567 0.228
#> 1074 46 1 0.356 0.559 0.220
#> 2204 9 1 0.313 0.520 0.182

7.6. Adjustment for Ties (optional)

At each time 𝑡𝑖 at which more than one of the subjects has an event, let 𝑑𝑖 be the number
of events at that time, 𝐷𝑖 the set of subjects with events at that time, and let 𝑠𝑖 be a
covariate vector for an artificial subject obtained by adding up the covariate values for the
subjects with an event at time 𝑡𝑖. Let

̄𝜂𝑖 = 𝛽1𝑠𝑖1 +⋯+ 𝛽𝑝𝑠𝑖𝑝
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and ̄𝜃𝑖 = exp{ ̄𝜂𝑖}.

Let 𝑠𝑖 be a covariate vector for an artificial subject obtained by adding up the covariate
values for the subjects with an event at time 𝑡𝑖. Note that

̄𝜂𝑖 = ∑
𝑗∈𝐷𝑖

𝛽1𝑥𝑗1 +⋯+ 𝛽𝑝𝑥𝑗𝑝

= 𝛽1𝑠𝑖1 +⋯+ 𝛽𝑝𝑠𝑖𝑝
̄𝜃𝑖 = exp{ ̄𝜂𝑖}
= ∏

𝑗∈𝐷𝑖

𝜃𝑖

7.6.0.1. Breslow’s method for ties

Breslow’s method estimates the partial likelihood as

𝐿(𝛽|𝑇 ) = ∏
𝑖

̄𝜃𝑖
[∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘]𝑑𝑖

= ∏
𝑖

∏
𝑗∈𝐷𝑖

𝜃𝑗

∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘

This method is equivalent to treating each event as distinct and using the non-ties formula.
It works best when the number of ties is small. It is the default in many statistical packages,
including PROC PHREG in SAS.

7.6.0.2. Efron’s method for ties

The other common method is Efron’s, which is the default in R.

𝐿(𝛽|𝑇 ) = ∏
𝑖

̄𝜃𝑖

∏𝑑𝑖
𝑗=1[∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘 − 𝑗−1

𝑑𝑖
∑𝑘∈𝐷𝑖

𝜃𝑘]

This is closer to the exact discrete partial likelihood when there are many ties.

The third option in R (and an option also in SAS as discrete) is the “exact” method,
which is the same one used for matched logistic regression.

7.6.0.3. Example: Breslow’s method

Suppose as an example we have a time 𝑡 where there are 20 individuals at risk and three
failures. Let the three individuals have risk parameters 𝜃1, 𝜃2, 𝜃3 and let the sum of the risk
parameters of the remaining 17 individuals be 𝜃𝑅. Then the factor in the partial likelihood
at time 𝑡 using Breslow’s method is

( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)( 𝜃2
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)( 𝜃3
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)
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If on the other hand, they had died in the order 1,2, 3, then the contribution to the partial
likelihood would be:

( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)( 𝜃2
𝜃𝑅 + 𝜃2 + 𝜃3

)( 𝜃3
𝜃𝑅 + 𝜃3

)

as the risk set got smaller with each failure. The exact method roughly averages the results
for the six possible orderings of the failures.

7.6.0.4. Example: Efron’s method

But we don’t know the order they failed in, so instead of reducing the denominator by one
risk coefficient each time, we reduce it by the same fraction. This is Efron’s method.

( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)( 𝜃2
𝜃𝑅 + 2(𝜃1 + 𝜃2 + 𝜃3)/3

)( 𝜃3
𝜃𝑅 + (𝜃1 + 𝜃2 + 𝜃3)/3

)

7.7. Building Cox Proportional Hazards models

7.7.1. hodg Lymphoma Data Set from KMsurv

7.7.1.1. Participants

43 bone marrow transplant patients at Ohio State University (Avalos 1993)

7.7.1.2. Variables

• dtype: Disease type (Hodgkin’s or non-Hodgkins lymphoma)
• gtype: Bone marrow graft type:
• allogeneic: from HLA-matched sibling
• autologous: from self (prior to chemo)
• time: time to study exit
• delta: study exit reason (death/relapse vs censored)
• wtime: waiting time to transplant (in months)
• score: Karnofsky score:
• 80–100: Able to carry on normal activity and to work; no special care needed.
• 50–70: Unable to work; able to live at home and care for most personal needs; varying

amount of assistance needed.
• 10–60: Unable to care for self; requires equivalent of institutional or hospital care;

disease may be progressing rapidly.

7.7.1.3. Data
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library(dplyr)
library(survival)
data(hodg, package = "KMsurv")
hodg2 = hodg |>
as_tibble() |>
mutate(

# We add factor labels to the categorical variables:
gtype = gtype |>

case_match(
1 ~ "Allogenic",
2 ~ "Autologous"),

dtype = dtype |>
case_match(
1 ~ "Non-Hodgkins",
2 ~ "Hodgkins") |>

factor() |>
relevel(ref = "Non-Hodgkins"),

delta = delta |>
case_match(
1 ~ "dead",
0 ~ "alive"),

surv = Surv(
time = time,
event = delta == "dead")

)
hodg2 |> print()
#> # A tibble: 43 x 7
#> gtype dtype time delta score wtime surv
#> <chr> <fct> <int> <chr> <int> <int> <Surv>
#> 1 Allogenic Non-Hodgkins 28 dead 90 24 28
#> 2 Allogenic Non-Hodgkins 32 dead 30 7 32
#> 3 Allogenic Non-Hodgkins 49 dead 40 8 49
#> 4 Allogenic Non-Hodgkins 84 dead 60 10 84
#> 5 Allogenic Non-Hodgkins 357 dead 70 42 357
#> 6 Allogenic Non-Hodgkins 933 alive 90 9 933+
#> 7 Allogenic Non-Hodgkins 1078 alive 100 16 1078+
#> 8 Allogenic Non-Hodgkins 1183 alive 90 16 1183+
#> 9 Allogenic Non-Hodgkins 1560 alive 80 20 1560+
#> 10 Allogenic Non-Hodgkins 2114 alive 80 27 2114+
#> # i 33 more rows

7.7.2. Proportional hazards model

7.8. Diagnostic graphs for proportional hazards assumption

7.8.1. Analysis plan

• survival function for the four combinations of disease type and graft type.
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Table 7.1.: Summary of Proportional Hazards model for Hodgkins Lymphoma data

hodg.cox1 = coxph(
formula = surv ~ gtype * dtype + score + wtime,
data = hodg2)

summary(hodg.cox1)
#> Call:
#> coxph(formula = surv ~ gtype * dtype + score + wtime, data = hodg2)
#>
#> n= 43, number of events= 26
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> gtypeAutologous 0.6394 1.8953 0.5937 1.08 0.2815
#> dtypeHodgkins 2.7603 15.8050 0.9474 2.91 0.0036 **
#> score -0.0495 0.9517 0.0124 -3.98 6.8e-05 ***
#> wtime -0.0166 0.9836 0.0102 -1.62 0.1046
#> gtypeAutologous:dtypeHodgkins -2.3709 0.0934 1.0355 -2.29 0.0220 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> gtypeAutologous 1.8953 0.5276 0.5920 6.068
#> dtypeHodgkins 15.8050 0.0633 2.4682 101.207
#> score 0.9517 1.0507 0.9288 0.975
#> wtime 0.9836 1.0167 0.9641 1.003
#> gtypeAutologous:dtypeHodgkins 0.0934 10.7074 0.0123 0.711
#>
#> Concordance= 0.776 (se = 0.059 )
#> Likelihood ratio test= 32.1 on 5 df, p=6e-06
#> Wald test = 27.2 on 5 df, p=5e-05
#> Score (logrank) test = 37.7 on 5 df, p=4e-07
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• observed (nonparametric) vs. expected (semiparametric) survival functions.
• complementary log-log survival for the four groups.

7.8.2. Kaplan-Meier survival functions

km_model = survfit(
formula = surv ~ dtype + gtype,
data = hodg2)

library(ggplot2)
km_model |>
autoplot(conf.int = FALSE) +
theme_bw() +
theme(

legend.position="bottom",
legend.title = element_blank(),
legend.text = element_text(size = legend_text_size)

) +
guides(col=guide_legend(ncol=2)) +
ylab('Survival probability, S(t)') +
xlab("Time since transplant (days)")
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Figure 7.7.: Kaplan-Meier Survival Curves for HOD/NHL and Allo/Auto Grafts

7.8.3. Observed and expected survival curves
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# we need to create a tibble of covariate patterns;
# we will set score and wtime to mean values for disease and graft types:
means = hodg2 |>
summarize(

.by = c(dtype, gtype),
score = mean(score),
wtime = mean(wtime)) |>

arrange(dtype, gtype) |>
mutate(strata = paste(dtype, gtype, sep = ",")) |>
as.data.frame()

# survfit.coxph() will use the rownames of its `newdata`
# argument to label its output:
rownames(means) = means$strata

cox_model =
hodg.cox1 |>
survfit(

data = hodg2, # ggsurvplot() will need this
newdata = means)

# I couldn't find a good function to reformat `cox_model` for ggplot,
# so I made my own:
stack_surv_ph = function(cox_model)
{
cox_model$surv |>

as_tibble() |>
mutate(time = cox_model$time) |>
pivot_longer(

cols = -time,
names_to = "strata",
values_to = "surv") |>

mutate(
cumhaz = -log(surv),
model = "Cox PH")

}

km_and_cph =
km_model |>
fortify(surv.connect = TRUE) |>
mutate(

strata = trimws(strata),
model = "Kaplan-Meier",
cumhaz = -log(surv)) |>

bind_rows(stack_surv_ph(cox_model))

km_and_cph |>
ggplot(aes(x = time, y = surv, col = model)) +
geom_step() +
facet_wrap(~strata) +
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theme_bw() +
ylab("S(t) = P(T>=t)") +
xlab("Survival time (t, days)") +
theme(legend.position = "bottom")
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Figure 7.8.: Observed and expected survival curves for bmt data

7.8.4. Cumulative hazard (log-scale) curves

Also known as “complementary log-log (clog-log) survival curves”.

na_model = survfit(
formula = surv ~ dtype + gtype,
data = hodg2,
type = "fleming")

na_model |>
survminer::ggsurvplot(
legend = "bottom",
legend.title = "",
ylab = "log(Cumulative Hazard)",
xlab = "Time since transplant (days, log-scale)",
fun = 'cloglog',
size = .5,
ggtheme = theme_bw(),
conf.int = FALSE,
censor = TRUE) |>
magrittr::extract2("plot") +
guides(

col =
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guide_legend(
ncol = 2,
label.theme =

element_text(
size = legend_text_size)))
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Figure 7.9.: Complementary log-log survival curves - Nelson-Aalen estimates

Let’s compare these empirical (i.e., non-parametric) curves with the fitted curves from our
coxph() model:

cox_model |>
survminer::ggsurvplot(

facet_by = "",
legend = "bottom",
legend.title = "",
ylab = "log(Cumulative Hazard)",
xlab = "Time since transplant (days, log-scale)",
fun = 'cloglog',
size = .5,
ggtheme = theme_bw(),
censor = FALSE, # doesn't make sense for cox model
conf.int = FALSE) |>

magrittr::extract2("plot") +
guides(

col =
guide_legend(
ncol = 2,
label.theme =
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element_text(
size = legend_text_size)))
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Figure 7.10.: Complementary log-log survival curves - PH estimates

Now let’s overlay these cumulative hazard curves:

na_and_cph =
na_model |>
fortify(fun = "cumhaz") |>
# `fortify.survfit()` doesn't name cumhaz correctly:
rename(cumhaz = surv) |>
mutate(

surv = exp(-cumhaz),
strata = trimws(strata)) |>

mutate(model = "Nelson-Aalen") |>
bind_rows(stack_surv_ph(cox_model))

na_and_cph |>
ggplot(

aes(
x = time,
y = cumhaz,
col = model)) +

geom_step() +
facet_wrap(~strata) +
theme_bw() +
scale_y_continuous(

trans = "log10",
name = "Cumulative hazard, H(t) (log-scale)") +
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scale_x_continuous(
trans = "log10",
name = "Survival time (t, days, log-scale)") +

theme(legend.position = "bottom")
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Figure 7.11.: Observed and expected cumulative hazard curves for bmt data (cloglog format)

7.9. Predictions and Residuals

7.9.1. Review: Predictions in Linear Regression

• In linear regression, we have a linear predictor for each data point 𝑖

𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 +⋯+ 𝛽𝑝𝑥𝑝𝑖

̂𝑦𝑖 = ̂𝜂𝑖 = ̂𝛽0 + ̂𝛽1𝑥1𝑖 +⋯+ ̂𝛽𝑝𝑥𝑝𝑖

𝑦𝑖 ∼ 𝑁(𝜂𝑖, 𝜎2)

• ̂𝑦𝑖 estimates the conditional mean of 𝑦𝑖 given the covariate values ̃𝑥𝑖. This together
with the prediction error says that we are predicting the distribution of values of 𝑦.

7.9.2. Review: Residuals in Linear Regression

• The usual residual is 𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖, the difference between the actual value of 𝑦 and a
prediction of its mean.

• The residuals are also the quantities the sum of whose squares is being minimized by
the least squares/MLE estimation.
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7.9.3. Predictions and Residuals in survival models

• In survival analysis, the equivalent of 𝑦𝑖 is the event time 𝑡𝑖, which is unknown for
the censored observations.

• The expected event time can be tricky to calculate:

Ê[𝑇 |𝑋 = 𝑥] = ∫
∞

𝑡=0
Ŝ(𝑡)𝑑𝑡

7.9.4. Wide prediction intervals

The nature of time-to-event data results in very wide prediction intervals:

• Suppose a cancer patient is predicted to have a mean lifetime of 5 years after diagnosis
and suppose the distribution is exponential.

• If we want a 95% interval for survival, the lower end is at the 0.025 percentage point
of the exponential which is qexp(.025, rate = 1/5) = 0.126589 years, or 1/40 of
the mean lifetime.

• The upper end is at the 0.975 point which is qexp(.975, rate = 1/5) = 18.444397
years, or 3.7 times the mean lifetime.

• Saying that the survival time is somewhere between 6 weeks and 18 years does not
seem very useful, but it may be the best we can do.

• For survival analysis, something is like a residual if it is small when the model is
accurate or if the accumulation of them is in some way minimized by the estimation
algorithm, but there is no exact equivalence to linear regression residuals.

• And if there is, they are mostly quite large!

7.9.5. Types of Residuals in Time-to-Event Models

• It is often hard to make a decision from graph appearances, though the process can
reveal much.

• Some diagnostic tests are based on residuals as with other regression methods:

– Schoenfeld residuals (via cox.zph) for proportionality
– Cox-Snell residuals for goodness of fit (Section 7.10)
– martingale residuals for non-linearity
– dfbeta for influence.

7.9.6. Schoenfeld residuals

• There is a Schoenfeld residual for each subject 𝑖 with an event (not censored) and for
each predictor 𝑥𝑘.

• At the event time 𝑡 for that subject, there is a risk set 𝑅, and each subject 𝑗 in the
risk set has a risk coefficient 𝜃𝑗 and also a value 𝑥𝑗𝑘 of the predictor.

• The Schoenfeld residual is the difference between 𝑥𝑖𝑘 and the risk-weighted average of
all the 𝑥𝑗𝑘 over the risk set.
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𝑟𝑆
𝑖𝑘 = 𝑥𝑖𝑘 −

∑𝑘∈𝑅 𝑥𝑗𝑘𝜃𝑘

∑𝑘∈𝑅 𝜃𝑘

This residual measures how typical the individual subject is with respect to the covariate
at the time of the event. Since subjects should fail more or less uniformly according to
risk, the Schoenfeld residuals should be approximately level over time, not increasing or
decreasing.

We can test this with the correlation with time on some scale, which could be the time
itself, the log time, or the rank in the set of failure times.

The default is to use the KM curve as a transform, which is similar to the rank but deals
better with censoring.

The cox.zph() function implements a score test proposed in Grambsch and Therneau
(1994).

hodg.zph = cox.zph(hodg.cox1)
print(hodg.zph)
#> chisq df p
#> gtype 0.5400 1 0.462
#> dtype 1.8012 1 0.180
#> score 3.8805 1 0.049
#> wtime 0.0173 1 0.895
#> gtype:dtype 4.0474 1 0.044
#> GLOBAL 13.7573 5 0.017

7.9.6.1. gtype

ggcoxzph(hodg.zph, var = "gtype")
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Schoenfeld Individual Test p: 0.4624

Global Schoenfeld Test p: 0.01723
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7.9.6.2. dtype

ggcoxzph(hodg.zph, var = "dtype")
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Schoenfeld Individual Test p: 0.1796

Global Schoenfeld Test p: 0.01723

7.9.6.3. score

ggcoxzph(hodg.zph, var = "score")
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Schoenfeld Individual Test p: 0.0489
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7.9.6.4. wtime

ggcoxzph(hodg.zph, var = "wtime")
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Schoenfeld Individual Test p: 0.8954

Global Schoenfeld Test p: 0.01723

7.9.6.5. gtype:dtype

ggcoxzph(hodg.zph, var = "gtype:dtype")
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Global Schoenfeld Test p: 0.01723
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7.9.6.6. Conclusions

• From the correlation test, the Karnofsky score and the interaction with graft type
disease type induce modest but statistically significant non-proportionality.

• The sample size here is relatively small (26 events in 43 subjects). If the sample size
is large, very small amounts of non-proportionality can induce a significant result.

• As time goes on, autologous grafts are over-represented at their own event times, but
those from HOD patients become less represented.

• Both the statistical tests and the plots are useful.

7.10. Goodness of Fit using the Cox-Snell Residuals

(references: Klein and Moeschberger (2003), §11.2, and Dobson and Barnett (2018), §10.6)

Suppose that an individual has a survival time 𝑇 which has survival function S(𝑡), meaning
that Pr(𝑇 > 𝑡) = S(𝑡). Then 𝑆(𝑇 ) has a uniform distribution on (0, 1):

Pr(𝑆(𝑇𝑖) ≤ 𝑢) = Pr(𝑇𝑖 > 𝑆−1
𝑖 (𝑢))

= 𝑆𝑖(𝑆−1
𝑖 (𝑢))

= 𝑢

Also, if 𝑈 has a uniform distribution on (0, 1), then what is the distribution of − ln(𝑈)?

Pr(− ln(𝑈) < 𝑥) = Pr(𝑈 > exp{−𝑥})
= 1 − 𝑒−𝑥

which is the CDF of an exponential distribution with parameter 𝜆 = 1.

Definition 7.13 (Cox-Snell generalized residuals).

The Cox-Snell generalized residuals are defined as:

𝑟𝐶𝑆
𝑖

def= Λ̂(𝑡𝑖| ̃𝑥𝑖)

If the estimate ̂𝑆𝑖 is accurate, 𝑟𝐶𝑆
𝑖 should have an exponential distribution with constant

hazard 𝜆 = 1, which means that these values should look like a censored sample from this
exponential distribution.
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hodg2 = hodg2 |>
mutate(cs = predict(hodg.cox1, type = "expected"))

surv.csr = survfit(
data = hodg2,
formula = Surv(time = cs, event = delta == "dead") ~ 1,
type = "fleming-harrington")

autoplot(surv.csr, fun = "cumhaz") +
geom_abline(aes(intercept = 0, slope = 1), col = "red") +
theme_bw()
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Figure 7.12.: Cumulative Hazard of Cox-Snell Residuals

The line with slope 1 and intercept 0 fits the curve relatively well, so we don’t see lack of fit
using this procedure.

7.11. Martingale Residuals

The martingale residuals are a slight modification of the Cox-Snell residuals. If the
censoring indicator is 𝛿𝑖, then

𝑟𝑀
𝑖 = 𝛿𝑖 − 𝑟𝐶𝑆

𝑖

These residuals can be interpreted as an estimate of the excess number of events seen in the
data but not predicted by the model. We will use these to examine the functional forms of
continuous covariates.
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7.11.1. Using Martingale Residuals

Martingale residuals can be used to examine the functional form of a numeric variable.

• We fit the model without that variable and compute the martingale residuals.
• We then plot these martingale residuals against the values of the variable.
• We can see curvature, or a possible suggestion that the variable can be discretized.

Let’s use this to examine the score and wtime variables in the wtime data set.

Karnofsky score

hodg2 = hodg2 |>
mutate(

mres =
hodg.cox1 |>
update(. ~ . - score) |>
residuals(type="martingale"))

hodg2 |>
ggplot(aes(x = score, y = mres)) +
geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Karnofsky Score") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.13.: Martingale Residuals vs. Karnofsky Score
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The line is almost straight. It could be some modest transformation of the Karnofsky score
would help, but it might not make much difference.

Waiting time

hodg2$mres =
hodg.cox1 |>
update(. ~ . - wtime) |>
residuals(type="martingale")

hodg2 |>
ggplot(aes(x = wtime, y = mres)) +
geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Waiting Time") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.14.: Martingale Residuals vs. Waiting Time

The line could suggest a step function. To see where the drop is, we can look at the largest
waiting times and the associated martingale residual.

The martingale residuals are all negative for wtime >83 and positive for the next smallest
value. A reasonable cut-point is 80 days.
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Updating the model

Let’s reformulate the model with dichotomized wtime.

hodg2 =
hodg2 |>
mutate(

wt2 = cut(
wtime,c(0, 80, 200),
labels=c("short","long")))

hodg.cox2 =
coxph(

formula =
Surv(time, event = delta == "dead") ~
gtype*dtype + score + wt2,

data = hodg2)

hodg.cox1 |> drop1(test="Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 152. NA NA
#> 2 1 168. 17.2 0.0000330
#> 3 1 154. 3.28 0.0702
#> 4 1 156. 5.44 0.0197

hodg.cox2 |> drop1(test="Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 149. NA NA
#> 2 1 169. 21.6 0.00000335
#> 3 1 154. 6.61 0.0102
#> 4 1 152. 4.97 0.0258

The new model has better (lower) AIC.

7.12. Checking for Outliers and Influential Observations

We will check for outliers using the deviance residuals. The martingale residuals show excess
events or the opposite, but highly skewed, with the maximum possible value being 1, but
the smallest value can be very large negative. Martingale residuals can detect unexpectedly
long-lived patients, but patients who die unexpectedly early show up only in the deviance
residual. Influence will be examined using dfbeta in a similar way to linear regression,
logistic regression, or Poisson regression.
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7.12.1. Deviance Residuals

𝑟𝐷
𝑖 = sign(𝑟𝑀

𝑖 )√−2 [𝑟𝑀
𝑖 + 𝛿𝑖 ln(𝛿𝑖 − 𝑟𝑀

𝑖 )]

𝑟𝐷
𝑖 = sign(𝑟𝑀

𝑖 )√−2 [𝑟𝑀
𝑖 + 𝛿𝑖 ln(𝑟𝐶𝑆

𝑖 )]

Roughly centered on 0 with approximate standard deviation 1.

7.12.2.

hodg.mart = residuals(hodg.cox2,type="martingale")
hodg.dev = residuals(hodg.cox2,type="deviance")
hodg.dfb = residuals(hodg.cox2,type="dfbeta")
hodg.preds = predict(hodg.cox2) #linear predictor

plot(hodg.preds,
hodg.mart,
xlab="Linear Predictor",
ylab="Martingale Residual")
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Figure 7.15.: Martingale Residuals vs. Linear Predictor

The smallest three martingale residuals in order are observations 1, 29, and 18.

plot(hodg.preds,hodg.dev,xlab="Linear Predictor",ylab="Deviance Residual")
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Figure 7.16.: Deviance Residuals vs. Linear Predictor

The two largest deviance residuals are observations 1 and 29. Worth examining.

7.12.3. dfbeta

• dfbeta is the approximate change in the coefficient vector if that observation were
dropped

• dfbetas is the approximate change in the coefficients, scaled by the standard error for
the coefficients.

7.12.3.1. Graft type

plot(hodg.dfb[,1],xlab="Observation Order",ylab="dfbeta for Graft Type")
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Figure 7.17.: dfbeta Values by Observation Order for Graft Type

The smallest dfbeta for graft type is observation 1.

7.12.3.2. Disease type

plot(hodg.dfb[,2],
xlab="Observation Order",
ylab="dfbeta for Disease Type")
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Figure 7.18.: dfbeta Values by Observation Order for Disease Type

The smallest two dfbeta values for disease type are observations 1 and 16.

7.12.3.3. Karnofsky score

plot(hodg.dfb[,3],
xlab="Observation Order",
ylab="dfbeta for Karnofsky Score")
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Figure 7.19.: dfbeta Values by Observation Order for Karnofsky Score

The two highest dfbeta values for score are observations 1 and 18. The next three are
observations 17, 29, and 19. The smallest value is observation 2.

7.12.3.4. Waiting time (dichotomized)

plot(
hodg.dfb[,4],
xlab="Observation Order",
ylab="dfbeta for `Waiting Time < 80`")
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Figure 7.20.: dfbeta Values by Observation Order for Waiting Time (dichotomized)

The two large values of dfbeta for dichotomized waiting time are observations 15 and 16.
This may have to do with the discretization of waiting time.

7.12.3.5. Interaction: graft type and disease type

plot(hodg.dfb[,5],
xlab="Observation Order",
ylab="dfbeta for dtype:gtype")
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Figure 7.21.: dfbeta Values by Observation Order for dtype:gtype

The two largest values are observations 1 and 16. The smallest value is observation 35.

Table 7.2.: Observations to Examine by Residuals and Influence

Diagnostic Observations to Examine

Martingale Residuals 1, 29, 18
Deviance Residuals 1, 29
Graft Type Influence 1
Disease Type Influence 1, 16
Karnofsky Score Influence 1, 18 (17, 29, 19)
Waiting Time Influence 15, 16
Graft by Disease Influence 1, 16, 35

The most important observations to examine seem to be 1, 15, 16, 18, and 29.

7.12.4.

with(hodg,summary(time[delta==1]))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.0 41.2 62.5 97.6 83.2 524.0

with(hodg,summary(wtime))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 5.0 16.0 24.0 37.7 55.5 171.0
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with(hodg,summary(score))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 20.0 60.0 80.0 76.3 90.0 100.0

hodg.cox2
#> Call:
#> coxph(formula = Surv(time, event = delta == "dead") ~ gtype *
#> dtype + score + wt2, data = hodg2)
#>
#> coef exp(coef) se(coef) z p
#> gtypeAutologous 0.6651 1.9447 0.5943 1.12 0.2631
#> dtypeHodgkins 2.3273 10.2505 0.7332 3.17 0.0015
#> score -0.0550 0.9464 0.0123 -4.46 8.2e-06
#> wt2long -2.0598 0.1275 1.0507 -1.96 0.0499
#> gtypeAutologous:dtypeHodgkins -2.0668 0.1266 0.9258 -2.23 0.0256
#>
#> Likelihood ratio test=35.5 on 5 df, p=1.21e-06
#> n= 43, number of events= 26

hodg2[c(1,15,16,18,29),] |>
select(gtype, dtype, time, delta, score, wtime) |>
mutate(

comment =
c(
"early death, good score, low risk",
"high risk grp, long wait, poor score",
"high risk grp, short wait, poor score",
"early death, good score, med risk grp",
"early death, good score, med risk grp"

))
#> # A tibble: 5 x 7
#> gtype dtype time delta score wtime comment
#> <chr> <fct> <int> <chr> <int> <int> <chr>
#> 1 Allogenic Non-Hodgkins 28 dead 90 24 early death, good score, low ~
#> 2 Allogenic Hodgkins 77 dead 60 102 high risk grp, long wait, poo~
#> 3 Allogenic Hodgkins 79 dead 70 71 high risk grp, short wait, po~
#> 4 Autologous Non-Hodgkins 53 dead 90 17 early death, good score, med ~
#> 5 Autologous Hodgkins 30 dead 90 73 early death, good score, med ~

7.12.5. Action Items

• Unusual points may need checking, particularly if the data are not completely cleaned.
In this case, observations 15 and 16 may show some trouble with the dichotomization
of waiting time, but it still may be useful.

• The two largest residuals seem to be due to unexpectedly early deaths, but unfortu-
nately this can occur.

• If hazards don’t look proportional, then we may need to use strata, between which
the base hazards are permitted to be different. For this problem, the natural strata
are the two diseases, because they could need to be managed differently anyway.
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• A main point that we want to be sure of is the relative risk difference by disease type
and graft type.

hodg.cox2 |>
predict(

reference = "zero",
newdata = means |>

mutate(
wt2 = "short",
score = 0),

type = "lp") |>
data.frame('linear predictor' = _) |>
pander()

Table 7.3.: Linear Risk Predictors for Lymphoma

linear.predictor

Non-Hodgkins,Allogenic 0
Non-Hodgkins,Autologous 0.6651

Hodgkins,Allogenic 2.327
Hodgkins,Autologous 0.9256

For Non-Hodgkin’s, the allogenic graft is better. For Hodgkin’s, the autologous graft is
much better.

7.13. Stratified survival models

7.13.1. Revisiting the leukemia dataset (anderson)

We will analyze remission survival times on 42 leukemia patients, half on new treatment,
half on standard treatment.

This is the same data as the drug6mp data from KMsurv, but with two other variables and
without the pairing. This version comes from David G. Kleinbaum and Klein (2012) (e.g.,
p281):

anderson =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets/",
"surv2datasets/anderson.dta") |>

haven::read_dta() |>
dplyr::mutate(

status = status |>
case_match(
1 ~ "relapse",
0 ~ "censored"

),
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sex = sex |>
case_match(
0 ~ "female",
1 ~ "male"

) |>
factor() |>
relevel(ref = "female"),

rx = rx |>
case_match(
0 ~ "new",
1 ~ "standard"

) |>
factor() |> relevel(ref = "standard"),

surv = Surv(
time = survt,
event = (status == "relapse"))

)

print(anderson)

7.13.2. Cox semi-parametric proportional hazards model

anderson.cox1 = coxph(
formula = surv ~ rx + sex + logwbc,
data = anderson)

summary(anderson.cox1)
#> Call:
#> coxph(formula = surv ~ rx + sex + logwbc, data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -1.504 0.222 0.462 -3.26 0.0011 **
#> sexmale 0.315 1.370 0.455 0.69 0.4887
#> logwbc 1.682 5.376 0.337 5.00 5.8e-07 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.222 4.498 0.090 0.549
#> sexmale 1.370 0.730 0.562 3.338
#> logwbc 5.376 0.186 2.779 10.398
#>
#> Concordance= 0.851 (se = 0.041 )
#> Likelihood ratio test= 47.2 on 3 df, p=3e-10
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#> Wald test = 33.5 on 3 df, p=2e-07
#> Score (logrank) test = 48 on 3 df, p=2e-10

7.13.2.1. Test the proportional hazards assumption

cox.zph(anderson.cox1)
#> chisq df p
#> rx 0.036 1 0.85
#> sex 5.420 1 0.02
#> logwbc 0.142 1 0.71
#> GLOBAL 5.879 3 0.12

7.13.2.2. Graph the K-M survival curves

anderson_km_model = survfit(
formula = surv ~ sex,
data = anderson)

anderson_km_model |>
autoplot(conf.int = FALSE) +
theme_bw() +
theme(legend.position="bottom")
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The survival curves cross, which indicates a problem in the proportionality assumption by
sex.

344



7. Proportional Hazards Models

7.13.3. Graph the Nelson-Aalen cumulative hazard

We can also look at the log-hazard (“cloglog survival”) plots:

anderson_na_model = survfit(
formula = surv ~ sex,
data = anderson,
type = "fleming")

anderson_na_model |>
autoplot(

fun = "cumhaz",
conf.int = FALSE) +

theme_classic() +
theme(legend.position="bottom") +
ylab("log(Cumulative Hazard)") +
scale_y_continuous(

trans = "log10",
name = "Cumulative hazard (H(t), log scale)") +

scale_x_continuous(
breaks = c(1,2,5,10,20,50),
trans = "log"

)
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Figure 7.22.: Cumulative hazard (cloglog scale) for anderson data

This can be fixed by using strata or possibly by other model alterations.

345



7. Proportional Hazards Models

7.13.4. The Stratified Cox Model

• In a stratified Cox model, each stratum, defined by one or more factors, has its own
base survival function 𝜆0(𝑡).

• But the coefficients for each variable not used in the strata definitions are assumed to
be the same across strata.

• To check if this assumption is reasonable one can include interactions with strata and
see if they are significant (this may generate a warning and NA lines but these can be
ignored).

• Since the sex variable shows possible non-proportionality, we try stratifying on sex.

anderson.coxph.strat =
coxph(

formula =
surv ~ rx + logwbc + strata(sex),

data = anderson)

summary(anderson.coxph.strat)
#> Call:
#> coxph(formula = surv ~ rx + logwbc + strata(sex), data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.998 0.369 0.474 -2.11 0.035 *
#> logwbc 1.454 4.279 0.344 4.22 2.4e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.369 2.713 0.146 0.932
#> logwbc 4.279 0.234 2.180 8.398
#>
#> Concordance= 0.812 (se = 0.059 )
#> Likelihood ratio test= 32.1 on 2 df, p=1e-07
#> Wald test = 22.8 on 2 df, p=1e-05
#> Score (logrank) test = 30.8 on 2 df, p=2e-07

Let’s compare this to a model fit only on the subset of males:

anderson.coxph.male =
coxph(

formula = surv ~ rx + logwbc,
subset = sex == "male",
data = anderson)

summary(anderson.coxph.male)
#> Call:
#> coxph(formula = surv ~ rx + logwbc, data = anderson, subset = sex ==
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#> "male")
#>
#> n= 20, number of events= 14
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -1.978 0.138 0.739 -2.68 0.0075 **
#> logwbc 1.743 5.713 0.536 3.25 0.0011 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.138 7.227 0.0325 0.589
#> logwbc 5.713 0.175 1.9991 16.328
#>
#> Concordance= 0.905 (se = 0.043 )
#> Likelihood ratio test= 29.2 on 2 df, p=5e-07
#> Wald test = 15.3 on 2 df, p=5e-04
#> Score (logrank) test = 26.4 on 2 df, p=2e-06

anderson.coxph.female =
coxph(

formula =
surv ~ rx + logwbc,

subset = sex == "female",
data = anderson)

summary(anderson.coxph.female)
#> Call:
#> coxph(formula = surv ~ rx + logwbc, data = anderson, subset = sex ==
#> "female")
#>
#> n= 22, number of events= 16
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.311 0.733 0.564 -0.55 0.581
#> logwbc 1.206 3.341 0.503 2.40 0.017 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.733 1.365 0.243 2.21
#> logwbc 3.341 0.299 1.245 8.96
#>
#> Concordance= 0.692 (se = 0.085 )
#> Likelihood ratio test= 6.65 on 2 df, p=0.04
#> Wald test = 6.36 on 2 df, p=0.04
#> Score (logrank) test = 6.74 on 2 df, p=0.03

The coefficients of treatment look different. Are they statistically different?
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anderson.coxph.strat.intxn =
coxph(

formula = surv ~ strata(sex) * (rx + logwbc),
data = anderson)

anderson.coxph.strat.intxn |> summary()
#> Call:
#> coxph(formula = surv ~ strata(sex) * (rx + logwbc), data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.311 0.733 0.564 -0.55 0.581
#> logwbc 1.206 3.341 0.503 2.40 0.017 *
#> strata(sex)male:rxnew -1.667 0.189 0.930 -1.79 0.073 .
#> strata(sex)male:logwbc 0.537 1.710 0.735 0.73 0.465
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.733 1.365 0.2427 2.21
#> logwbc 3.341 0.299 1.2452 8.96
#> strata(sex)male:rxnew 0.189 5.294 0.0305 1.17
#> strata(sex)male:logwbc 1.710 0.585 0.4048 7.23
#>
#> Concordance= 0.797 (se = 0.058 )
#> Likelihood ratio test= 35.8 on 4 df, p=3e-07
#> Wald test = 21.7 on 4 df, p=2e-04
#> Score (logrank) test = 33.1 on 4 df, p=1e-06

anova(
anderson.coxph.strat.intxn,
anderson.coxph.strat)

#> # A tibble: 2 x 4
#> loglik Chisq Df `Pr(>|Chi|)`
#> <dbl> <dbl> <int> <dbl>
#> 1 -53.9 NA NA NA
#> 2 -55.7 3.77 2 0.152

We don’t have enough evidence to tell the difference between these two models.

7.13.5. Conclusions

• We chose to use a stratified model because of the apparent non-proportionality of the
hazard for the sex variable.

• When we fit interactions with the strata variable, we did not get an improved model
(via the likelihood ratio test).

• So we use the stratifed model with coefficients that are the same across strata.
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7.13.6. Another Modeling Approach

• We used an additive model without interactions and saw that we might need to stratify
by sex.

• Instead, we could try to improve the model’s functional form - maybe the interaction
of treatment and sex is real, and after fitting that we might not need separate hazard
functions.

• Either approach may work.

anderson.coxph.intxn =
coxph(

formula = surv ~ (rx + logwbc) * sex,
data = anderson)

anderson.coxph.intxn |> summary()
#> Call:
#> coxph(formula = surv ~ (rx + logwbc) * sex, data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.3748 0.6874 0.5545 -0.68 0.499
#> logwbc 1.0637 2.8971 0.4726 2.25 0.024 *
#> sexmale -2.8052 0.0605 2.0323 -1.38 0.167
#> rxnew:sexmale -2.1782 0.1132 0.9109 -2.39 0.017 *
#> logwbc:sexmale 1.2303 3.4223 0.6301 1.95 0.051 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.6874 1.455 0.23185 2.038
#> logwbc 2.8971 0.345 1.14730 7.315
#> sexmale 0.0605 16.531 0.00113 3.248
#> rxnew:sexmale 0.1132 8.830 0.01899 0.675
#> logwbc:sexmale 3.4223 0.292 0.99539 11.766
#>
#> Concordance= 0.861 (se = 0.036 )
#> Likelihood ratio test= 57 on 5 df, p=5e-11
#> Wald test = 35.6 on 5 df, p=1e-06
#> Score (logrank) test = 57.1 on 5 df, p=5e-11

cox.zph(anderson.coxph.intxn)
#> chisq df p
#> rx 0.136 1 0.71
#> logwbc 1.652 1 0.20
#> sex 1.266 1 0.26
#> rx:sex 0.149 1 0.70
#> logwbc:sex 0.102 1 0.75
#> GLOBAL 3.747 5 0.59
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7.14. Time-varying covariates

(adapted from Klein and Moeschberger (2003), §9.2)

7.14.1. Motivating example: back to the leukemia dataset

# load the data:
data(bmt, package = 'KMsurv')
bmt |> as_tibble() |> print(n = 5)
#> # A tibble: 137 x 22
#> group t1 t2 d1 d2 d3 ta da tc dc tp dp z1
#> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 1 2081 2081 0 0 0 67 1 121 1 13 1 26
#> 2 1 1602 1602 0 0 0 1602 0 139 1 18 1 21
#> 3 1 1496 1496 0 0 0 1496 0 307 1 12 1 26
#> 4 1 1462 1462 0 0 0 70 1 95 1 13 1 17
#> 5 1 1433 1433 0 0 0 1433 0 236 1 12 1 32
#> # i 132 more rows
#> # i 9 more variables: z2 <int>, z3 <int>, z4 <int>, z5 <int>, z6 <int>,
#> # z7 <int>, z8 <int>, z9 <int>, z10 <int>

This dataset comes from the Copelan et al. (1991) study of allogenic bone marrow transplant
therapy for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).

Outcomes (endpoints)

• The main endpoint is disease-free survival (t2 and d3) for the three risk groups,
“ALL”, “AML Low Risk”, and “AML High Risk”.

Possible intermediate events

• graft vs. host disease (GVHD), an immunological rejection response to the transplant
(bad)

• acute (AGVHD)
• chronic (CGVHD)
• platelet recovery, a return of platelet count to normal levels (good)

One or the other, both in either order, or neither may occur.

Covariates

• We are interested in possibly using the covariates z1-z10 to adjust for other factors.

• In addition, the time-varying covariates for acute GVHD, chronic GVHD, and platelet
recovery may be useful.
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7.14.1.1. Preprocessing

We reformat the data before analysis:

# reformat the data:
bmt1 =
bmt |>
as_tibble() |>
mutate(

id = 1:n(), # will be used to connect multiple records for the same individual

group = group |>
case_match(
1 ~ "ALL",
2 ~ "Low Risk AML",
3 ~ "High Risk AML") |>

factor(levels = c("ALL", "Low Risk AML", "High Risk AML")),

`patient age` = z1,

`donor age` = z2,

`patient sex` = z3 |>
case_match(
0 ~ "Female",
1 ~ "Male"),

`donor sex` = z4 |>
case_match(
0 ~ "Female",
1 ~ "Male"),

`Patient CMV Status` = z5 |>
case_match(
0 ~ "CMV Negative",
1 ~ "CMV Positive"),

`Donor CMV Status` = z6 |>
case_match(
0 ~ "CMV Negative",
1 ~ "CMV Positive"),

`Waiting Time to Transplant` = z7,

FAB = z8 |>
case_match(
1 ~ "Grade 4 Or 5 (AML only)",
0 ~ "Other") |>

factor() |>
relevel(ref = "Other"),
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hospital = z9 |> # `z9` is hospital
case_match(
1 ~ "Ohio State University",
2 ~ "Alferd",
3 ~ "St. Vincent",
4 ~ "Hahnemann") |>

factor() |>
relevel(ref = "Ohio State University"),

MTX = (z10 == 1) # a prophylatic treatment for GVHD

) |>
select(-(z1:z10)) # don't need these anymore

bmt1 |>
select(group, id:MTX) |>
print(n = 10)

#> # A tibble: 137 x 12
#> group id `patient age` `donor age` `patient sex` `donor sex`
#> <fct> <int> <int> <int> <chr> <chr>
#> 1 ALL 1 26 33 Male Female
#> 2 ALL 2 21 37 Male Male
#> 3 ALL 3 26 35 Male Male
#> 4 ALL 4 17 21 Female Male
#> 5 ALL 5 32 36 Male Male
#> 6 ALL 6 22 31 Male Male
#> 7 ALL 7 20 17 Male Female
#> 8 ALL 8 22 24 Male Female
#> 9 ALL 9 18 21 Female Male
#> 10 ALL 10 24 40 Male Male
#> # i 127 more rows
#> # i 6 more variables: `Patient CMV Status` <chr>, `Donor CMV Status` <chr>,
#> # `Waiting Time to Transplant` <int>, FAB <fct>, hospital <fct>, MTX <lgl>

7.14.2. Time-Dependent Covariates

• A time-dependent covariate (“TDC”) is a covariate whose value changes during
the course of the study.

• For variables like age that change in a linear manner with time, we can just use the
value at the start.

• But it may be plausible that when and if GVHD occurs, the risk of relapse or death
increases, and when and if platelet recovery occurs, the risk decreases.

7.14.3. Analysis in R

• We form a variable precovery which is = 0 before platelet recovery and is = 1 after
platelet recovery, if it occurs.
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• For each subject where platelet recovery occurs, we set up multiple records (lines in
the data frame); for example one from t = 0 to the time of platelet recovery, and one
from that time to relapse, recovery, or death.

• We do the same for acute GVHD and chronic GVHD.
• For each record, the covariates are constant.

bmt2 = bmt1 |>
#set up new long-format data set:
tmerge(bmt1, id = id, tstop = t2) |>

# the following three steps can be in any order,
# and will still produce the same result:
#add aghvd as tdc:
tmerge(bmt1, id = id, agvhd = tdc(ta)) |>
#add cghvd as tdc:
tmerge(bmt1, id = id, cgvhd = tdc(tc)) |>
#add platelet recovery as tdc:
tmerge(bmt1, id = id, precovery = tdc(tp))

bmt2 = bmt2 |>
as_tibble() |>
mutate(status = as.numeric((tstop == t2) & d3))

# status only = 1 if at end of t2 and not censored

Let’s see how we’ve rearranged the first row of the data:

bmt1 |>
dplyr::filter(id == 1) |>
dplyr::select(id, t1, d1, t2, d2, d3, ta, da, tc, dc, tp, dp)

#> # A tibble: 1 x 12
#> id t1 d1 t2 d2 d3 ta da tc dc tp dp
#> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 1 2081 0 2081 0 0 67 1 121 1 13 1

The event times for this individual are:

• t = 0 time of transplant
• tp = 13 platelet recovery
• ta = 67 acute GVHD onset
• tc = 121 chronic GVHD onset
• t2 = 2081 end of study, patient not relapsed or dead

After converting the data to long-format, we have:

bmt2 |>
select(

id,
tstart,
tstop,
agvhd,
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cgvhd,
precovery,
status

) |>
dplyr::filter(id == 1)

#> # A tibble: 4 x 7
#> id tstart tstop agvhd cgvhd precovery status
#> <int> <dbl> <int> <int> <int> <int> <dbl>
#> 1 1 0 13 0 0 0 0
#> 2 1 13 67 0 0 1 0
#> 3 1 67 121 1 0 1 0
#> 4 1 121 2081 1 1 1 0

Note that status could have been 1 on the last row, indicating that relapse or death
occurred; since it is false, the participant must have exited the study without experiencing
relapse or death (i.e., they were censored).

7.14.4. Event sequences

Let:

• A = acute GVHD
• C = chronic GVHD
• P = platelet recovery

Each of the eight possible combinations of A or not-A, with C or not-C, with P or not-P
occurs in this data set.

• A always occurs before C, and P always occurs before C, if both occur.
• Thus there are ten event sequences in the data set: None, A, C, P, AC, AP, PA, PC,

APC, and PAC.
• In general, there could be as many as 1 + 3 + (3)(2) + 6 = 16 sequences, but our

domain knowledge tells us that some are missing: CA, CP, CAP, CPA, PCA, PC,
PAC

• Different subjects could have 1, 2, 3, or 4 intervals, depending on which of acute
GVHD, chronic GVHD, and/or platelet recovery occurred.

• The final interval for any subject has status = 1 if the subject relapsed or died at
that time; otherwise status = 0.

• Any earlier intervals have status = 0.
• Even though there might be multiple lines per ID in the dataset, there is never more

than one event, so no alterations need be made in the estimation procedures or in the
interpretation of the output.

• The function tmerge in the survival package eases the process of constructing the
new long-format dataset.

7.14.5. Model with Time-Fixed Covariates
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bmt1 =
bmt1 |>
mutate(surv = Surv(t2,d3))

bmt_coxph_TF = coxph(
formula = surv ~ group + `patient age`*`donor age` + FAB,
data = bmt1)

summary(bmt_coxph_TF)
#> Call:
#> coxph(formula = surv ~ group + `patient age` * `donor age` +
#> FAB, data = bmt1)
#>
#> n= 137, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.090648 0.335999 0.354279 -3.08 0.00208 **
#> groupHigh Risk AML -0.403905 0.667707 0.362777 -1.11 0.26555
#> `patient age` -0.081639 0.921605 0.036107 -2.26 0.02376 *
#> `donor age` -0.084587 0.918892 0.030097 -2.81 0.00495 **
#> FABGrade 4 Or 5 (AML only) 0.837416 2.310388 0.278464 3.01 0.00264 **
#> `patient age`:`donor age` 0.003159 1.003164 0.000951 3.32 0.00089 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.336 2.976 0.168 0.673
#> groupHigh Risk AML 0.668 1.498 0.328 1.360
#> `patient age` 0.922 1.085 0.859 0.989
#> `donor age` 0.919 1.088 0.866 0.975
#> FABGrade 4 Or 5 (AML only) 2.310 0.433 1.339 3.988
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.665 (se = 0.033 )
#> Likelihood ratio test= 32.8 on 6 df, p=1e-05
#> Wald test = 33 on 6 df, p=1e-05
#> Score (logrank) test = 35.8 on 6 df, p=3e-06
drop1(bmt_coxph_TF, test = "Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 726. NA NA
#> 2 2 734. 12.5 0.00192
#> 3 1 733. 9.22 0.00240
#> 4 1 733. 9.51 0.00204

bmt1$mres =
bmt_coxph_TF |>
update(. ~ . - `donor age`) |>
residuals(type="martingale")
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bmt1 |>
ggplot(aes(x = `donor age`, y = mres)) +
geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Donor age") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.23.: Martingale residuals for Donor age

A more complex functional form for donor age seems warranted; left as an exercise for the
reader.

Now we will add the time-varying covariates:

# add counting process formulation of Surv():
bmt2 =
bmt2 |>
mutate(

surv =
Surv(
time = tstart,
time2 = tstop,
event = status,
type = "counting"))

Let’s see how the data looks for patient 15:
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bmt1 |> dplyr::filter(id == 15) |> dplyr::select(tp, dp, tc,dc, ta, da, FAB, surv, t1, d1, t2, d2, d3)
#> # A tibble: 1 x 13
#> tp dp tc dc ta da FAB surv t1 d1 t2 d2 d3
#> <int> <int> <int> <int> <int> <int> <fct> <Surv> <int> <int> <int> <int> <int>
#> 1 21 1 220 1 418 0 Other 418 418 1 418 0 1
bmt2 |> dplyr::filter(id == 15) |> dplyr::select(id, agvhd, cgvhd, precovery, surv)
#> # A tibble: 3 x 5
#> id agvhd cgvhd precovery surv
#> <int> <int> <int> <int> <Surv>
#> 1 15 0 0 0 ( 0, 21+]
#> 2 15 0 0 1 ( 21,220+]
#> 3 15 0 1 1 (220,418]

7.14.6. Model with Time-Dependent Covariates

bmt_coxph_TV = coxph(
formula =

surv ~
group + `patient age`*`donor age` + FAB + agvhd + cgvhd + precovery,

data = bmt2)

summary(bmt_coxph_TV)
#> Call:
#> coxph(formula = surv ~ group + `patient age` * `donor age` +
#> FAB + agvhd + cgvhd + precovery, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.038514 0.353980 0.358220 -2.90 0.0037 **
#> groupHigh Risk AML -0.380481 0.683533 0.374867 -1.01 0.3101
#> `patient age` -0.073351 0.929275 0.035956 -2.04 0.0413 *
#> `donor age` -0.076406 0.926440 0.030196 -2.53 0.0114 *
#> FABGrade 4 Or 5 (AML only) 0.805700 2.238263 0.284273 2.83 0.0046 **
#> agvhd 0.150565 1.162491 0.306848 0.49 0.6237
#> cgvhd -0.116136 0.890354 0.289046 -0.40 0.6878
#> precovery -0.941123 0.390190 0.347861 -2.71 0.0068 **
#> `patient age`:`donor age` 0.002895 1.002899 0.000944 3.07 0.0022 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.354 2.825 0.175 0.714
#> groupHigh Risk AML 0.684 1.463 0.328 1.425
#> `patient age` 0.929 1.076 0.866 0.997
#> `donor age` 0.926 1.079 0.873 0.983
#> FABGrade 4 Or 5 (AML only) 2.238 0.447 1.282 3.907
#> agvhd 1.162 0.860 0.637 2.121
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#> cgvhd 0.890 1.123 0.505 1.569
#> precovery 0.390 2.563 0.197 0.772
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.702 (se = 0.028 )
#> Likelihood ratio test= 40.3 on 9 df, p=7e-06
#> Wald test = 42.4 on 9 df, p=3e-06
#> Score (logrank) test = 47.2 on 9 df, p=4e-07

Platelet recovery is highly significant.

Neither acute GVHD (agvhd) nor chronic GVHD (cgvhd) has a statistically significant
effect here, nor are they significant in models with the other one removed.

update(bmt_coxph_TV, .~.-agvhd) |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
#> FAB + cgvhd + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.049870 0.349983 0.356727 -2.94 0.0032 **
#> groupHigh Risk AML -0.417049 0.658988 0.365348 -1.14 0.2537
#> `patient age` -0.070749 0.931696 0.035477 -1.99 0.0461 *
#> `donor age` -0.075693 0.927101 0.030075 -2.52 0.0118 *
#> FABGrade 4 Or 5 (AML only) 0.807035 2.241253 0.283437 2.85 0.0044 **
#> cgvhd -0.095393 0.909015 0.285979 -0.33 0.7387
#> precovery -0.983653 0.373942 0.338170 -2.91 0.0036 **
#> `patient age`:`donor age` 0.002859 1.002863 0.000936 3.05 0.0023 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.350 2.857 0.174 0.704
#> groupHigh Risk AML 0.659 1.517 0.322 1.349
#> `patient age` 0.932 1.073 0.869 0.999
#> `donor age` 0.927 1.079 0.874 0.983
#> FABGrade 4 Or 5 (AML only) 2.241 0.446 1.286 3.906
#> cgvhd 0.909 1.100 0.519 1.592
#> precovery 0.374 2.674 0.193 0.726
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.701 (se = 0.027 )
#> Likelihood ratio test= 40 on 8 df, p=3e-06
#> Wald test = 42.4 on 8 df, p=1e-06
#> Score (logrank) test = 47.2 on 8 df, p=1e-07
update(bmt_coxph_TV, .~.-cgvhd) |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
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#> FAB + agvhd + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.019638 0.360725 0.355311 -2.87 0.0041 **
#> groupHigh Risk AML -0.381356 0.682935 0.374568 -1.02 0.3086
#> `patient age` -0.073189 0.929426 0.035890 -2.04 0.0414 *
#> `donor age` -0.076753 0.926118 0.030121 -2.55 0.0108 *
#> FABGrade 4 Or 5 (AML only) 0.811716 2.251769 0.284012 2.86 0.0043 **
#> agvhd 0.131621 1.140676 0.302623 0.43 0.6636
#> precovery -0.946697 0.388021 0.347265 -2.73 0.0064 **
#> `patient age`:`donor age` 0.002904 1.002908 0.000943 3.08 0.0021 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.361 2.772 0.180 0.724
#> groupHigh Risk AML 0.683 1.464 0.328 1.423
#> `patient age` 0.929 1.076 0.866 0.997
#> `donor age` 0.926 1.080 0.873 0.982
#> FABGrade 4 Or 5 (AML only) 2.252 0.444 1.291 3.929
#> agvhd 1.141 0.877 0.630 2.064
#> precovery 0.388 2.577 0.196 0.766
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.701 (se = 0.027 )
#> Likelihood ratio test= 40.1 on 8 df, p=3e-06
#> Wald test = 42.1 on 8 df, p=1e-06
#> Score (logrank) test = 47.1 on 8 df, p=1e-07

Let’s drop them both:

bmt_coxph_TV2 = update(bmt_coxph_TV, . ~ . - agvhd -cgvhd)
bmt_coxph_TV2 |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
#> FAB + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.032520 0.356108 0.353202 -2.92 0.0035 **
#> groupHigh Risk AML -0.413888 0.661075 0.365209 -1.13 0.2571
#> `patient age` -0.070965 0.931495 0.035453 -2.00 0.0453 *
#> `donor age` -0.076052 0.926768 0.030007 -2.53 0.0113 *
#> FABGrade 4 Or 5 (AML only) 0.811926 2.252242 0.283231 2.87 0.0041 **
#> precovery -0.983505 0.373998 0.337997 -2.91 0.0036 **
#> `patient age`:`donor age` 0.002872 1.002876 0.000936 3.07 0.0021 **
#> ---
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#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.356 2.808 0.178 0.712
#> groupHigh Risk AML 0.661 1.513 0.323 1.352
#> `patient age` 0.931 1.074 0.869 0.999
#> `donor age` 0.927 1.079 0.874 0.983
#> FABGrade 4 Or 5 (AML only) 2.252 0.444 1.293 3.924
#> precovery 0.374 2.674 0.193 0.725
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.7 (se = 0.027 )
#> Likelihood ratio test= 39.9 on 7 df, p=1e-06
#> Wald test = 42.2 on 7 df, p=5e-07
#> Score (logrank) test = 47.1 on 7 df, p=5e-08

7.15. Recurrent Events

(Adapted from David G. Kleinbaum and Klein (2012), Ch 8)

• Sometimes an appropriate analysis requires consideration of recurrent events.
• A patient with arthritis may have more than one flareup. The same is true of many

recurring-remitting diseases.
• In this case, we have more than one line in the data frame, but each line may have an

event.
• We have to use a “robust” variance estimator to account for correlation of time-to-

events within a patient.

7.15.1. Bladder Cancer Data Set

The bladder cancer dataset from David G. Kleinbaum and Klein (2012) contains recurrent
event outcome information for eighty-six cancer patients followed for the recurrence of
bladder cancer tumor after transurethral surgical excision (Byar and Green 1980). The
exposure of interest is the effect of the drug treatment of thiotepa. Control variables are
the initial number and initial size of tumors. The data layout is suitable for a counting
processes approach.

This drug is still a possible choice for some patients. Another therapeutic choice is Bacillus
Calmette-Guerin (BCG), a live bacterium related to cow tuberculosis.

7.15.1.1. Data dictionary

Table 7.4.: Variables in the bladder dataset

Variable Definition

id Patient unique ID
status for each time interval: 1 = recurred, 0 = censored
interval 1 = first recurrence, etc.
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Variable Definition

intime ‘tstop - tstart (all times in months)
tstart start of interval
tstop end of interval
tx treatment code, 1 = thiotepa
num number of initial tumors
size size of initial tumors (cm)

• There are 85 patients and 190 lines in the dataset, meaning that many patients have
more than one line.

• Patient 1 with 0 observation time was removed.
• Of the 85 patients, 47 had at least one recurrence and 38 had none.
• 18 patients had exactly one recurrence.
• There were up to 4 recurrences in a patient.
• Of the 190 intervals, 112 terminated with a recurrence and 78 were censored.

7.15.1.2. Different intervals for the same patient are correlated.

• Is the effective sample size 47 or 112? This might narrow confidence intervals by as
much as a factor of √112/47 = 1.54

• What happens if I have 5 treatment and 5 control values and want to do a t-test
and I then duplicate the 10 values as if the sample size was 20? This falsely narrows
confidence intervals by a factor of

√
2 = 1.41.

bladder =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets",
"/surv2datasets/bladder.dta") |>

read_dta() |>
as_tibble()

bladder = bladder[-1,] #remove subject with 0 observation time
print(bladder)

bladder =
bladder |>
mutate(

surv =
Surv(
time = start,
time2 = stop,
event = event,
type = "counting"))

bladder.cox1 = coxph(
formula = surv~tx+num+size,
data = bladder)
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#results with biased variance-covariance matrix:
summary(bladder.cox1)
#> Call:
#> coxph(formula = surv ~ tx + num + size, data = bladder)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> tx -0.4116 0.6626 0.1999 -2.06 0.03947 *
#> num 0.1637 1.1778 0.0478 3.43 0.00061 ***
#> size -0.0411 0.9598 0.0703 -0.58 0.55897
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.448 0.98
#> num 1.178 0.849 1.073 1.29
#> size 0.960 1.042 0.836 1.10
#>
#> Concordance= 0.624 (se = 0.032 )
#> Likelihood ratio test= 14.7 on 3 df, p=0.002
#> Wald test = 15.9 on 3 df, p=0.001
#> Score (logrank) test = 16.2 on 3 df, p=0.001

INFO Note

The likelihood ratio and score tests assume independence of observations within a
cluster. The Wald and robust score tests do not.

7.15.1.3. adding cluster = id

If we add cluster= id to the call to coxph, the coefficient estimates don’t change, but we
get an additional column in the summary() output: robust se:

bladder.cox2 = coxph(
formula = surv ~ tx + num + size,
cluster = id,
data = bladder)

#unbiased though this reduces power:
summary(bladder.cox2)
#> Call:
#> coxph(formula = surv ~ tx + num + size, data = bladder, cluster = id)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) robust se z Pr(>|z|)
#> tx -0.4116 0.6626 0.1999 0.2488 -1.65 0.0980 .
#> num 0.1637 1.1778 0.0478 0.0584 2.80 0.0051 **
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#> size -0.0411 0.9598 0.0703 0.0742 -0.55 0.5799
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.407 1.08
#> num 1.178 0.849 1.050 1.32
#> size 0.960 1.042 0.830 1.11
#>
#> Concordance= 0.624 (se = 0.031 )
#> Likelihood ratio test= 14.7 on 3 df, p=0.002
#> Wald test = 11.2 on 3 df, p=0.01
#> Score (logrank) test = 16.2 on 3 df, p=0.001, Robust = 10.8 p=0.01
#>
#> (Note: the likelihood ratio and score tests assume independence of
#> observations within a cluster, the Wald and robust score tests do not).

robust se is larger than se, and accounts for the repeated observations from the same
individuals:

round(bladder.cox2$naive.var, 4)
#> [,1] [,2] [,3]
#> [1,] 0.0400 -0.0014 0.0000
#> [2,] -0.0014 0.0023 0.0007
#> [3,] 0.0000 0.0007 0.0049
round(bladder.cox2$var, 4)
#> [,1] [,2] [,3]
#> [1,] 0.0619 -0.0026 -0.0004
#> [2,] -0.0026 0.0034 0.0013
#> [3,] -0.0004 0.0013 0.0055

These are the ratios of correct confidence intervals to naive ones:

with(bladder.cox2, diag(var)/diag(naive.var)) |> sqrt()
#> [1] 1.24449 1.22309 1.05576

We might try dropping the non-significant size variable:

#remove non-significant size variable:
bladder.cox3 = bladder.cox2 |> update(. ~ . - size)
summary(bladder.cox3)
#> Call:
#> coxph(formula = surv ~ tx + num, data = bladder, cluster = id)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) robust se z Pr(>|z|)
#> tx -0.4117 0.6625 0.2003 0.2515 -1.64 0.1017
#> num 0.1700 1.1853 0.0465 0.0564 3.02 0.0026 **
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#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.405 1.08
#> num 1.185 0.844 1.061 1.32
#>
#> Concordance= 0.623 (se = 0.031 )
#> Likelihood ratio test= 14.3 on 2 df, p=8e-04
#> Wald test = 10.2 on 2 df, p=0.006
#> Score (logrank) test = 15.8 on 2 df, p=4e-04, Robust = 10.6 p=0.005
#>
#> (Note: the likelihood ratio and score tests assume independence of
#> observations within a cluster, the Wald and robust score tests do not).

Ways to check PH assumption:

• cloglog
• schoenfeld residuals
• interaction with time

7.16. Age as the time scale

See Canchola et al. (2003).
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

8.1. Parametric Survival Models

8.1.1. Exponential Distribution

• The exponential distribution is the basic distribution for survival analysis.

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡

log 𝑓(𝑡) = log𝜆 − 𝜆𝑡
𝐹(𝑡) = 1 − 𝑒−𝜆𝑡

S(𝑡) = 𝑒−𝜆𝑡

Λ(𝑡) = − log S(𝑡)
= 𝜆𝑡

𝜆(𝑡) = 𝜆
E(𝑇 ) = 𝜆−1

8.1.2. Weibull Distribution

Using the Kalbfleisch and Prentice (2002) notation:

𝑓(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝑒−(𝜆𝑡)𝑝

𝐹(𝑡) = 1 − 𝑒−(𝜆𝑡)𝑝

S(𝑡) = 𝑒−(𝜆𝑡)𝑝

𝜆(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1

Λ(𝑡) = (𝜆𝑡)𝑝

logΛ(𝑡) = 𝑝 log𝜆𝑡
= 𝑝 log𝜆 + 𝑝 log 𝑡

E(𝑇 ) = 𝜆−1 ⋅ Γ(1 + 1
𝑝
)
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INFO Note

Recall from calculus:

• Γ(𝑡) def= ∫∞
𝑢=0

𝑢𝑡−1𝑒−𝑢𝑑𝑢

• Γ(𝑡) = (𝑡 − 1)! for integers 𝑡 ∈ ℤ

• It is implemented by the gamma() function in R.
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Here are some Weibull density functions, with 𝜆 = 1 and 𝑝 varying:

library(ggplot2)
lambda = 1
ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) dweibull(x, shape = 0.25, scale = 1/lambda)) +

geom_function(
aes(col = "0.5"),
fun = \(x) dweibull(x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) dweibull(x, shape = 1, scale = 1/lambda)) +

geom_function(
aes(col = "1.5"),
fun = \(x) dweibull(x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) dweibull(x, shape = 2, scale = 1/lambda)) +

geom_function(
aes(col = "5"),
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fun = \(x) dweibull(x, shape = 5, scale = 1/lambda)) +
theme_bw() +
xlim(0, 2.5) +
ylab("f(t)") +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(
title = "p",
label.theme =

element_text(
size = 12)))
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Figure 8.1.: Density functions for Weibull distribution

8.1.2.1. Properties of Weibull hazard functions

Theorem 8.1. If 𝑇 has a Weibull distribution, then:

• When 𝑝 = 1, the Weibull distribution simplifies to the exponential distribution
• When 𝑝 > 1, the hazard is increasing: ℎ′(𝑡) > 0
• When 𝑝 < 1, the hazard is decreasing: ℎ′(𝑡) < 0
• logΛ(𝑡) is a straight line relative to log 𝑡: logΛ(𝑡) = 𝑝 log𝜆 + 𝑝 log 𝑡

Exercise 8.1. Prove Theorem 8.1.
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The Weibull distribution provides more flexibility than the exponential. Figure 8.2 shows
some Weibull hazard functions, with 𝜆 = 1 and 𝑝 varying:

library(ggplot2)
library(eha)
lambda = 1

ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) hweibull(x, shape = 0.25, scale = 1/lambda)) +

geom_function(
aes(col = "0.5"),
fun = \(x) hweibull(x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) hweibull(x, shape = 1, scale = 1/lambda)) +

geom_function(
aes(col = "1.5"),
fun = \(x) hweibull(x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) hweibull(x, shape = 2, scale = 1/lambda)) +

theme_bw() +
xlim(0, 2.5) +
ylab(expr(lambda)) +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(
title = "p",
label.theme =

element_text(
size = 12)))
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Figure 8.2.: Hazard functions for Weibull distribution

library(ggplot2)
lambda = 1

ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) pweibull(lower = FALSE, x, shape = 0.25, scale = 1/lambda)) +

geom_function(
aes(col = "0.5"),
fun = \(x) pweibull(lower = FALSE, x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) pweibull(lower = FALSE, x, shape = 1, scale = 1/lambda)) +

geom_function(
aes(col = "1.5"),
fun = \(x) pweibull(lower = FALSE, x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) pweibull(lower = FALSE, x, shape = 2, scale = 1/lambda)) +

theme_bw() +
xlim(0, 2.5) +
ylab("S(t)") +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(
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title = "p",
label.theme =

element_text(
size = 12)))

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5
x

S(t)

p 0.25 0.5 1 1.5 2

Figure 8.3.: Survival functions for Weibull distribution

8.1.3. Exponential Regression

For each subject 𝑖, define a linear predictor:

𝜂( ̃𝑥) = 𝛽0 + (𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝)
𝜆(𝑡| ̃𝑥) = exp{𝜂( ̃𝑥)}

𝜆0
def= 𝜆(𝑡| ̃0)

= exp{𝜂( ̃0)}

= exp{𝛽0 + (𝛽1 ⋅ 0 + ⋯ + 𝛽𝑝 ⋅ 0)}
= exp{𝛽0 + 0}
= exp{𝛽0}

We let the linear predictor have a constant term, and when there are no additional predictors
the hazard is 𝜆 = exp{𝛽0}. This has a log link as in a generalized linear model. Since the
hazard does not depend on 𝑡, the hazards are (trivially) proportional.

8.1.4. Accelerated Failure Time

Previously, we assumed the hazards were proportional; that is, the covariates multiplied
the baseline hazard function:
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ℎ(𝑇 = 𝑡|𝑋 = 𝑥) def= 𝑝(𝑇 = 𝑡|𝑋 = 𝑥, 𝑇 ≥ 𝑡)
= 𝜆(𝑡|𝑋 = 0) ⋅ exp{𝜂(𝑥)}
= 𝜆(𝑡|𝑋 = 0) ⋅ 𝜃(𝑥)
= 𝜆0(𝑡) ⋅ 𝜃(𝑥)

and correspondingly,

Λ(𝑡|𝑥) = 𝜃(𝑥)Λ0(𝑡)
S(𝑡|𝑥) = exp{−Λ(𝑡|𝑥)}

= exp{−𝜃(𝑥) ⋅ Λ0(𝑡)}

= (exp{−Λ0(𝑡)})
𝜃(𝑥)

= (S0(𝑡))
𝜃(𝑥)

An alternative modeling assumption would be

S(𝑡|𝑋 = 𝑥) = S0(𝑡 ⋅ 𝜃(𝑥))

where 𝜃(𝑥) = exp{𝜂(𝑥)}, 𝜂(𝑥) = 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝, and S0(𝑡) = P(𝑇 ≥ 𝑡|𝑋 = 0) is the base
survival function.

Then

E[𝑇 |𝑋 = 𝑥] = ∫
∞

𝑡=0
S(𝑡|𝑥)𝑑𝑡

= ∫
∞

𝑡=0
S0(𝑡 ⋅ 𝜃(𝑥))𝑑𝑡

= ∫
∞

𝑢=0
S0(𝑢)𝑑𝑢 ⋅ 𝜃(𝑥)−1

= 𝜃(𝑥)−1 ⋅ ∫
∞

𝑢=0
S0(𝑢)𝑑𝑢

= 𝜃(𝑥)−1 ⋅ E[𝑇 |𝑋 = 0]

So the mean of 𝑇 given 𝑋 = 𝑥 is the baseline mean divided by 𝜃(𝑥) = exp{𝜂(𝑥)}.

This modeling strategy is called an accelerated failure time model, because covariates cause
uniform acceleration (or slowing) of failure times.

Additionally:

Λ(𝑡|𝑥) = Λ0(𝜃(𝑥) ⋅ 𝑡)
𝜆(𝑡|𝑥) = 𝜃(𝑥) ⋅ 𝜆0(𝜃(𝑥) ⋅ 𝑡)

If the base distribution is exponential with parameter 𝜆 then

S(𝑡|𝑥) = exp{−𝜆 ⋅ 𝑡𝜃(𝑥)}
= [exp{−𝜆𝑡}]𝜃(𝑥)
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which is an exponential model with base hazard multiplied by 𝜃(𝑥), which is also the
proportional hazards model.

In terms of the log survival time 𝑌 = log𝑇 the model can be written as

𝑌 = 𝛼 − 𝜂 +𝑊
𝛼 = − log𝜆

where 𝑊 has the extreme value distribution. The estimated parameter 𝜆 is the intercept
and the other coefficients are those of 𝜂, which will be the opposite sign of those for coxph.

For a Weibull distribution, the hazard function and the survival function are

𝜆(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1

S(𝑡) = 𝑒−(𝜆𝑡)𝑝

We can construct a proportional hazards model by using a linear predictor 𝜂𝑖 without
constant term and letting 𝜃𝑖 = 𝑒𝜂𝑖 we have

𝜆(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝜃𝑖

A distribution with 𝜆(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝜃𝑖 is a Weibull distribution with parameters 𝜆∗ = 𝜆𝜃1/𝑝
𝑖

and 𝑝 so the survival function is

𝑆∗(𝑡) = 𝑒−(𝜆∗𝑡)𝑝

= 𝑒−(𝜆𝜃1/𝑝𝑡)𝑝

= S(𝑡𝜃1/𝑝)

so this is also an accelerated failure time model.

In terms of the log survival time 𝑌 = log𝑇 the model can be written as

𝑌 = 𝛼 − 𝜎𝜂 + 𝜎𝑊
𝛼 = − log𝜆
𝜎 = 1/𝑝

where 𝑊 has the extreme value distribution. The estimated parameter 𝜆 is the intercept and
the other coefficients are those of 𝜂, which will be the opposite sign of those for coxph.

These AFT models are log-linear, meaning that the linear predictor has a log link. The
exponential and the Weibull are the only log-linear models that are simultaneously propor-
tional hazards models. Other parametric distributions can be used for survival regression
either as a proportional hazards model or as an accelerated failure time model.
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8. Parametric survival models

8.1.5. Dataset: Leukemia treatments

Remission survival times on 42 leukemia patients, half on new treatment, half on standard
treatment.

This is the same data as the drug6mp data from KMsurv, but with two other variables and
without the pairing.

library(haven)
library(survival)
anderson =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets",
"/surv2datasets/anderson.dta") |>

read_dta() |>
mutate(

status = status |>
case_match(
1 ~ "relapse",
0 ~ "censored"

),
sex = sex |>

case_match(
0 ~ "female",
1 ~ "male"

),

rx = rx |>
case_match(
0 ~ "new",
1 ~ "standard"

),

surv = Surv(time = survt,event = (status == "relapse"))
)

print(anderson)

8.1.5.1. Cox semi-parametric model

anderson.cox0 = coxph(
formula = surv ~ rx,
data = anderson)

summary(anderson.cox0)
#> Call:
#> coxph(formula = surv ~ rx, data = anderson)
#>
#> n= 42, number of events= 30
#>
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#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxstandard 1.572 4.817 0.412 3.81 0.00014 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxstandard 4.82 0.208 2.15 10.8
#>
#> Concordance= 0.69 (se = 0.041 )
#> Likelihood ratio test= 16.4 on 1 df, p=5e-05
#> Wald test = 14.5 on 1 df, p=1e-04
#> Score (logrank) test = 17.2 on 1 df, p=3e-05

8.1.5.2. Weibull parametric model

anderson.weib <- survreg(
formula = surv ~ rx,
data = anderson,
dist = "weibull")

summary(anderson.weib)
#>
#> Call:
#> survreg(formula = surv ~ rx, data = anderson, dist = "weibull")
#> Value Std. Error z p
#> (Intercept) 3.516 0.252 13.96 < 2e-16
#> rxstandard -1.267 0.311 -4.08 4.5e-05
#> Log(scale) -0.312 0.147 -2.12 0.034
#>
#> Scale= 0.732
#>
#> Weibull distribution
#> Loglik(model)= -106.6 Loglik(intercept only)= -116.4
#> Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
#> Number of Newton-Raphson Iterations: 5
#> n= 42

8.1.5.3. Exponential parametric model

anderson.exp <- survreg(
formula = surv ~ rx,
data = anderson,
dist = "exp")

summary(anderson.exp)
#>
#> Call:
#> survreg(formula = surv ~ rx, data = anderson, dist = "exp")
#> Value Std. Error z p
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8. Parametric survival models

#> (Intercept) 3.686 0.333 11.06 < 2e-16
#> rxstandard -1.527 0.398 -3.83 0.00013
#>
#> Scale fixed at 1
#>
#> Exponential distribution
#> Loglik(model)= -108.5 Loglik(intercept only)= -116.8
#> Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05
#> Number of Newton-Raphson Iterations: 4
#> n= 42

8.1.5.4. Diagnostic - complementary log-log survival plot

library(survminer)
survfit(
formula = surv ~ rx,
data = anderson) |>
ggsurvplot(fun = "cloglog")
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If the cloglog plot is linear, then a Weibull model may be ok.

8.2. Combining left-truncation and interval-censoring

From [https://stat.ethz.ch/pipermail/r-help/2015-August/431733.html]:

coxph does left truncation but not left (or interval) censoring survreg does
interval censoring but not left truncation (or time dependent covariates).

• Terry Therneau, August 31, 2015
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9. Summary of Regression Modeling
Concepts

9.1. We use different probability models for different data types

• Binary outcomes: Bernoulli models
• Event rate outcomes: Poisson/Negative binomial models
• Time-to-event outcomes: Survival models
• Catch-all: Gaussian models

9.2. We use different link functions to connect these models with
covariates

• Bernoulli models: logit link
• Count models: log link + offset
• Survival models: log link
• Gaussian models: identity link

Figure 9.1 sketches how the various models we have studied have analogous structures. To
do: convert this sketch into a nicely formatted figure.

377



9. Summary of Regression Modeling Concepts

Figure 9.1.: Parallel Model Structures

9.3. We use maximum likelihood estimation to fit models to data

• likelihood
• log-likelihood
• score function
• hessian

9.4. We use asymptotic normality of MLEs to quantify
uncertainty about models

• observed information matrix
• expected information matrix
• standard error
• confidence intervals
• p-values

9.5. We use (log) likelihood ratios to compare models

Sometimes we adjust these comparisons for model size (AIC, BIC)

378



References

Agresti, Alan. 2010. Analysis of Ordinal Categorical Data. Vol. 656. John Wiley & Sons.
———. 2012. Categorical Data Analysis. Vol. 792. John Wiley & Sons. https://www.

wiley.com/en-us/Categorical+Data+Analysis%2C+3rd+Edition-p-9780470463635.
———. 2015. Foundations of Linear and Generalized Linear Models. John Wiley

& Sons. https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+
Linear+Models-p-9781118730034.

———. 2018. An Introduction to Categorical Data Analysis. John Wiley & Sons.
https://www.wiley.com/en-us/An+Introduction+to+Categorical+Data+Analysis%
2C+3rd+Edition-p-9781119405283.

Anderson, Edgar. 1935. “The Irises of the Gaspe Peninsula.” Bulletin of American Iris
Society 59: 2–5.

Andrews, David F, and Agnes M Herzberg. 2012. Data: A Collection of Problems from
Many Fields for the Student and Research Worker. Springer Science & Business Media.
https://link.springer.com/book/10.1007/978-1-4612-5098-2.

Aragon, Tomas J. 2018. “Population Health Thinking with Bayesian Networks.” https:
//escholarship.org/uc/item/8000r5m5.

Aragon, Tomas J. 2013. Applied Epidemiology Using R. Online. https://tbrieder.org/
epidata/course_reading/e_aragon.pdf.

———. 2017. Population Health Data Science with R: Transforming Data into Actionable
Knowledge. Online. https://bookdown.org/medepi/phds/.

Bache, Stefan Milton, and Hadley Wickham. 2022. Magrittr: A Forward-Pipe Operator for
r. https://CRAN.R-project.org/package=magrittr.

Banerjee, Sudipto, and Anindya Roy. 2014. Linear Algebra and Matrix Analysis for
Statistics. Vol. 181. Crc Press Boca Raton. https://www.routledge.com/Linear-
Algebra-and-Matrix-Analysis-for-Statistics/Banerjee-Roy/p/book/9781420095388.

Banner, Adrian D. 2007. The Calculus Lifesaver : All the Tools You Need to Excel at Calculus.
A Princeton Lifesaver Study Guide. Princeton, New Jersey: Princeton University Press.
https://press.princeton.edu/books/paperback/9780691130880/the-calculus-lifesaver.

Batra, Neale, ed. 2024. The Epidemiologist R Handbook. Online. https:
//www.epirhandbook.com/.

Bliss, C. I. 1935. “The Calculation of the Dosage-Mortality Curve.” Annals of Applied
Biology 22 (1): 134–67. https://doi.org/10.1111/j.1744-7348.1935.tb07713.x.

Bolker, Benjamin M. 2008. Ecological Models and Data in R. 1st ed. Princeton: Princeton
University Press.

Box, George E. P., and Norman Richard. Draper. 1987. Empirical Model-Building and
Response Surfaces. Wiley Series in Probability and Mathematical Statistics. Applied
Probability and Statistics. New York: Wiley.

Canchola, Alison J, Susan L Stewart, Leslie Bernstein, Dee W West, Ronald K Ross, Dennis
Deapen, Richard Pinder, et al. 2003. “Cox Regression Using Different Time-Scales.”
Western Users of SAS Software. https://www.lexjansen.com/wuss/2003/DataAnalysis/i-
cox_time_scales.pdf.

Cannell, Brad, and Melvin Livingston. 2024. R for Epidemiology. Online. https://www.
r4epi.com/.

379

https://www.wiley.com/en-us/Categorical+Data+Analysis%2C+3rd+Edition-p-9780470463635
https://www.wiley.com/en-us/Categorical+Data+Analysis%2C+3rd+Edition-p-9780470463635
https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034
https://www.wiley.com/en-us/Foundations+of+Linear+and+Generalized+Linear+Models-p-9781118730034
https://www.wiley.com/en-us/An+Introduction+to+Categorical+Data+Analysis%2C+3rd+Edition-p-9781119405283
https://www.wiley.com/en-us/An+Introduction+to+Categorical+Data+Analysis%2C+3rd+Edition-p-9781119405283
https://link.springer.com/book/10.1007/978-1-4612-5098-2
https://escholarship.org/uc/item/8000r5m5
https://escholarship.org/uc/item/8000r5m5
https://tbrieder.org/epidata/course_reading/e_aragon.pdf
https://tbrieder.org/epidata/course_reading/e_aragon.pdf
https://bookdown.org/medepi/phds/
https://CRAN.R-project.org/package=magrittr
https://www.routledge.com/Linear-Algebra-and-Matrix-Analysis-for-Statistics/Banerjee-Roy/p/book/9781420095388
https://www.routledge.com/Linear-Algebra-and-Matrix-Analysis-for-Statistics/Banerjee-Roy/p/book/9781420095388
https://press.princeton.edu/books/paperback/9780691130880/the-calculus-lifesaver
https://www.epirhandbook.com/
https://www.epirhandbook.com/
https://doi.org/10.1111/j.1744-7348.1935.tb07713.x
https://www.lexjansen.com/wuss/2003/DataAnalysis/i-cox_time_scales.pdf
https://www.lexjansen.com/wuss/2003/DataAnalysis/i-cox_time_scales.pdf
https://www.r4epi.com/
https://www.r4epi.com/


References

Casella, George, and Roger Berger. 2002. Statistical Inference. 2nd ed. Cengage Learning.
https://www.cengage.com/c/statistical-inference-2e-casella-berger/9780534243128/.

Chang, Winston. 2024. R Graphics Cookbook: Practical Recipes for Visualizing Data.
O’Reilly Media. https://r-graphics.org/.

Chatterjee, Samprit, and Ali S Hadi. 2015. Regression Analysis by Example. John Wiley
& Sons. https://www.wiley.com/en-us/Regression+Analysis+by+Example%2C+4th+
Edition-p-9780470055458.

Cheng, Eugenia. 2025. “Opinion | How Math Turned Me from a D.E.I. Skeptic to a
Supporter.” The New York Times. https://www.nytimes.com/2025/09/05/opinion/
math-dei.html.

Clayton, David, and Michael Hills. 2013. Statistical Models in Epidemiology. Ox-
ford University Press. https://global.oup.com/academic/product/statistical-models-in-
epidemiology-9780199671182.

Congdon, Peter D. 2020. Bayesian Hierarchical Models: With Applications Using R, Second
Edition. 2nd edition. Milton: CRC Press.

Copelan, Edward A, James C Biggs, James M Thompson, Pamela Crilley, Jeff Szer, John P
Klein, Neena Kapoor, Belinda R Avalos, Isabel Cunningham, and Kerry Atkinson. 1991.
“Treatment for Acute Myelocytic Leukemia with Allogeneic Bone Marrow Transplanta-
tion Following Preparation with BuCy2.” https://doi.org/10.1182/blood.V78.3.838.838.

Cowles, Mary Kathryn. 2013. Applied Bayesian Statistics: With R and OpenBUGS
Examples. Vol. 98. Springer Texts in Statistics. New York, NY: Springer Nature.
https://doi.org/10.1007/978-1-4614-5696-4.

Dalgaard, Peter. 2008. Introductory Statistics with r. New York, NY: Springer New York.
https://link.springer.com/book/10.1007/978-0-387-79054-1.

Diggle, Peter, Scott Zeger, Patrick Heagerty, and Kung-Yee Liang. 2013. Analysis of
Longitudinal Data. Second edition. Vol. 25. Oxford Statistical Science Series. United
Kingdom: Oxford University Press.

Dobson, Annette J, and Adrian G Barnett. 2018. An Introduction to Generalized Linear
Models. 4th ed. CRC press. https://doi.org/10.1201/9781315182780.

Dunn, Peter K, and Gordon K Smyth. 2018. Generalized Linear Models with Examples in
R. Vol. 53. Springer. https://link.springer.com/book/10.1007/978-1-4419-0118-7.

Edelmann, Dominic. 2019. “Generalized Linear Models with Examples in r. Peter
k.dunnand Gordon k.smyth (2018). Berlin, Germany: Springer Science+business
Media, Pp. 562 Pages, ISBN: 978‐1‐4419‐0118‐7.” Biometrical Journal 62 (1): 253–53.
https://doi.org/10.1002/bimj.201900264.

Efron, Bradley, and David V Hinkley. 1978. “Assessing the Accuracy of the Maximum
Likelihood Estimator: Observed Versus Expected Fisher Information.” Biometrika 65
(3): 457–83.

Faraway, Julian J. 2016. Extending the Linear Model with r: Generalized Linear, Mixed
Effects and Nonparametric Regression Models. 2nd ed. Chapman; Hall/CRC. https:
//doi.org/10.1201/9781315382722.

———. 2025. Linear Models with R. https://www.routledge.com/Linear-Models-with-
R/Faraway/p/book/9781032583983.

Fay, Colin, Sébastien Rochette, Vincent Guyader, and Cervan Girard. 2021. Engineering
Production-Grade Shiny Apps. Chapman; Hall/CRC. https://engineering-shiny.org/.

Fieller, Nick. 2016. Basics of Matrix Algebra for Statistics with R. Chapman; Hall/CRC.
https://doi.org/10.1201/9781315370200.

Fitzmaurice, Garrett M, Marie Davidian, Geert Verbeke, and Geert Molenberghs. 2009.
Longitudinal Data Analysis. Chapman & Hall/CRC Handbooks of Modern Statistical
Methods. Boca Raton: CRC Press. https://doi.org/10.1201/9781420011579.

Fitzmaurice, Garrett M, Nan M Laird, and James H Ware. 2012. Applied Longitudinal

380

https://www.cengage.com/c/statistical-inference-2e-casella-berger/9780534243128/
https://r-graphics.org/
https://www.wiley.com/en-us/Regression+Analysis+by+Example%2C+4th+Edition-p-9780470055458
https://www.wiley.com/en-us/Regression+Analysis+by+Example%2C+4th+Edition-p-9780470055458
https://www.nytimes.com/2025/09/05/opinion/math-dei.html
https://www.nytimes.com/2025/09/05/opinion/math-dei.html
https://global.oup.com/academic/product/statistical-models-in-epidemiology-9780199671182
https://global.oup.com/academic/product/statistical-models-in-epidemiology-9780199671182
https://doi.org/10.1182/blood.V78.3.838.838
https://doi.org/10.1007/978-1-4614-5696-4
https://link.springer.com/book/10.1007/978-0-387-79054-1
https://doi.org/10.1201/9781315182780
https://link.springer.com/book/10.1007/978-1-4419-0118-7
https://doi.org/10.1002/bimj.201900264
https://doi.org/10.1201/9781315382722
https://doi.org/10.1201/9781315382722
https://www.routledge.com/Linear-Models-with-R/Faraway/p/book/9781032583983
https://www.routledge.com/Linear-Models-with-R/Faraway/p/book/9781032583983
https://engineering-shiny.org/
https://doi.org/10.1201/9781315370200
https://doi.org/10.1201/9781420011579


References

Analysis. 2nd ed. Vol. 998. Wiley Series in Probability and Statistics. Chicester: Wiley.
https://doi.org/10.1002/9781119513469.

Fox, John. 2015. Applied Regression Analysis and Generalized Linear Models. Sage
publications.

Gałecki, Andrzej T., and Tomasz. Burzykowski. 2013. Linear Mixed-Effects Models Using
R : A Step-by-Step Approach. Springer Texts in Statistics. New York, NY: Springer.
https://doi.org/10.1007/978-1-4614-3900-4.

Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Analytical Methods for Social Research. Cambridge, MA:
Cambridge University Press.

Grambsch, Patricia M, and Terry M Therneau. 1994. “Proportional Hazards Tests
and Diagnostics Based on Weighted Residuals.” Biometrika 81 (3): 515–26. https:
//doi.org/10.1093/biomet/81.3.515.

Greenland, Sander. 2014. “Regression Methods for Epidemiological Analysis.” In Handbook
of Epidemiology, edited by Wolfgang Ahrens and Iris Pigeot, 1087–1159. New York, NY:
Springer New York. https://doi.org/10.1007/978-0-387-09834-0_17.

Grinberg, Raffi. 2017. The Real Analysis Lifesaver: All the Tools You Need to Understand
Proofs. 1st ed. Princeton Lifesaver Study Guides. Princeton: Princeton University
Press. https://press.princeton.edu/books/paperback/9780691172934/the-real-analysis-
lifesaver.

Hardin, James W, and Joseph M Hilbe. 2018. Generalized Linear Models and Extensions.
4th ed. Stata Press.

Harrell, Frank E. 2015. Regression Modeling Strategies: With Applications to Linear Models,
Logistic Regression, and Survival Analysis. 2nd ed. Springer. https://doi.org/10.1007/
978-3-319-19425-7.

Hedeker, Donald R., and Robert D. Gibbons. 2006. Longitudinal Data Analysis. Wiley
Series in Probability and Statistics. Hoboken, N.J: Wiley-Interscience.

Hobbs, N. Thompson, and Mevin B Hooten. 2015. Bayesian Models: A Statistical Primer
for Ecologists. STU - Student edition. Princeton: Princeton University Press.

Hogg, Robert V., Elliot A. Tanis, and Dale L. Zimmerman. 2015. Probability and Statistical
Inference. Ninth edition. Boston: Pearson.

Hosmer, David W, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied Logistic
Regression. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/
9781118548387.

Hulley, Stephen, Deborah Grady, Trudy Bush, Curt Furberg, David Herrington, Betty
Riggs, Eric Vittinghoff, for the Heart, and Estrogen/progestin Replacement Study
(HERS) Research Group. 1998. “Randomized Trial of Estrogen Plus Progestin for
Secondary Prevention of Coronary Heart Disease in Postmenopausal Women.” JAMA :
The Journal of the American Medical Association 280 (7): 605–13.

James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. 2013. An
Introduction to Statistical Learning. Vol. 112. Springer. https://www.statlearning.com/.

Jewell, Nicholas P. 2003. Statistics for Epidemiology. Oxford, UK: Chapman; Hall/CRC.
https://www.routledge.com/Statistics-for-Epidemiology/Jewell/p/book/9781584884330.

Jewell, Nicholas P, and Alan E Hubbard. 2016. Analysis of Longitudinal Studies in
Epidemiology. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis.
https://books.google.com/books?id=-LoLPQAACAAJ.

Jiang, Jiming, and Thuan Nguyen. 2021. Linear and Generalized Linear Mixed Models
and Their Applications. Second edition. Springer Series in Statistics. New York, NY:
Springer. https://doi.org/10.1007/978-1-0716-1282-8.

Kalbfleisch, John D, and Ross L Prentice. 2011. The Statistical Analysis of Failure Time
Data. John Wiley & Sons.

381

https://doi.org/10.1002/9781119513469
https://doi.org/10.1007/978-1-4614-3900-4
https://doi.org/10.1093/biomet/81.3.515
https://doi.org/10.1093/biomet/81.3.515
https://doi.org/10.1007/978-0-387-09834-0_17
https://press.princeton.edu/books/paperback/9780691172934/the-real-analysis-lifesaver
https://press.princeton.edu/books/paperback/9780691172934/the-real-analysis-lifesaver
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1007/978-3-319-19425-7
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118548387
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118548387
https://www.statlearning.com/
https://www.routledge.com/Statistics-for-Epidemiology/Jewell/p/book/9781584884330
https://books.google.com/books?id=-LoLPQAACAAJ
https://doi.org/10.1007/978-1-0716-1282-8


References

Kaplan, Daniel. 2022. MOSAIC Calculus. www.mosaic-web.org. www.mosaic-web.org1.
Kéry, Marc., Michael. Schaub, and Steven R. Beissinger. 2012. Bayesian Population

Analysis Using WinBUGS : A Hierarchical Perspective. 1st ed. Boston: Academic
Press. https://shop.elsevier.com/books/bayesian-population-analysis-using-winbugs/
kery/978-0-12-387020-9.

Khuri, André I. 2003. Advanced Calculus with Applications in Statistics. John Wiley
& Sons. https://www.wiley.com/en-us/Advanced+Calculus+with+Applications+in+
Statistics%2C+2nd+Edition-p-9780471391043.

Klein, John P, and Melvin L Moeschberger. 2003. Survival Analysis: Techniques for
Censored and Truncated Data. Vol. 1230. Springer. https://link.springer.com/book/10.
1007/b97377.

Kleinbaum, David G, and Mitchel Klein. 2010. Logistic Regression: A Self-Learning Text.
3rd ed. Springer. https://link.springer.com/book/10.1007/978-1-4419-1742-3.

———. 2012. Survival Analysis: A Self-Learning Text. 3rd ed. Springer. https://link.
springer.com/book/10.1007/978-1-4419-6646-9.

Kleinbaum, David G., Lawrence L. Kupper, and Hal Morgenstern. 1982. Epidemiologic
Research : Principles and Quantitative Methods. Belmont, Calif: Lifetime Learning
Publications.

———. 1983. Solutions Manual for Epidemiologic Research : Principles and Quantitative
Methods. Belmont, Calif: Lifetime Learning Publications.

Kleinbaum, David G, Lawrence L Kupper, Azhar Nizam, K Muller, and ES Rosenberg. 2014.
Applied Regression Analysis and Other Multivariable Methods. 5th ed. Cengage Learn-
ing. https://www.cengage.com/c/applied-regression-analysis-and-other-multivariable-
methods-5e-kleinbaum/9781285051086/.

Kleinman, Ken, and Nicholas J Horton. 2009. SAS and r: Data Management, Statistical
Analysis, and Graphics. Chapman; Hall/CRC. https://www.routledge.com/SAS-and-
R-Data-Management-Statistical-Analysis-and-Graphics-Second-Edition/Kleinman-
Horton/p/book/9781466584495.

Knuth, Donald E. 1984. “Literate Programming.” Comput. J. 27 (2): 97–111. https:
//doi.org/10.1093/comjnl/27.2.97.

Korner-Nievergelt, Fränzi, and Fränzi Korner-Nievergelt. 2015. Bayesian Data Analysis in
Ecology Using Linear Models with R, BUGS, and Stan. 1st ed. Amsterdam, [Netherlands:
Academic Press.

Kuhn, Max, and Julia Silge. 2022. Tidy Modeling with r. ” O’Reilly Media, Inc.”.
https://www.tmwr.org/.

Kutner, Michael H, Christopher J Nachtsheim, John Neter, and William Li. 2005. Applied
Linear Statistical Models. McGraw-Hill.

Kutoyants, Yury A. 2023. Introduction to the Statistics of Poisson Processes and Applications.
Springer Nature. https://link.springer.com/book/10.1007/978-3-031-37054-0.

Lawrance, Rachael, Evgeny Degtyarev, Philip Griffiths, Peter Trask, Helen Lau, Denise
D’Alessio, Ingolf Griebsch, Gudrun Wallenstein, Kim Cocks, and Kaspar Rufibach. 2020.
“What Is an Estimand, and How Does It Relate to Quantifying the Effect of Treatment
on Patient-Reported Quality of Life Outcomes in Clinical Trials?” Journal of Patient-
Reported Outcomes 4 (1): 1–8. https://link.springer.com/article/10.1186/s41687-020-
00218-5.

Lee, James. 1994. “Odds Ratio or Relative Risk for Cross-Sectional Data?” International
Journal of Epidemiology 23 (1): 201–3. https://doi.org/10.1093/ije/23.1.201.

Lehmann, E. L. 1999. Elements of Large-Sample Theory. Springer Texts in Statistics. New
York: Springer. https://doi.org/10.1007/b98855.

1https://www.mosaic-web.org

382

https://shop.elsevier.com/books/bayesian-population-analysis-using-winbugs/kery/978-0-12-387020-9
https://shop.elsevier.com/books/bayesian-population-analysis-using-winbugs/kery/978-0-12-387020-9
https://www.wiley.com/en-us/Advanced+Calculus+with+Applications+in+Statistics%2C+2nd+Edition-p-9780471391043
https://www.wiley.com/en-us/Advanced+Calculus+with+Applications+in+Statistics%2C+2nd+Edition-p-9780471391043
https://link.springer.com/book/10.1007/b97377
https://link.springer.com/book/10.1007/b97377
https://link.springer.com/book/10.1007/978-1-4419-1742-3
https://link.springer.com/book/10.1007/978-1-4419-6646-9
https://link.springer.com/book/10.1007/978-1-4419-6646-9
https://www.cengage.com/c/applied-regression-analysis-and-other-multivariable-methods-5e-kleinbaum/9781285051086/
https://www.cengage.com/c/applied-regression-analysis-and-other-multivariable-methods-5e-kleinbaum/9781285051086/
https://www.routledge.com/SAS-and-R-Data-Management-Statistical-Analysis-and-Graphics-Second-Edition/Kleinman-Horton/p/book/9781466584495
https://www.routledge.com/SAS-and-R-Data-Management-Statistical-Analysis-and-Graphics-Second-Edition/Kleinman-Horton/p/book/9781466584495
https://www.routledge.com/SAS-and-R-Data-Management-Statistical-Analysis-and-Graphics-Second-Edition/Kleinman-Horton/p/book/9781466584495
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://www.tmwr.org/
https://link.springer.com/book/10.1007/978-3-031-37054-0
https://link.springer.com/article/10.1186/s41687-020-00218-5
https://link.springer.com/article/10.1186/s41687-020-00218-5
https://doi.org/10.1093/ije/23.1.201
https://doi.org/10.1007/b98855
https://www.mosaic-web.org


References

Lumley, Thomas. 2010. Complex Surveys : A Guide to Analysis Using R. Wiley Series in Sur-
vey Methodology. Hoboken, N.J: John Wiley. https://doi.org/10.1002/9780470580066.

McCullagh, Peter, and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. Routledge.
https://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf.

McCulloch, Charles E, Searle Shayle R, and John M Neuhaus. 2008. Generalized, Linear,
and Mixed Models. 2nd ed. Vol. 651. John Wiley & Sons.

McElreath, Richard. 2020. Statistical Rethinking : A Bayesian Course with Examples in R
and Stan. Second edition. Chapman & Hall/CRC Texts in Statistical Science Series.
Boca Raton, FL: CRC Press.

McLachlan, Geoffrey J, and Thriyambakam Krishnan. 2007. The EM Algorithm and
Extensions. 2nd ed. John Wiley & Sons. https://doi.org/10.1002/9780470191613.

Miller, Steven J. 2016. The Probability Lifesaver: Calculus Review Problems.
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/
index.htm#:~:text=http%3A//web.williams.edu/Mathematics/sjmiller/public_html/
probabilitylifesaver/supplementalchap_calcreview.pdf.

———. 2017. The Probability Lifesaver : All the Tools You Need to Understand Chance.
A Princeton Lifesaver Study Guide. Princeton: Princeton University Press. https:
//press.princeton.edu/books/hardcover/9780691149547/the-probability-lifesaver.

Molenberghs, Geert., and Geert. Verbeke. 2005. Models for Discrete Longitudinal Data.
Springer Series in Statistics. New York: Springer Science+Business Media, Inc. https:
//doi.org/10.1007/0-387-28980-1.

Moore, Dirk F. 2016. Applied Survival Analysis Using R. Vol. 473. Springer. https:
//doi.org/10.1007/978-3-319-31245-3.

Muenchen, Robert A. 2011. R for SAS and SPSS Users. Springer Science & Business
Media. https://link.springer.com/book/10.1007/978-1-4614-0685-3.

Myatt, Mark. 2022. Practical R for Epidemiologists. Online. https://practical-r.org/index.
html.

Nahhas, Ramzi W. 2023. An Introduction to r for Research. https://bookdown.org/
rwnahhas/IntroToR/.

———. 2024. Introduction to Regression Methods for Public Health Using R. CRC Press.
https://www.bookdown.org/rwnahhas/RMPH/.

Nelder, John Ashworth, and Robert WM Wedderburn. 1972. “Generalized Linear Models.”
Journal of the Royal Statistical Society Series A: Statistics in Society 135 (3): 370–84.

Newey, Whitney K, and Daniel McFadden. 1994. “Large Sample Estimation and Hypothesis
Testing.” In Handbook of Econometrics, edited by Robert Engle and Dan McFadden,
4:2111–2245. Elsevier. https://doi.org/https://doi.org/10.1016/S1573-4412(05)80005-4.

Norton, Edward C., Bryan E. Dowd, Melissa M. Garrido, and Matthew L. Maciejew-
ski. 2024. “Requiem for Odds Ratios.” Health Services Research 59 (4): e14337.
https://doi.org/https://doi.org/10.1111/1475-6773.14337.

Pebesma, Edzer, and Roger Bivand. 2023. Spatial Data Science: With Applications in R.
Boca Raton: Chapman; Hall/CRC. https://doi.org/10.1201/9780429459016.

Pohl, Moritz, Lukas Baumann, Rouven Behnisch, Marietta Kirchner, Johannes Krisam,
and Anja Sander. 2021. “Estimands—A Basic Element for Clinical Trials.” Deutsches
Ärzteblatt International 118 (51-52): 883–88. https://doi.org/10.3238/arztebl.m2021.
0373.

Polin, Richard A, William W Fox, and Steven H Abman. 2011. Fetal and Neonatal
Physiology. 4th ed. Elsevier health sciences.

Rawlings, John O., Sastry G. Pantula, and David A. Dickey. 1998. Applied Regression
Analysis : A Research Tool. 2nd ed. Springer Texts in Statistics. New York, NY:
Springer New York. https://doi.org/10.1007/b98890.

Roback, Paul, and Julie Legler. 2021. Beyond Multiple Linear Regression: Applied

383

https://doi.org/10.1002/9780470580066
https://www.utstat.toronto.edu/~brunner/oldclass/2201s11/readings/glmbook.pdf
https://doi.org/10.1002/9780470191613
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/index.htm#:~:text=http%3A//web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/supplementalchap_calcreview.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/index.htm#:~:text=http%3A//web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/supplementalchap_calcreview.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/index.htm#:~:text=http%3A//web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/supplementalchap_calcreview.pdf
https://press.princeton.edu/books/hardcover/9780691149547/the-probability-lifesaver
https://press.princeton.edu/books/hardcover/9780691149547/the-probability-lifesaver
https://doi.org/10.1007/0-387-28980-1
https://doi.org/10.1007/0-387-28980-1
https://doi.org/10.1007/978-3-319-31245-3
https://doi.org/10.1007/978-3-319-31245-3
https://link.springer.com/book/10.1007/978-1-4614-0685-3
https://practical-r.org/index.html
https://practical-r.org/index.html
https://bookdown.org/rwnahhas/IntroToR/
https://bookdown.org/rwnahhas/IntroToR/
https://www.bookdown.org/rwnahhas/RMPH/
https://doi.org/10.1016/S1573-4412(05)80005-4
https://doi.org/10.1111/1475-6773.14337
https://doi.org/10.1201/9780429459016
https://doi.org/10.3238/arztebl.m2021.0373
https://doi.org/10.3238/arztebl.m2021.0373
https://doi.org/10.1007/b98890


References

Generalized Linear Models and Multilevel Models in r. Chapman; Hall/CRC. https:
//bookdown.org/roback/bookdown-BeyondMLR/.

Rodrigues, Bruno. 2023. Building Reproducible Analytical Pipelines with r. Online.
https://raps-with-r.dev/.

Rosenman, Ray H, Richard J Brand, C David Jenkins, Meyer Friedman, Reuben Straus,
and Moses Wurm. 1975. “Coronary Heart Disease in the Western Collaborative
Group Study: Final Follow-up Experience of 8 1/2 Years.” JAMA 233 (8): 872–77.
https://doi.org/10.1001/jama.1975.03260080034016.

Ross, Kevin. 2022. An Introduction to Bayesian Reasoning and Methods. Online. https:
//bookdown.org/kevin_davisross/bayesian-reasoning-and-methods/.

Rothman, Kenneth J., Timothy L. Lash, Tyler J. VanderWeele, and Sebastien Haneuse.
2021. Modern Epidemiology. Fourth edition. Philadelphia: Wolters Kluwer.

Sackett, David L, Jonathan J Deeks, and Doughs G Altman. 1996. “Down with Odds
Ratios!” BMJ Evidence-Based Medicine 1 (6): 164.

Searle, Shayle R, and Andre I Khuri. 2017. Matrix Algebra Useful for Statistics. John
Wiley & Sons.

Seber, George AF, and Alan J Lee. 2012. Linear Regression Analysis. 2nd ed. John Wiley &
Sons. https://www.wiley.com/en-us/Linear+Regression+Analysis%2C+2nd+Edition-p-
9781118274422.

Selvin, Steve. 2001. Epidemiologic Analysis: A Case-Oriented Approach. Oxford University
Press.

———. 2004. Statistical Analysis of Epidemiologic Data. 3rd ed. Monographs in Epidemi-
ology and Biostatistics ; v. 35. Oxford ; Oxford University Press.

Soch, Joram, ed. 2023. The Book of Statistical Proofs. Zenodo. https://doi.org/10.5281/
ZENODO.4305949.

Suárez, Erick, Cynthia M Pérez, Roberto Rivera, and Melissa N Martı́nez. 2017. Applications
of Regression Models in Epidemiology. John Wiley & Sons.

Van Buuren, Stef. 2018. Flexible Imputation of Missing Data. CRC press. https:
//stefvanbuuren.name/fimd/.

Venables, Bill. 2023. codingMatrices: Alternative Factor Coding Matrices for Linear Model
Formulae (version 0.4.0). https://CRAN.R-project.org/package=codingMatrices.

Verbeke, Geert, and Geert Molenberghs. 2000. Linear Mixed Models for Longitudinal Data.
1st ed. Springer Series in Statistics. New York, NY: SpringerLink (Online service);
Springer. https://doi.org/10.1007/978-1-4419-0300-6.

Vittinghoff, Eric, David V Glidden, Stephen C Shiboski, and Charles E McCulloch. 2012.
Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures
Models. 2nd ed. Springer. https://doi.org/10.1007/978-1-4614-1353-0.

Wakefield, Jon. 2013. Bayesian and Frequentist Regression Methods. 1st ed. 2013. Springer
Series in Statistics. New York, NY: Springer New York.

Weisberg, Sanford. 2005. Applied Linear Regression. Vol. 528. John Wiley & Sons.
Wickham, Hadley. 2019. Advanced r. Chapman; Hall/CRC. https://adv-r.hadley.nz/index.

html.
———. 2021. Mastering Shiny. ” O’Reilly Media, Inc.”. https://mastering-shiny.org/.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino Mc-

Gowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Wickham, Hadley, and Jennifer Bryan. 2023. R Packages. O’Reilly Media, Inc. https://r-
pkgs.org/.

Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data
Science. ” O’Reilly Media, Inc.”. https://r4ds.hadley.nz/.

Wikipedia contributors. 2025. “Statistical Inference — Wikipedia, the Free Encyclopedia.”

384

https://bookdown.org/roback/bookdown-BeyondMLR/
https://bookdown.org/roback/bookdown-BeyondMLR/
https://raps-with-r.dev/
https://doi.org/10.1001/jama.1975.03260080034016
https://bookdown.org/kevin_davisross/bayesian-reasoning-and-methods/
https://bookdown.org/kevin_davisross/bayesian-reasoning-and-methods/
https://www.wiley.com/en-us/Linear+Regression+Analysis%2C+2nd+Edition-p-9781118274422
https://www.wiley.com/en-us/Linear+Regression+Analysis%2C+2nd+Edition-p-9781118274422
https://doi.org/10.5281/ZENODO.4305949
https://doi.org/10.5281/ZENODO.4305949
https://stefvanbuuren.name/fimd/
https://stefvanbuuren.name/fimd/
https://CRAN.R-project.org/package=codingMatrices
https://doi.org/10.1007/978-1-4419-0300-6
https://doi.org/10.1007/978-1-4614-1353-0
https://adv-r.hadley.nz/index.html
https://adv-r.hadley.nz/index.html
https://mastering-shiny.org/
https://doi.org/10.21105/joss.01686
https://r-pkgs.org/
https://r-pkgs.org/
https://r4ds.hadley.nz/


References

https://en.wikipedia.org/w/index.php?title=Statistical_inference&oldid=1304071803.
Wood, Simon N. 2017. Generalized Additive Models: An Introduction with r. chapman;

hall/CRC.
Woodward, Mark. 2013. Epidemiology: Study Design and Data Analysis. CRC press.

https://www.routledge.com/Epidemiology-Study-Design-and-Data-Analysis-Third-
Edition/Woodward/p/book/9781439839706.

Zeileis, Achim, Christian Kleiber, and Simon Jackman. 2008. “Regression Models for Count
Data in R.” Journal of Statistical Software 27 (8). https://www.jstatsoft.org/v27/i08/.

Zuur, Alain F. 2009. Mixed Effects Models and Extensions in Ecology with r. Statistics for
Biology and Health. New York ; Springer.

385

https://en.wikipedia.org/w/index.php?title=Statistical_inference&oldid=1304071803
https://www.routledge.com/Epidemiology-Study-Design-and-Data-Analysis-Third-Edition/Woodward/p/book/9781439839706
https://www.routledge.com/Epidemiology-Study-Design-and-Data-Analysis-Third-Edition/Woodward/p/book/9781439839706
https://www.jstatsoft.org/v27/i08/


A. Overview of Appendices

These appendices contain information that I consider to be important prerequisites for
the main content of this course. I will review some of this content in class, but not all
of it; there simply isn’t enough time to cover it all, and it should be review from your
earlier statistics courses. The appendices are also not an exhaustive list of the assumed
prerequisites.

Please test yourself on this material; try to write down the definitions from memory, try to
solve the proofs for yourself before looking the provided versions, and try to implement the
programming solutions before looking at the provided code.

If you find that don’t have all of the definitions and results in these appendices memorized
yet, now is the time to make it happen.

A.1. Rote memorization is sometimes necessary

For much of my K-12 education, I tried to avoid spending time on rote memorization.
Instead, I memorized concepts passively, by repeatedly looking up and applying definitions
as I solved problems. I still think that is the most pleasant way to learn, but when I started
taking college-level quantitative courses, I found that passive memorization was no longer
sufficiently reliable. Especially in the 10-week quarter system, there isn’t enough time for
new concepts to settle in naturally before we need to use those concepts and construct
higher-level concepts on top of them. So, if you are missing any of the concepts in these
appendices, please lock them in ASAP. You will need them.
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B. Mathematics

Math is not just a way of calculating numerical answers; it is a way of thinking,
using clear definitions for concepts and rigorous logic to organize our thoughts
and back up our assertions.

Cheng (2025)

These lecture notes use:

• algebra
• precalculus
• univariate calculus
• linear algebra
• vector calculus

Some key results are listed here.

B.1. Elementary Algebra

Mastery of Elementary Algebra1 (a.k.a. “College Algebra”) is a prerequisite for calculus,
which is a prerequisite for Epi 202 and Epi 203, which are prerequisites for this course
(Epi 204). Nevertheless, each year, some Epi 204 students are still uncomfortable with
algebraic manipulations of mathematical formulas. Therefore, I include this section as a
quick reference.

B.1.1. Equalities

Theorem B.1 (Equalities are transitive). If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐

Theorem B.2 (Substituting equivalent expressions). If 𝑎 = 𝑏, then for any function 𝑓(𝑥),
𝑓(𝑎) = 𝑓(𝑏)

1https://en.wikipedia.org/wiki/Elementary_algebra
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B.1.2. Inequalities

Theorem B.3. If 𝑎 < 𝑏, then 𝑎 + 𝑐 < 𝑏 + 𝑐

Theorem B.4 (negating both sides of an inequality). If 𝑎 < 𝑏, then: −𝑎 > −𝑏

Theorem B.5. If 𝑎 < 𝑏 and 𝑐 ≥ 0, then 𝑐𝑎 < 𝑐𝑏.

Theorem B.6.
−𝑎 = (−1) ∗ 𝑎

B.1.3. Sums

Theorem B.7 (adding zero changes nothing).

𝑎 + 0 = 𝑎

Theorem B.8 (Sums are symmetric).

𝑎 + 𝑏 = 𝑏 + 𝑎

Theorem B.9 (Sums are associative).

When summing three or more terms, the order in which you sum them does not matter:

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
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B.1.4. Products

Theorem B.10 (Multiplying by 1 changes nothing).

𝑎 × 1 = 𝑎

Theorem B.11 (Products are symmetric).

𝑎 × 𝑏 = 𝑏 × 𝑎

Theorem B.12 (Products are associative).

(𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐)

B.1.5. Division

Theorem B.13 (Division can be written as a product).

𝑎
𝑏
= 𝑎 × 1

𝑏

B.1.6. Sums and products together

Theorem B.14 (Multiplication is distributive).

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

389



B. Mathematics

B.1.7. Quotients

Definition B.1 (Quotients, fractions, rates).

A quotient, fraction, or rate is a division of one quantity by another:

𝑎
𝑏

In epidemiology, rates typically have a quantity involving time or population in the denomi-
nator.

c.f. https://en.wikipedia.org/wiki/Rate_(mathematics)

Definition B.2 (Ratios). A ratio is a quotient in which the numerator and denominator
are measured using the same unit scales.

c.f. https://en.wikipedia.org/wiki/Ratio

Definition B.3 (Proportion). In statistics, a “proportion” typically means a ratio where
the numerator represents a subset of the denominator.

See https://en.wikipedia.org/wiki/Population_proportion.

See also https://en.wikipedia.org/wiki/Proportion_(mathematics) for other meanings.

Definition B.4 (Proportional). Two functions 𝑓(𝑥) and 𝑔(𝑥) are proportional if their
ratio 𝑓(𝑥)

𝑔(𝑥) does not depend on 𝑥. (c.f. https://en.wikipedia.org/wiki/Proportionality_
(mathematics))

Additional reference for elementary algebra: https://en.wikipedia.org/wiki/Population_
proportion#Mathematical_definition

390

https://en.wikipedia.org/wiki/Rate_(mathematics)
https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Population_proportion
https://en.wikipedia.org/wiki/Proportion_(mathematics)
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Population_proportion#Mathematical_definition
https://en.wikipedia.org/wiki/Population_proportion#Mathematical_definition


B. Mathematics

B.2. Exponentials and Logarithms

Theorem B.15 (logarithm of a product is the sum of the logs of the factors).

log 𝑎 ⋅ 𝑏 = log 𝑎 + log 𝑏

Corollary B.1 (logarithm of a quotient).

The logarithm of a quotient is equal to the difference of the logs of the factors:

log 𝑎
𝑏
= log 𝑎 − log 𝑏

Theorem B.16 (logarithm of an exponential function).

log{𝑎𝑏} = 𝑏 ⋅ log{𝑎}

Theorem B.17 (exponential of a sum).

The exponential of a sum is equal to the product of the exponentials of the addends:

exp{𝑎 + 𝑏} = exp{𝑎} ⋅ exp{𝑏}

Corollary B.2 (exponential of a difference).

The exponential of a difference is equal to the quotient of the exponentials of the addends:

exp{𝑎 − 𝑏} = exp{𝑎}
exp{𝑏}

Theorem B.18 (exponential of a product).

𝑎𝑏𝑐 = (𝑎𝑏)𝑐 = (𝑎𝑐)𝑏

Corollary B.3 (natural exponential of a product).

exp{𝑎𝑏} = (exp{𝑎})𝑏 = (exp{𝑏})𝑎

Exercise B.1. For 𝑎 ≥ 0, 𝑏, 𝑐 ∈ ℝ, When does (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)?
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Solution B.1. Short answer: rarely (that’s all you need to know for this course).

Long answer:

If (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐), then since (𝑎𝑏)𝑐 = 𝑎𝑏𝑐, we have:

𝑎𝑏𝑐 = 𝑎(𝑏𝑐)

log{𝑎𝑏𝑐} = log{𝑎(𝑏𝑐)}

𝑏𝑐 ⋅ log{𝑎} = 𝑏𝑐 ⋅ log{𝑎} (B.1)

Equation B.1 holds in each of the following cases:

1. 𝑏𝑐 = 𝑏𝑐 (see Exercise B.2).
2. 𝑎 = 1 (i.e., log{𝑎} = 0).
3. 𝑎 = 0 (i.e., log{𝑎} = −∞) and sign{𝑏𝑐} = sign{𝑏𝑐}.

In particular, when 𝑎 = 0 and 𝑐 = 0, 𝑏𝑐 = 0 and 𝑏𝑐 = 1 (for any 𝑏 ∈ ℝ), so sign{𝑏𝑐} ≠
sign{𝑏𝑐}, and (𝑎𝑏)𝑐 ≠ 𝑎(𝑏𝑐):

(𝑎𝑏)𝑐 = (0𝑏)0

= 1

𝑎(𝑏𝑐) = 0(𝑏0)

= 01

= 0

Exercise B.2. For 𝑏, 𝑐 ∈ ℝ, when does 𝑏𝑐 = 𝑏𝑐?

Solution B.2. 𝑏𝑐 = 𝑏𝑐 in each of the following cases:

1. 𝑐 = 1.
2. 𝑏 = 0 and 𝑐 > 0.
3. 𝑏 = exp{ log 𝑐

𝑐−1 } (for 𝑐 ≥ 0).

See the red contours in Figure B.2 for a visualization.
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`b*c_f` <- function(b, c) b*c
`b^c_f` <- function(b, c) b^c
values_b <- seq(0, 5, by = .01)
values_c <- seq(-.5, 3, by = .01)

`b*c` <- outer(values_b, values_c, `b*c_f`)
`b^c` <- outer(values_b, values_c, `b^c_f`)
`b^c`[is.infinite(`b^c`)] = NA

opacity <- .3
z_min <- min(`b*c`, `b^c`, na.rm = TRUE)
z_max <- 5
plotly::plot_ly(
x = ~values_b,
y = ~values_c

) |>
plotly::add_surface(

z = ~ t(`b*c`),
contours = list(

z = list(
show = TRUE,
start = -1,
end = 1,
size = .1

)
),
name = "b*c",
showscale = FALSE,
opacity = opacity,
colorscale = list(c(0, 1), c("green", "green"))

) |>
plotly::add_surface(

opacity = opacity,
colorscale = list(c(0, 1), c("red", "red")),
z = ~ t(`b^c`),
contours = list(

z = list(
show = TRUE,
start = z_min,
end = z_max,
size = .2

)
),
showscale = FALSE,
name = "b^c"

) |>
plotly::layout(

scene = list(
xaxis = list(
# type = "log",
title = "b"

),
yaxis = list(
# type = "log",
title = "c"

),
zaxis = list(
# type = "log",
range = c(z_min, z_max),
title = "outcome"

),
camera = list(eye = list(x = -1.25, y = -1.25, z = 0.5)),
aspectratio = list(x = .9, y = .8, z = 0.7)

)
)

Figure B.1.: Graph of 𝑏 ∗ 𝑐 and 𝑏𝑐
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`b^c - b*c_f` <- function(b, c) `b^c_f`(b,c) - `b*c_f`(b,c)

mat1 <- outer(values_b, values_c, `b^c - b*c_f`)
mat1[is.infinite(mat1)] = NA

opacity <- .3
plotly::plot_ly(
x = ~values_b,
y = ~values_c

) |>
plotly::add_surface(

z = ~ t(mat1),
contours = list(

z = list(
show = TRUE,
start = 0,
end = 1,
size = 1,
color = "red"

)
),
name = "b^c - b*c",
showscale = TRUE,
opacity = opacity

) |>
plotly::layout(

scene = list(
xaxis = list(
# type = "log",
title = "b"

),
yaxis = list(
# type = "log",
title = "c"

),
zaxis = list(
title = "outcome"

),
camera = list(eye = list(x = -1.25, y = -1.25, z = 0.5)),
aspectratio = list(x = .9, y = .8, z = 0.7)

)
)

Figure B.2.: Graph of 𝑏𝑐 − 𝑏 ∗ 𝑐. Red contour lines show where 𝑏𝑐 = 𝑏 ∗ 𝑐.
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Theorem B.19 (exp{} and log{} are mutual inverses).

exp{log{𝑎}} = log{exp{𝑎}} = 𝑎

B.3. Derivatives

Theorem B.20 (Constant rule).
𝜕
𝜕𝑥

𝑐 = 0

Theorem B.21 (Power rule). If 𝑎 is constant with respect to 𝑥, then:

𝜕
𝜕𝑥

𝑎𝑦 = 𝑎𝜕𝑥
𝜕𝑦

Theorem B.22 (Power rule).
𝜕
𝜕𝑥

𝑥𝑞 = 𝑞𝑥𝑞−1

Theorem B.23 (Derivative of natural logarithm).

log′{𝑥} = 1
𝑥

= 𝑥−1

Theorem B.24 (derivative of exponential).

exp′{𝑥} = exp{𝑥}

Theorem B.25 (Product rule).

(𝑎𝑏)′ = 𝑎𝑏′ + 𝑏𝑎′

Theorem B.26 (Quotient rule).

(𝑎/𝑏)′ = 𝑎′/𝑏 − (𝑎/𝑏2)𝑏′
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Theorem B.27 (Chain rule).
𝜕𝑎
𝜕𝑐

= 𝜕𝑎
𝜕𝑏

𝜕𝑏
𝜕𝑐

= 𝜕𝑏
𝜕𝑐

𝜕𝑎
𝜕𝑏

or in Euler/Lagrange notation2:

(𝑓(𝑔(𝑥)))′ = 𝑔′(𝑥)𝑓 ′(𝑔(𝑥))

Corollary B.4 (Chain rule for logarithms).

𝜕
𝜕𝑥

log 𝑓(𝑥) = 𝑓 ′(𝑥)
𝑓(𝑥)

Proof. Apply Theorem B.27 and Theorem B.23.

B.4. Linear Algebra

Definition B.5 (Dot product/linear combination/inner product). For any two real-valued
vectors ̃𝑥 = (𝑥1,… , 𝑥𝑛) and ̃𝑦 = (𝑦1,… , 𝑦𝑛), the dot-product, linear combination, or
inner product of ̃𝑥 and ̃𝑦 is:

̃𝑥 ⋅ ̃𝑦 = ̃𝑥⊤ ̃𝑦 def=
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

INFO Note

See also the definitions in

• Dobson and Barnett (2018), §1.3 (equation 1.1, page 7)

• Kaplan (2022), herea.

• wikipediab

“Linear combination” can also refer to weighted sums of vectors, or in other words
matrix-vector multiplication.
The dot-product has a different generalization for two matrices; see wikipediac for
more.

ahttps://www.mosaic-web.org/MOSAIC-Calculus/Textbook/Linear-combinations/28-Vectors.
html#geometry-arithmetic

bhttps://en.wikipedia.org/wiki/Linear_combination
chttps://en.wikipedia.org/wiki/Dot_product#Dyadics_and_matrices

2https://en.wikipedia.org/wiki/Notation_for_differentiation#Lagrange's_notation
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Theorem B.28 (Dot product is symmetric). The dot product is symmetric:

̃𝑥 ⋅ ̃𝑦 = ̃𝑦 ⋅ ̃𝑥

Proof. Apply:

• Definition B.5
• symmetry of scalar multiplication
• Definition B.5 again

B.5. Vector Calculus

(adapted from Fieller (2016), §7.23)

Let ̃𝑥 and ̃𝛽 be vectors of length 𝑝, or in other words, matrices of length 𝑝 × 1:

̃𝑥 =
⎡
⎢
⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑝

⎤
⎥
⎥
⎦

̃𝛽 =
⎡
⎢
⎢
⎣

𝛽1
𝛽2
⋮
𝛽𝑝

⎤
⎥
⎥
⎦

Definition B.6 (Transpose). The transpose of a row vector is the column vector with the
same sequence of entries:

̃𝑥′ ≡ ̃𝑥⊤ ≡ [𝑥1, 𝑥2, ..., 𝑥𝑝]

Example B.1 (Dot product as matrix multiplication).

̃𝑥 ⋅ ̃𝛽 = ̃𝑥⊤ ̃𝛽

= [𝑥1, 𝑥2, ..., 𝑥𝑝]
⎡
⎢
⎢
⎣

𝛽1
𝛽2
⋮
𝛽𝑝

⎤
⎥
⎥
⎦

= 𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝

3https://www.taylorfrancis.com/chapters/mono/10.1201/9781315370200-7/vector-matrix-calculus-nick-
fieller?context=ubx&refId=c310b723-786a-4f33-ae56-720a6cccd3a1
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Theorem B.29 (Transpose of a sum).

( ̃𝑥 + ̃𝑦)⊤ = ̃𝑥⊤ + ̃𝑦⊤

Definition B.7 (Vector derivative). If 𝑓( ̃𝛽) is a function that takes a vector ̃𝛽 as input,
such as 𝑓( ̃𝛽) = 𝑥′ ̃𝛽, then:

𝜕
𝜕 ̃𝛽

𝑓( ̃𝛽) =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝛽1

𝑓( ̃𝛽)
𝜕

𝜕𝛽2
𝑓( ̃𝛽)
⋮

𝜕
𝜕𝛽𝑝

𝑓( ̃𝛽)

⎤
⎥
⎥
⎥
⎦

Definition B.8 (Row-vector derivative). If 𝑓( ̃𝛽) is a function that takes a vector ̃𝛽 as
input, such as 𝑓( ̃𝛽) = 𝑥′ ̃𝛽, then:

𝜕
𝜕 ̃𝛽⊤

𝑓( ̃𝛽) = [ 𝜕
𝜕𝛽1

𝑓( ̃𝛽) 𝜕
𝜕𝛽2

𝑓( ̃𝛽) ⋯ 𝜕
𝜕𝛽𝑝

𝑓( ̃𝛽)]

Theorem B.30 (Row and column derivatives are transposes).

𝜕
𝜕 ̃𝛽⊤

𝑓( ̃𝛽) = ( 𝜕
𝜕 ̃𝛽

𝑓( ̃𝛽))
⊤

𝜕
𝜕 ̃𝛽

𝑓( ̃𝛽) = ( 𝜕
𝜕 ̃𝛽⊤

𝑓( ̃𝛽))
⊤

Theorem B.31 (Derivative of a dot product).

𝜕
𝜕 ̃𝛽

̃𝑥 ⋅ ̃𝛽 = 𝜕
𝜕 ̃𝛽

̃𝛽 ⋅ ̃𝑥 = ̃𝑥

This looks a lot like non-vector calculus, except that you have to transpose the coefficient.
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Proof.

𝜕
𝜕𝛽

(𝑥⊤𝛽) =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝛽1

(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)
𝜕

𝜕𝛽2
(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)

⋮
𝜕

𝜕𝛽𝑝
(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

𝑥1
𝑥2
⋮
𝑥𝑝

⎤
⎥
⎥
⎦

= ̃𝑥

Definition B.9 (Quadratic form). A quadratic form is a mathematical expression with
the structure

̃𝑥⊤S ̃𝑥

where ̃𝑥 is a vector and S is a matrix with compatible dimensions for vector-matrix
multiplication.

Quadratic forms occur frequently in regression models. They are the matrix-vector general-
izations of the scalar quadratic form 𝑐𝑥2 = 𝑥𝑐𝑥.

Theorem B.32 (Derivative of a quadratic form). If 𝑆 is a 𝑝 × 𝑝 matrix that is constant
with respect to 𝛽, then:

𝜕
𝜕𝛽

𝛽′𝑆𝛽 = 2𝑆𝛽

This is like taking the derivative of 𝑐𝑥2 with respect to 𝑥 in non-vector calculus.

Corollary B.5 (Derivative of a simple quadratic form).

𝜕
𝜕 ̃𝛽

̃𝛽′ ̃𝛽 = 2 ̃𝛽

This is like taking the derivative of 𝑥2.
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Theorem B.33 (Vector chain rule).

𝜕𝑧
𝜕 ̃𝑥

= 𝜕𝑦
𝜕 ̃𝑥

𝜕𝑧
𝜕𝑦

or in Euler/Lagrange notation:

(𝑓(𝑔( ̃𝑥)))′ = ̃𝑔′( ̃𝑥)𝑓(𝑔( ̃𝑥))

See https://quickfem.com/finite-element-analysis/, specifically https://quickfem.com/wp-
content/uploads/IFEM.AppF_.pdf

See also https://en.wikipedia.org/wiki/Gradient#Relationship_with_Fr%C3%A9chet_
derivative

This chain rule is like the univariate chain rule (Theorem B.27), but the order matters now.
The version presented here is for the gradient4 (column vector); the total derivative5 (row
vector) would be the transpose of the gradient6.

Corollary B.6 (Vector chain rule for quadratic forms).

𝜕
𝜕 ̃𝛽

( ̃𝜀( ̃𝛽) ⋅ ̃𝜀( ̃𝛽)) = ( 𝜕
𝜕 ̃𝛽

̃𝜀( ̃𝛽))(2 ̃𝜀( ̃𝛽))

B.6. Additional resources

B.6.1. Calculus

• Kaplan (2022)
• Khuri (2003)
• Banner (2007)
• Miller (2016)

– http://www.youtube.com/watch?v=xYzQL0TUtBA
– http://www.youtube.com/watch?v=Ps2SBo_WjoE

B.6.2. Linear Algebra and Vector Calculus

• Fieller (2016)
• Banerjee and Roy (2014)
• Searle and Khuri (2017)

4https://en.wikipedia.org/wiki/Gradient
5https://en.wikipedia.org/wiki/Total_derivative
6https://en.wikipedia.org/wiki/Gradient#Relationship_with_total_derivative
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B.6.3. Numerical Analysis

• Hua Zhou7’s lecture notes for “UCLA Biostat 216 - Mathematical Methods for
Biostatistics” (2023 Fall)8

B.6.4. Real Analysis

• Grinberg (2017)

7https://hua-zhou.github.io/
8https://ucla-biostat-216.github.io/2023fall/schedule/schedule.html
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
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legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

Most of the content in this chapter should be review from UC Davis Epi 202.

C.1. Core properties of probabilities

C.1.1. Defining probabilities

Definition C.1 (Probability measure). A probability measure, often denoted Pr() or
P(), is a function whose domain is a 𝜎-algebra1 of possible outcomes, 𝒮, and which satisfies
the following properties:

1. For any statistical event 𝐴 ∈ 𝒮, Pr(𝐴) ≥ 0.

2. The probability of the union of all outcomes (Ω def= ∪𝒮) is 1:

Pr(Ω) = 1

3. The probability of the union of disjoint events, 𝐴1 ∪𝐴2 ∶ 𝐴1 ∩𝐴2 = ∅, is equal to the
sum of their probabilities:

Pr(𝐴1 ∪ 𝐴2) = Pr(𝐴1) + Pr(𝐴2)

Theorem C.1. If 𝐴 and 𝐵 are statistical events and 𝐴 ⊆ 𝐵, then Pr(𝐴 ∩ 𝐵) = Pr(𝐴).

Proof. Left to the reader for now.

1https://en.wikipedia.org/wiki/%CE%A3-algebra
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Theorem C.2.
Pr(𝐴) + Pr(¬𝐴) = 1

Proof. By properties 2 and 3 of Definition C.1.

Corollary C.1.
Pr(¬𝐴) = 1 − Pr(𝐴)

Proof. By Theorem C.2 and algebra.

Corollary C.2. If the probability of an outcome 𝐴 is Pr(𝐴) = 𝜋, then the probability that
𝐴 does not occur is:

Pr(¬𝐴) = 1 − 𝜋

Proof. Using Corollary C.1:

Pr(¬𝐴) = 1 − Pr(𝐴)
= 1 − 𝜋

C.2. Random variables

C.2.1. Binary variables

Definition C.2 (binary variable). A binary variable is a random variable which has only
two possible values in its range.

Exercise C.1 (Examples of binary variables). What are some examples of binary variables
in the health sciences?

Solution. Examples of binary outcomes include:
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• exposure (exposed vs unexposed)
• disease (diseased vs healthy)
• recovery (recovered vs unrecovered)
• relapse (relapse vs remission)
• return to hospital (returned vs not)
• vital status (dead vs alive)

C.2.2. Count variables

Definition C.3 (Count variable). A count variable is a random variable whose possible
values are some subset of the non-negative integers; that is, a random variable 𝑋 such that:

ℛ(𝑋) ∈ N

Exercise C.2. What are some examples of count variables?

Solution.

• Number of fish in a pond
• Number of cyclones per season
• Seconds of tooth-brushing per session (if rounded)2

• Infections per person-year
• Visits to ER per person-month
• Car accidents per 1000 miles driven

Definition C.4 (Exposure magnitude). For many count outcomes, there is some sense of
an exposure magnitude, such as population size, or duration of observation, which
multiplicatively rescales the expected (mean) count.

Exercise C.3. What are some examples of exposure magnitudes?

2https://pubmed.ncbi.nlm.nih.gov/35587489/

405

https://pubmed.ncbi.nlm.nih.gov/35587489/


C. Probability

Solution.

Table C.1.: Examples of exposure units

outcome exposure units

disease incidence number of individuals
exposed; time at risk

car accidents miles driven
worksite accidents person-hours worked
population size size of habitat

Exposure units are similar to the number of trials in a binomial distribution, but in
non-binomial count outcomes, there can be more than one event per unit of
exposure.

We can use 𝑡 to represent continuous-valued exposures/observation durations, and 𝑛 to
represent discrete-valued exposures.

Definition C.5 (Event rate).

For a count outcome 𝑌 with exposure magnitude 𝑡, the event rate (denoted 𝜆) is defined
as the mean of 𝑌 divided by the exposure magnitude. That is:

𝜇 def= E[𝑌 |𝑇 = 𝑡]

𝜆 def= 𝜇
𝑡

(C.1)

Event rate is somewhat analogous to odds in binary outcome models; it typically serves as
an intermediate transformation between the mean of the outcome and the linear component
of the model. However, in contrast with the odds function, the transformation 𝜆 = 𝜇/𝑡
is not considered part of the Poisson model’s link function, and it treats the exposure
magnitude covariate differently from the other covariates.

Theorem C.3 (Transformation function from event rate to mean). For a count variable
with mean 𝜇, event rate 𝜆, and exposure magnitude 𝑡:

∴𝜇 = 𝜆 ⋅ 𝑡 (C.2)

Solution. Start from definition of event rate and use algebra to solve for 𝜇.
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Equation C.2 is analogous to the inverse-odds function for binary variables.

Theorem C.4. When the exposure magnitude is 0, there is no opportunity for events to
occur:

E[𝑌 |𝑇 = 0] = 0

Proof.
E[𝑌 |𝑇 = 0] = 𝜆 ⋅ 0 = 0

C.2.2.1. Probability distributions for count outcomes

• Poisson distribution

• Negative binomial distribution

C.3. Key probability distributions

Some distributions are typically used for outcome models (Table C.2); other distributions
are typically used for test statistics (Table C.3).

Table C.2.: Distributions typically used for outcome models

Distribution Uses

Bernoulli Binary outcomes
Binomial Sums of Bernoulli

outcomes
Poisson unbounded count

outcomes
Geometric Counts of

non-events before
an event occurs
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Distribution Uses

Negative binomal Mixtures of
Poisson
distributions,
counts of
non-events until
a given number
of events occurs

Normal (Gaussian) Continuous
outcomes without
a more specific
distribution

exponential Time to event
outcomes

Gamma Time to event
outcomes

Weibull Time to event
outcomes

Log-normal Time to event
outcomes

Table C.3.: Distributions typically used for test statistics

Distribution Uses

𝜒2 Regression
comparisons
(asymptotic),
contingency table
independence tests,
goodness-of-fit tests

𝐹 Gaussian model
comparisons (exact)

𝑍 (standard normal) Proportions, means,
regression coefficients
(asymptotic)

𝑇 Means, regression
coefficients in
Gaussian outcome
models (exact)

C.3.1. The Bernoulli distribution

Definition C.6 (Bernoulli distribution). The Bernoulli distribution family for a random
variable 𝑋 is defined as:
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Pr(𝑋 = 𝑥) = 1𝑥∈{0,1}𝜋𝑥(1 − 𝜋)1−𝑥

= { 𝜋, 𝑥 = 1
1 − 𝜋, 𝑥 = 0

C.3.2. The Poisson distribution

(a) Siméon Denis Poisson

(b) Les Poissonsa

ahttps://youtu.be/UoJxBEQRLd0?t=12

Figure C.1.: “Les Poissons”

Exercise C.4. Define the Poisson distribution.

Solution C.1.

Definition C.7 (Poisson distribution).

P(𝑌 = 𝑦) = 𝜇𝑦𝑒−𝜇

𝑦!
, 𝑦 ∈ N (C.3)

(see Figure C.2)
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Exercise C.5. What is the range of possible values for a Poisson distribution?

Solution C.2.
ℛ(𝑌 ) = {0, 1, 2, ...} = N

Theorem C.5 (CDF of Poisson distribution).

P(𝑌 ≤ 𝑦) = 𝑒−𝜇
⌊𝑦⌋

∑
𝑗=0

𝜇𝑗

𝑗!
(C.4)

(see Figure C.3)

library(dplyr)
pois_dists <- tibble(
mu = c(0.5, 1, 2, 5, 10, 20)

) |>
reframe(

.by = mu,
x = 0:30

) |>
mutate(

`P(X = x)` = dpois(x, lambda = mu),
`P(X <= x)` = ppois(x, lambda = mu),
mu = factor(mu)

)

library(ggplot2)
library(latex2exp)

plot0 <- pois_dists |>
ggplot(

aes(
x = x,
y = `P(X = x)`,
fill = mu,
col = mu

)
) +
theme(legend.position = "bottom") +
labs(

410



C. Probability

fill = latex2exp::TeX("$\\mu$"),
col = latex2exp::TeX("$\\mu$"),
y = latex2exp::TeX("$\\Pr_{\\mu}(X = x)$")

)

plot1 <- plot0 +
geom_segment(yend = 0) +
facet_wrap(~mu)

print(plot1)
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Figure C.2.: Poisson PMFs, by mean parameter 𝜇

library(ggplot2)

plot2 <-
plot0 +
geom_step(alpha = 0.75) +
aes(y = `P(X <= x)`) +
labs(y = latex2exp::TeX("$\\Pr_{\\mu}(X \\leq x)$"))

print(plot2)
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Figure C.3.: Poisson CDFs

Exercise C.6 (Poisson distribution functions). Let 𝑋 ∼ Pois(𝜇 = 3.75).

Compute:

• P(𝑋 = 4|𝜇 = 3.75)
• P(𝑋 ≤ 7|𝜇 = 3.75)
• P(𝑋 > 5|𝜇 = 3.75)

Solution.

• P(𝑋 = 4) = 0.19378
• P(𝑋 ≤ 7) = 0.962379
• P(𝑋 > 5) = 0.177117

Theorem C.6 (Properties of the Poisson distribution). If 𝑋 ∼ Pois(𝜇), then:

• E[𝑋] = 𝜇
• Var(𝑋) = 𝜇
• P(𝑋 = 𝑥) = 𝜇

𝑥 P(𝑋 = 𝑥 − 1)
• For 𝑥 < 𝜇, P(𝑋 = 𝑥) > P(𝑋 = 𝑥 − 1)
• For 𝑥 = 𝜇, P(𝑋 = 𝑥) = P(𝑋 = 𝑥 − 1)
• For 𝑥 > 𝜇, P(𝑋 = 𝑥) < P(𝑋 = 𝑥 − 1)
• arg max𝑥 P(𝑋 = 𝑥) = ⌊𝜇⌋
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Exercise C.7. Prove Theorem C.6.

Solution.

E[𝑋] =
∞
∑
𝑥=0

𝑥 ⋅ 𝑃 (𝑋 = 𝑥)

= 0 ⋅ 𝑃 (𝑋 = 0) +
∞
∑
𝑥=1

𝑥 ⋅ 𝑃 (𝑋 = 𝑥)

= 0 +
∞
∑
𝑥=1

𝑥 ⋅ 𝑃 (𝑋 = 𝑥)

=
∞
∑
𝑥=1

𝑥 ⋅ 𝑃 (𝑋 = 𝑥)

=
∞
∑
𝑥=1

𝑥 ⋅ 𝜆
𝑥𝑒−𝜆

𝑥!

=
∞
∑
𝑥=1

𝑥 ⋅ 𝜆𝑥𝑒−𝜆

𝑥 ⋅ (𝑥 − 1)!
[definition of factorial (”!”) function]

=
∞
∑
𝑥=1

𝜆𝑥𝑒−𝜆

(𝑥 − 1)!

=
∞
∑
𝑥=1

(𝜆 ⋅ 𝜆𝑥−1)𝑒−𝜆

(𝑥 − 1)!

= 𝜆 ⋅
∞
∑
𝑥=1

(𝜆𝑥−1)𝑒−𝜆

(𝑥 − 1)!

= 𝜆 ⋅
∞
∑
𝑦=0

(𝜆𝑦)𝑒−𝜆

(𝑦)!
[substituting 𝑦 def= 𝑥 − 1]

= 𝜆 ⋅ 1 [because PDFs sum to 1]
= 𝜆

See also https://statproofbook.github.io/P/poiss-mean.

For the variance, see https://statproofbook.github.io/P/poiss-var.

C.3.2.1. Accounting for exposure

If the exposures/observation durations, denoted 𝑇 = 𝑡 or 𝑁 = 𝑛, vary between observations,
we model:

𝜇 = 𝜆 ⋅ 𝑡

𝜆 is interpreted as the “expected event rate per unit of exposure”; that is,

𝜆 = E[𝑌 |𝑇 = 𝑡]
𝑡
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Exclamation Important

The exposure magnitude, 𝑇, is similar to a covariate in linear or logistic regression.
However, there is an important difference: in count regression, there is no intercept
corresponding to E[𝑌 |𝑇 = 0]. In other words, this model assumes that if there is
no exposure, there can’t be any events.

Theorem C.7. If 𝜇 = 𝜆 ⋅ 𝑡, then:

log𝜇 = log𝜆 + log 𝑡

Definition C.8 (Offset). When the linear component of a model involves a term without
an unknown coefficient, that term is called an offset.

Theorem C.8. If 𝑋 and 𝑌 are independent Poisson random variables with means 𝜇𝑋 and
𝜇𝑌, their sum, 𝑍 = 𝑋 + 𝑌, is also a Poisson random variable, with mean 𝜇𝑍 = 𝜇𝑋 + 𝜇𝑌.

Proof. See https://web.stanford.edu/class/archive/cs/cs109/cs109.1206/lectureNotes/
LN12_independent_rvs.pdf, Example 3.

C.3.3. The Negative-Binomial distribution

Definition C.9 (Negative binomial distribution).

P(𝑌 = 𝑦) = 𝜇𝑦

𝑦!
⋅ Γ(𝜌 + 𝑦)
Γ(𝜌) ⋅ (𝜌 + 𝜇)𝑦 ⋅ (1 + 𝜇

𝜌
)

−𝜌

where 𝜌 is an overdispersion parameter and Γ(𝑥) = (𝑥 − 1)! for integers 𝑥.

You don’t need to memorize or understand this expression.

As 𝜌 → ∞, the second term converges to 1 and the third term converges to exp{−𝜇}, which
brings us back to the Poisson distribution.

Theorem C.9. If 𝑌 ∼ NegBin(𝜇, 𝜌), then:

• E[𝑌 ] = 𝜇
• Var(𝑌) = 𝜇 + 𝜇2

𝜌 > 𝜇
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C.3.4. Weibull Distribution

𝑝(𝑡) = 𝛼𝜆𝑥𝛼−1e−𝜆𝑥𝛼

𝜆(𝑡) = 𝛼𝜆𝑥𝛼−1

S(𝑡) = e−𝜆𝑥𝛼

𝐸(𝑇 ) = Γ(1 + 1/𝛼) ⋅ 𝜆−1/𝛼

When 𝛼 = 1 this is the exponential. When 𝛼 > 1 the hazard is increasing and when 𝛼 < 1
the hazard is decreasing. This provides more flexibility than the exponential.

We will see more of this distribution later.

C.4. Characteristics of probability distributions

C.4.1. Probability density function

Definition C.10 (probability density). If 𝑋 is a continuous random variable, then the
probability density of 𝑋 at value 𝑥, denoted 𝑓(𝑥), 𝑓𝑋(𝑥), p(𝑥), p𝑋(𝑥), or p(𝑋 = 𝑥), is
defined as the limit of the probability (mass) that 𝑋 is in an interval around 𝑥, divided by
the width of that interval, as that width reduces to 0.

𝑓(𝑥) def= lim
Δ→0

P(𝑋 ∈ [𝑥, 𝑥 + Δ])
Δ

See also Rothman et al. (2021) (Chapter 22, p. 535) and https://en.wikipedia.org/wiki/
Probability_density_function#Formal_definition

Theorem C.10 (Density function is derivative of CDF). The density function 𝑓(𝑡) or
p(𝑇 = 𝑡) for a random variable 𝑇 at value 𝑡 is equal to the derivative of the cumulative
probability function 𝐹(𝑡)

def
= 𝑃(𝑇 ≤ 𝑡); that is:

𝑓(𝑡)
def
= 𝜕

𝜕𝑡
𝐹(𝑡)

Theorem C.11 (Density functions integrate to 1). For any density function 𝑓(𝑥),

∫
𝑥∈ℛ(𝑋)

𝑓(𝑥)𝑑𝑥 = 1
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C.4.2. Hazard function

Definition C.11 (Hazard function, hazard rate, hazard rate function).

The hazard function, hazard rate, hazard rate function, for a random variable 𝑇
at value 𝑡, typically denoted as h(𝑡) 3 or 𝜆(𝑡), 4 is the conditional density of 𝑇 at 𝑡, given
𝑇 ≥ 𝑡. That is:

𝜆(𝑡) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡)

If 𝑇 represents the time at which an event occurs, then 𝜆(𝑡) is the probability that the event
occurs at time 𝑡, given that it has not occurred prior to time 𝑡.

Table C.4.: Probability distribution functions

Name Symbols Definition

Probability density function (PDF) f(𝑡),p(𝑡) p(𝑇 = 𝑡)
Cumulative distribution function (CDF) F(𝑡),P(𝑡) P(𝑇 ≤ 𝑡)
Survival function S(𝑡), F̄(𝑡) P(𝑇 > 𝑡)
Hazard function 𝜆(𝑡),h(𝑡) p(𝑇 = 𝑡|𝑇 ≥ 𝑡)
Cumulative hazard function Λ(𝑡),H(𝑡) ∫𝑡

𝑢=−∞
𝜆(𝑢)𝑑𝑢

Log-hazard function 𝜂(𝑡) log{𝜆(𝑡)}

f(𝑡)
−𝑆′(𝑡)

←−−−−
S(𝑡)𝜆(𝑡)

S(𝑡)
exp{−Λ(𝑡)}
←−−−−−− Λ(𝑡)

∫𝑡
𝑢=0

𝜆(𝑢)𝑑𝑢
←−−−−−−− 𝜆(𝑡)

exp{𝜂(𝑡)}
←−−−−− 𝜂(𝑡)

f(𝑡)
f(𝑡)/𝜆(𝑡)

−−−−−−→
∫∞
𝑢=𝑡

f(𝑢)𝑑𝑢
S(𝑡) −−−−−→

− log S(𝑡)
Λ(𝑡) −−−→

Λ′(𝑡)
𝜆(𝑡) −−−−−→

log{𝜆(𝑡)}
𝜂(𝑡)

3for example in Dobson and Barnett (2018), Vittinghoff et al. (2012), Klein and Moeschberger (2003), and
David G. Kleinbaum and Klein (2012)

4for example, in Rothman et al. (2021) and Kalbfleisch and Prentice (2011)

416



C. Probability

C.4.3. Expectation

Definition C.12 (Expectation, expected value, population mean ). The expectation,
expected value, or population mean of a continuous random variable 𝑋, denoted E[𝑋],
𝜇(𝑋), or 𝜇𝑋, is the weighted mean of 𝑋’s possible values, weighted by the probability
density function of those values:

E[𝑋] = ∫
𝑥∈ℛ(𝑋)

𝑥 ⋅ p(𝑋 = 𝑥)𝑑𝑥

The expectation, expected value, or population mean of a discrete random variable 𝑋,
denoted E[𝑋], 𝜇(𝑋), or 𝜇𝑋, is the mean of 𝑋’s possible values, weighted by the probability
mass function of those values:

E[𝑋] = ∑
𝑥∈ℛ(𝑋)

𝑥 ⋅ P(𝑋 = 𝑥)

(c.f. https://en.wikipedia.org/wiki/Expected_value)

Theorem C.12 (Expectation of the Bernoulli distribution). The expectation of a Bernoulli
random variable with parameter 𝜋 is:

E[𝑋] = 𝜋

Proof.
E[𝑋] = ∑

𝑥∈ℛ(𝑋)
𝑥 ⋅ P(𝑋 = 𝑥)

= ∑
𝑥∈{0,1}

𝑥 ⋅ P(𝑋 = 𝑥)

= (0 ⋅ P(𝑋 = 0)) + (1 ⋅ P(𝑋 = 1))
= (0 ⋅ (1 − 𝜋)) + (1 ⋅ 𝜋)
= 0 + 𝜋
= 𝜋

Theorem C.13 (Expectation of time-to-event variables). If 𝑇 is a non-negative random
variable, then:

𝜇(𝑇 |𝑋̃ = ̃𝑥) = ∫
∞

𝑡=0
S(𝑡)𝑑𝑡
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C.4.4. Variance and related characteristics

Definition C.13 (Variance). The variance of a random variable 𝑋 is the expectation of
the squared difference between 𝑋 and E[𝑋]; that is:

Var(𝑋) def= E[(𝑋 − E[𝑋])2]

Theorem C.14 (Simplified expression for variance).

Var(𝑋) = E[𝑋2] − (E[𝑋])2

Proof. By linearity of expectation, we have:

Var(𝑋) def= E[(𝑋 − E[𝑋])2]

= E[𝑋2 − 2𝑋E[𝑋] + (E[𝑋])2]

= E[𝑋2] − E[2𝑋E[𝑋]] + E[(E[𝑋])2]

= E[𝑋2] − 2E[𝑋]E[𝑋] + (E[𝑋])2

= E[𝑋2] − (E[𝑋])2

Definition C.14 (Precision). The precision of a random variable 𝑋, often denoted 𝜏(𝑋),
𝜏𝑋, or shorthanded as 𝜏, is the inverse of that random variable’s variance; that is:

𝜏(𝑋) def= (Var(𝑋))−1

Definition C.15 (Standard deviation). The standard deviation of a random variable 𝑋 is
the square-root of the variance of 𝑋:

SD(𝑋) def= √Var(𝑋)

Definition C.16 (Covariance). For any two one-dimensional random variables, 𝑋,𝑌:

Cov(𝑋, 𝑌) def= E[(𝑋 − E[𝑋])(𝑌 − E[𝑌])]
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Theorem C.15.
Cov(𝑋, 𝑌) = E[𝑋𝑌] − E[𝑋]E[𝑌]

Proof. Left to the reader.

Lemma C.1 (The covariance of a variable with itself is its variance). For any random
variable 𝑋:

Cov(𝑋,𝑋) = Var(𝑋)

Proof.
Cov(𝑋,𝑋) = 𝐸[𝑋𝑋] − 𝐸[𝑋]𝐸[𝑋]

= 𝐸[𝑋2] − (𝐸[𝑋])2

= Var(𝑋)

Definition C.17 (Variance/covariance of a 𝑝 × 1 random vector). For a 𝑝 × 1 dimensional
random vector 𝑋̃,

Var(𝑋̃) def= Cov(𝑋̃)
def= E[(𝑋̃ − E𝑋̃)

⊤
(𝑋̃ − E𝑋̃)]

Theorem C.16 (Alternate expression for variance of a random vector).

Var(𝑋) = 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋]

Proof.
Var(𝑋) = 𝐸[(𝑋⊤ −𝐸[𝑋]⊤) (𝑋 − 𝐸[𝑋])]

= 𝐸[𝑋⊤𝑋 −𝐸[𝑋]⊤𝑋 −𝑋⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]]
= 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋] − 𝐸[𝑋]⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]
= 𝐸[𝑋⊤𝑋] − 2𝐸[𝑋]⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]
= 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋]
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Theorem C.17 (Variance of a linear combination). For any vector of random variables
𝑋̃ = (𝑋1,… ,𝑋𝑛) and corresponding vector of constants ̃𝑎 = (𝑎1, ..., 𝑎𝑛), the variance of
their linear combination is:

Var( ̃𝑎 ⋅ 𝑋̃) = Var(
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖)

= ̃𝑎⊤Var(𝑋̃) ̃𝑎

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗)

Proof. Left to the reader…

Corollary C.3. For any two random variables 𝑋 and 𝑌 and scalars 𝑎 and 𝑏:

Var(𝑎𝑋 + 𝑏𝑌) = 𝑎2Var(𝑋) + 𝑏2Var(𝑌) + 2(𝑎 ⋅ 𝑏)Cov(𝑋, 𝑌)

Proof. Apply Theorem C.17 with 𝑛 = 2, 𝑋1 = 𝑋, and 𝑋2 = 𝑌.

Or, see https://statproofbook.github.io/P/var-lincomb.html

Definition C.18 (homoskedastic, heteroskedastic). A random variable 𝑌 is homoskedastic
(with respect to covariates 𝑋) if the variance of 𝑌 does not vary with 𝑋:

Var(𝑌 |𝑋 = 𝑥) = 𝜎2, ∀𝑥

Otherwise it is heteroskedastic.

Definition C.19 (Statistical independence). A set of random variables 𝑋1,… ,𝑋𝑛 are
statistically independent if their joint probability is equal to the product of their marginal
probabilities:

Pr(𝑋1 = 𝑥1,… ,𝑋𝑛 = 𝑥𝑛) =
𝑛
∏
𝑖=1

Pr(𝑋𝑖 = 𝑥𝑖)
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LIGHTBULB Tip

The symbol for independence, ⟂⟂, is essentially just ∏ upside-down. So the symbol
can remind you of its definition (Definition C.19).

Definition C.20 (Conditional independence). A set of random variables 𝑌1,… , 𝑌𝑛 are
conditionally statistically independent given a set of covariates 𝑋1,… ,𝑋𝑛 if the joint
probability of the 𝑌𝑖s given the 𝑋𝑖s is equal to the product of their marginal probabilities:

Pr(𝑌1 = 𝑦1,… , 𝑌𝑛 = 𝑦𝑛|𝑋1 = 𝑥1,… ,𝑋𝑛 = 𝑥𝑛) =
𝑛
∏
𝑖=1

Pr(𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖)

Definition C.21 (Identically distributed). A set of random variables 𝑋1,… ,𝑋𝑛 are iden-
tically distributed if they have the same range ℛ(𝑋) and if their marginal distributions
P(𝑋1 = 𝑥1), ...,P(𝑋𝑛 = 𝑥𝑛) are all equal to some shared distribution P(𝑋 = 𝑥):

∀𝑖 ∈ {1 ∶ 𝑛}, ∀𝑥 ∈ ℛ(𝑋) ∶ P(𝑋𝑖 = 𝑥) = P(𝑋 = 𝑥)

Definition C.22 (Conditionally identically distributed). A set of random variables
𝑌1,… , 𝑌𝑛 are conditionally identically distributed given a set of covariates 𝑋1,… ,𝑋𝑛
if 𝑌1,… , 𝑌𝑛 have the same range ℛ(𝑋) and if the distributions P(𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖) are all
equal to the same distribution P(𝑌 = 𝑦|𝑋 = 𝑥):

P(𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥) = P(𝑌 = 𝑦|𝑋 = 𝑥)

Definition C.23 (Independent and identically distributed). A set of random variables
𝑋1,… ,𝑋𝑛 are independent and identically distributed (shorthand: “𝑋𝑖 iid”) if they
are statistically independent and identically distributed.

Definition C.24 (Conditionally independent and identically distributed). A set of random
variables 𝑌1,… , 𝑌𝑛 are conditionally independent and identically distributed (short-
hand: “𝑌𝑖|𝑋𝑖 ciid” or just “𝑌𝑖|𝑋𝑖 iid”) given a set of covariates 𝑋1,… ,𝑋𝑛 if 𝑌1,… , 𝑌𝑛 are
conditionally independent given 𝑋1,… ,𝑋𝑛 and 𝑌1,… , 𝑌𝑛 are identically distributed given
𝑋1,… ,𝑋𝑛.
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C.5. The Central Limit Theorem

The sum of many independent or nearly-independent random variables with small variances
(relative to the number of RVs being summed) produces bell-shaped distributions.

For example, consider the sum of five dice (Figure C.4).

library(dplyr)
dist =
expand.grid(1:6, 1:6, 1:6, 1:6, 1:6) |>
rowwise() |>
mutate(total = sum(c_across(everything()))) |>
ungroup() |>
count(total) |>
mutate(`p(X=x)` = n/sum(n))

library(ggplot2)

dist |>
ggplot() +
aes(x = total, y = `p(X=x)`) +
geom_col() +
xlab("sum of dice (x)") +
ylab("Probability of outcome, Pr(X=x)") +
expand_limits(y = 0)
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Figure C.4.: Distribution of the sum of five dice
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C. Probability

In comparison, the outcome of just one die is not bell-shaped (Figure C.5).

library(dplyr)
dist =
expand.grid(1:6) |>
rowwise() |>
mutate(total = sum(c_across(everything()))) |>
ungroup() |>
count(total) |>
mutate(`p(X=x)` = n/sum(n))

library(ggplot2)

dist |>
ggplot() +
aes(x = total, y = `p(X=x)`) +
geom_col() +
xlab("sum of dice (x)") +
ylab("Probability of outcome, Pr(X=x)") +
expand_limits(y = 0)
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Figure C.5.: Distribution of the outcome of one die

What distribution does a single die have?

Answer: discrete uniform on 1:6.
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C.6. Additional resources

• Miller (2017)
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D. Estimation

D.1. Probabilistic models

Definition D.1 (Scientific models). Scientific models are attempts to describe physical
conditions or changes that occur in the world and universe around us.

Example D.1 (Scientific models in epidemiology). Epidemiologists typically study biological
conditions and changes, such as the spread of infectious diseases through populations, or
the effects of environmental factors on individuals.

D.1.1. All models are wrong, some are useful

Box and Draper (1987), p424 (emphasis added):

…Essentially, all models are wrong, but some are useful. However, the ap-
proximate nature of the model must always be borne in mind.

see also Dunn and Smyth (2018), §1.8

D.1.2. Statistical analysis of scientific models

When we perform statistical analyses, we use data to help us choose between models -
specifically, to determine which models best explain that data.

However, physical processes do not produce data on their own. Data is only produced when
scientists implement an observation process (i.e., a scientific study), which is distinct from
the underlying physical process. In some cases, the observation process and the physical
process interact with each other. This phenomenon is called the “observer effect”1.

In order to learn about the physical processes we are ultimately interested in, we often need
to make special considerations for the observation process that produced the data which
we are analyzing. In particular, if some of the planned observations in the study design
were not completed, we will likely need to account for the incompleteness of the resulting
data set in our analysis. If we are not sure why some observations are incomplete, we may
need to model the observation process in addition to the physical process we were originally
interested in. For example, if some participants in a study dropped out part-way through
the study, we may need investigate why those participants dropped out, as opposed to other
participants who completed the study.

These kinds of missing data issues are outside of the scope of this course; see Van Buuren
(2018) for more details.

1https://en.wikipedia.org/wiki/Observer_effect
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D. Estimation

D.2. Estimands, estimates, and estimators

D.2.1. Estimands

Definition D.2 (Estimand). An estimand is an unknown quantity whose value we want
to know (Pohl et al. 2021; Lawrance et al. 2020).

Example D.2 (Mean height of students). If we are trying to determine the mean height of
students at our school, then the population mean is our estimand.

In statistical contexts, most estimands are parameters of probabilistic models, or functions
of model parameters.

INFO Notation for estimands

Model paramaters and other estimands are often symbolized using lower-case Greek
letters: 𝛼, 𝛽, 𝛾, 𝛿, etc.

D.2.2. Estimates

Definition D.3 (Estimate/estimated value). In statistics, an estimate or estimated
value is an informed guess of an estimand’s value, based on observed data.

Example D.3 (Mean height of students). Suppose we measure the heights of 50 random
students from our school, and the sample mean was 175cm. We might use 175cm as an
estimate of the population mean.

D.2.3. Estimators

Definition D.4 (Estimator). An estimator is a function ̂𝜃(𝑥1, ...𝑥𝑛) that transforms data
𝑥1, ...𝑥𝑛 into an estimate.

INFO Estimators are random variables

When estimators are applied to random variables, the estimators are also random
variables.

INFO Notation for estimators

Estimators are often symbolized by placing a ^ (“hat”) symbol on top of the corre-
sponding estimand; for example, ̂𝜃.
Usually, their dependence on the data is implicit:

̂𝜃 def= ̂𝜃(𝑥1, ...𝑥𝑛)
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D. Estimation

Example D.4 (Mean height of students). If we want to estimate the mean height of
students at our university, which we will represent as 𝜇, we might measure the heights of
𝑛 = 50 randomly sampled students as random variables 𝑋1, ..., 𝑋𝑛. Then we could use the
function

̂𝜇(𝑋1, ..., 𝑋𝑛) =
1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
def= 𝑋̄

as an estimator to produce an estimate ̂𝜇 = ̄𝑥 of 𝜇.

Another estimator would be just the height of the first student sampled:

̂𝜇(2)(𝑋1, ..., 𝑋𝑛) = 𝑋1

A third possible estimator would be the mean of all sampled students’ heights, except
for the two most extreme; that is, if we re-order the observations 𝑋(1) = min𝑖∈1∶𝑛 𝑋𝑖,
𝑋(2) = min𝑖∈{1∶𝑛}−arg 𝑋(1)

𝑋𝑖, …, 𝑋(𝑛) = max𝑖∈1∶𝑛 𝑋𝑖, then we could define the estimator:

̂𝜇(3)(𝑋1, ..., 𝑋𝑛) =
1
𝑛

𝑛−1
∑
𝑖=2

𝑋(𝑖)

Which of these estimators is best? It depends on how we evaluate them (see Section D.3
below).

D.2.4. Contrasting estimands, estimates, and estimators

It’s helpful to keep in mind the mathematical type of each estimation concept:

• estimands are numbers (or vector of numbers)
• estimates are also numbers (or vectors)
• estimators are functions of random variables, so they are also random variables

D.3. Accuracy of estimators

D.3.1. Accuracy

To determine which estimator is best, we need to define best. “Accuracy” is usually most
important; easy computation is usually secondary.

Definition D.5 (Accuracy). The accuracy of an estimator for a given estimand does
not have a consensus formal definition, but all of the usual candidates are related to the
distributions of the errors made by the resulting estimates.
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D. Estimation

D.3.2. Error

Definition D.6 (Error). The error of an estimate ̂𝜃 of a true value 𝜃, often denoted 𝜀( ̂𝜃),
or more completely 𝜀( ̂𝜃, 𝜃), is the difference between the estimate and its estimand 𝜃; that
is:

𝜀( ̂𝜃) def= ̂𝜃 − 𝜃

Some frequently-used measures of accuracy include:

D.3.3. Mean squared error

Definition D.7 (Mean squared error). The mean squared error of an estimator ̂𝜃,
denoted MSE( ̂𝜃), is the expectation of the square of the error2:

MSE( ̂𝜃) def= E[(𝜀( ̂𝜃))2]

D.3.4. Mean absolute error

Definition D.8 (Mean absolute error). The mean absolute error of an estimator is the
expectation of the absolute value of the error:

MAE( ̂𝜃) def= E[∣𝜀( ̂𝜃)∣]

D.3.5. Bias

Definition D.9 (Bias). The bias of an estimator ̂𝜃 for an estimand 𝜃 is the expected value
of the error:

Bias( ̂𝜃) def= E[𝜀( ̂𝜃)] (D.1)

Theorem D.1 (Bias equals Expectation minus Truth).

Bias( ̂𝜃) = E[ ̂𝜃] − 𝜃

Proof.
Bias( ̂𝜃) def= E[𝜀( ̂𝜃)]

= E[ ̂𝜃 − 𝜃]

= E[ ̂𝜃] − E[𝜃]

= E[ ̂𝜃] − 𝜃

The third equality is by the linearity of expectation.
2https://en.wikipedia.org/wiki/Does_exactly_what_it_says_on_the_tin
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D. Estimation

Theorem D.2 (Mean Squared Error equals Bias Squared plus Variance). For any one-
dimensional estimator ̂𝜃:

MSE( ̂𝜃) = (Bias( ̂𝜃))
2
+ Var( ̂𝜃) (D.2)

Proof. Let’s start by expanding each term of the right-hand side:

(Bias( ̂𝜃))
2
= (E[ ̂𝜃] − 𝜃)

2

= (E[ ̂𝜃])
2
− 2E[ ̂𝜃]𝜃 + 𝜃2

Var( ̂𝜃) = E[ ̂𝜃2] − (E[ ̂𝜃])
2

Now, add them together and simplify:

(Bias( ̂𝜃))
2
+ Var( ̂𝜃) = (E[ ̂𝜃])

2
− 2E[ ̂𝜃]𝜃 + 𝜃2 + E[ ̂𝜃2] − (E[ ̂𝜃])

2

= E[ ̂𝜃2] − 2E[ ̂𝜃]𝜃 + 𝜃2

Now let’s expand the left-hand side to reach the same expression:

MSE( ̂𝜃) = E[(e( ̂𝜃))2]

= E[( ̂𝜃 − 𝜃)2]

= E[ ̂𝜃2 − 2 ̂𝜃𝜃 − 𝜃2]

= E[ ̂𝜃2] − E[2 ̂𝜃𝜃] + E[𝜃2]

= E[ ̂𝜃2] − 2E[ ̂𝜃]𝜃 + 𝜃2

MSE( ̂𝜃) and (Bias( ̂𝜃))
2
+ Var( ̂𝜃) both equal E[ ̂𝜃2] − 2E[ ̂𝜃]𝜃 + 𝜃2. Equality is transitive,

so MSE( ̂𝜃) and (Bias( ̂𝜃))
2
+ Var( ̂𝜃) are equal to each other:

MSE( ̂𝜃) = (Bias( ̂𝜃))
2
+ Var( ̂𝜃)
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D. Estimation

D.3.5.1. Unbiased estimators

Definition D.10 (unbiased estimator). An estimator ̂𝜃 is unbiased if Bias( ̂𝜃) = 0.

Theorem D.3 (properties of unbiased estimators). If ̂𝜃 is unbiased, then:

E[ ̂𝜃] = 𝜃 (D.3)

MSE( ̂𝜃) = Var( ̂𝜃) (D.4)

Proof. If ̂𝜃 is unbiased, then:

Equation D.3:

Bias( ̂𝜃) = 0

E[ ̂𝜃] − 𝜃 = 0

E[ ̂𝜃] = 𝜃

Equation D.4:

MSE( ̂𝜃) def= E[(𝜀( ̂𝜃))
2
]

= E[( ̂𝜃 − 𝜃)
2
]

= E[( ̂𝜃 − E[ ̂𝜃])
2
]

def= Var( ̂𝜃)

(Alternative proof of Equation D.4) We could have started from Theorem D.2 instead:

MSE( ̂𝜃) = (Bias( ̂𝜃))
2
+ Var( ̂𝜃)

= (0)2 + Var( ̂𝜃)

= 0 + Var( ̂𝜃)

= Var( ̂𝜃)
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D.3.6. Standard error

Definition D.11 (Standard error). The standard error of an estimator ̂𝜃 is just the
standard deviation of ̂𝜃; that is:

SE( ̂𝜃) def= SD( ̂𝜃)

“Standard error” is a confusing concept in a few ways. First of all, it isn’t even defined as a
characteristic of the error, 𝜀( ̂𝜃)! Moreover, it is just a synonym for standard deviation, so it
seems like a redundant concept. However, standard errors help us construct p-values and
confidence intervals, so they come up a lot - often enough to give them their own name.

We can relate standard error to actual error, by rearranging the result from Theorem D.2:

Var( ̂𝜃) = Var( ̂𝜃 − 𝜃)

= Var(𝜀( ̂𝜃))

So the variance of the estimator is equal to the variance of the error, and the standard error
is equal to the standard deviation of the error:

SE( ̂𝜃) = SD(𝜀( ̂𝜃))

Corollary D.1 (Standard error squared equals MSE minus squared bias). standard error
is what is left over of MSE after bias is removed:

(SE( ̂𝜃))
2
= MSE( ̂𝜃) − (Bias( ̂𝜃))

2

Proof.
MSE( ̂𝜃) = (Bias( ̂𝜃))

2
+ Var( ̂𝜃)

∴Var( ̂𝜃) = MSE( ̂𝜃) − (Bias( ̂𝜃))
2

∴(SE( ̂𝜃))
2
= MSE( ̂𝜃) − (Bias( ̂𝜃))

2

Corollary D.2 (For unbiased estimators, SE = RMSE). If E[𝜀( ̂𝜃)] = 0, then:

SE( ̂𝜃) = √MSE( ̂𝜃)

(this result is equivalent to Equation D.4)
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E. Inference

Definition E.1 (Statistical inference). Statistical inference is the process of analyzing data
in order to learn about the shape and structure of a probability distribution. 1

Statistical inference typically consists of two steps:

1. fitting a statistical model to data
2. summarizing our uncertainty about the parameters of the fitted model based on the

data (and our prior beliefs).

There are two predominant paradigms for statistical inference:

1. Bayesian inference (Appendix G)
2. Frequentist inference (Appendix F)

E.1. Interpretation of Negative Findings

If an estimation interval includes the null hypothesis, or equivalently if a hypothesis test
fails to reject the null hypothesis, that doesn’t necessarily mean that the null hypothesis
is true. Accordingly, we should not write interpretations of results as “the odds (or
risks/hazards/means) are not significantly different”; instead, we should write something
like “the data does not provide statistically significant EVIDENCE that the odds (or
analogous estimands) differ”. Statistical significance is a characteristic of evidence, not of
the estimands.

P-values do not distinguish between absence of evidence and evidence of absence.

Confidence intervals do: if the confidence interval is narrow and includes the null value, then
that confidence interval represents evidence of absence. If a confidence interval includes
the null value but also includes substantially non-null values, then that confidence interval
represents absence of evidence.

Also, even if we do have statistically significant evidence of a non-null value, the estimated
value may not be substantially different from 0, depending on what estimand is. For
example, we might have statistically significant evidence that a certain exercise prolongs

1I adapted this definition from Wikipedia’s (Wikipedia contributors 2025).

432



E. Inference

human lifespans by 20 seconds, but that effect would probably not be substantially different
from 0 in practical terms.

Figure E.1 sketches various scenarios for confidence intervals, from office hours. To do:
convert this sketch into a nicely formatted figure.

Figure E.1.: Interpretations of various confidence intervals
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See also Vittinghoff et al. (2012) §3.7 (p64).

E.2. Confidence intervals

Definition E.2 (margin of error). The margin of error (a.k.a. the radius) is one-half
the width of a confidence interval.

more:

• Anatomy of a confidence interval (text)2

• https://www.youtube.com/watch?v=vq1KrE7gU5M

2https://wmed.edu/sites/default/files/ANATOMY%20OF%20A%20CONFIDENCE%20INTERVAL%20%
28full%29.pdf
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F. Introduction to Maximum Likelihood
Inference

These notes are derived primarily from Dobson and Barnett (2018) (mostly chapters 1-5).

Some material was also taken from McLachlan and Krishnan (2007) and Casella and Berger
(2002).

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times
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F. Introduction to Maximum Likelihood Inference

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(

legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

F.1. Overview of maximum likelihood estimation

F.1.1. The likelihood function

Definition F.1 (Likelihood of a single observation). Let 𝑋 be a random variable and let 𝑥
be 𝑋’s observed data value. Let pΘ(𝑋 = 𝑥) be a probability model for the distribution of
𝑋, with parameter vector Θ.

Then the likelihood of parameter value 𝜃, for model pΘ(𝑋 = 𝑥) and data 𝑋 = 𝑥, is simply
the probability of the event 𝑋 = 𝑥 given Θ = 𝜃:

ℒ(𝜃) def= P𝜃(𝑋 = 𝑥)

Definition F.2 (Likelihood of a dataset). Let ̃𝑥 def= 𝑥1,… , 𝑥𝑛 be a dataset with correspond-
ing random variable 𝑋̃. Let pΘ(𝑋̃) be a probability model for the distribution of 𝑋̃ with
unknown parameter vector Θ.

Then the likelihood of parameter value 𝜃, for model pΘ(𝑋) and data 𝑋̃ = ̃𝑥, is the joint
probability of 𝑋̃ = ̃𝑥 given Θ = 𝜃:

ℒ(𝜃) def= p(𝑋̃ = ̃𝑥|Θ = 𝜃)
= p(𝑋1 = 𝑥1, ..., 𝑋𝑛 = 𝑥𝑛|Θ = 𝜃)
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INFO Notation for the likelihood function

The likelihood function can be written as:

• ℒ(𝜃)
• ℒ( ̃𝑥; 𝜃)
• ℒ(𝜃; ̃𝑥)
• ℒ𝑥̃(𝜃)
• ℒ𝜃( ̃𝑥)
• ℒ( ̃𝑥|𝜃)

All of these notations mean the same thing. The parameter vector 𝜃 is often listed first
or solely, either to emphasize that we are interested in how this function varies with the
parameters, given the data, or possibly to make the likelihood resemble the Bayesian
posterior probability p(𝜃| ̃𝑥), hinting at the fact that if the prior probability p(𝜃) is
uniform over some finite parameter space, the posterior probability is proportional to
the likelihood:

p(𝜃| ̃𝑥) = p( ̃𝑥|𝜃)p(𝜃)
p( ̃𝑥)

= ℒ( ̃𝑥|𝜃)p(𝜃)
p( ̃𝑥)

= ℒ( ̃𝑥|𝜃)p(𝜃)
p( ̃𝑥)

The likelihood is a function that takes 𝜃 (and implicitly, 𝑋̃) as inputs and outputs a single
number, the joint probability of ̃𝑥 for model 𝑝Θ(𝑋̃ = ̃𝑥) with Θ = 𝜃.

Theorem F.1 (Likelihood of an independent sample). For mutually independent data
𝑋1, ..., 𝑋𝑛:

ℒ( ̃𝑥|𝜃) =
𝑛
∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃) (F.1)

Proof.
ℒ( ̃𝑥|𝜃) def= p(𝑋1 = 𝑥1,…,𝑋𝑛 = 𝑥𝑛|𝜃)

=
𝑛
∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃)

The second equality is by the definition of statistical independence.
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Definition F.3 (Likelihood components). Given an iid dataset ̃𝑥, the likelihood compo-
nent or likelihood factor of observation 𝑋𝑖 = 𝑥𝑖 is the marginal likelihood of 𝑋𝑖 = 𝑥𝑖:

ℒ𝑖(𝜃) = P(𝑋𝑖 = 𝑥𝑖)

Theorem F.2. For iid data ̃𝑥
def
= 𝑥1,… , 𝑥𝑛, the likelihood of the dataset is equal to the

product of the observation-specific likelihood factors:

ℒ(𝜃) =
𝑛
∏
𝑖=1

ℒ𝑖(𝜃)

F.1.2. Binary outcomes models - one group, no covariates

P(𝑌 = 1) = 𝜋
P(𝑌 = 0) = 1 − 𝜋
P(𝑌 = 𝑦) = 𝜋𝑦(1 − 𝜋)1−𝑦

Exercise F.1. Let ̃𝑦 represent a data set of mutually independent binary outcomes, all
with the same event probability 𝜋:

̃𝑦 = (𝑦1, ..., 𝑦𝑛)
𝑦𝑖 ∼⟂⟂ Ber(𝜋)

Write the likelihood of ̃𝑦.

Solution F.1. For iid data ̃𝑦 = (𝑦1, ..., 𝑦𝑛):

ℒ(𝜋; ̃𝑦) = P(𝑌1 = 𝑦1,… , 𝑌𝑛 = 𝑦𝑛)

=
𝑛
∏
𝑖=1

ℒ𝑖(𝜋𝑖)

=
𝑛
∏
𝑖=1

P(𝑌𝑖 = 𝑦𝑖)

=
𝑛
∏
𝑖=1

𝜋𝑦𝑖(1 − 𝜋)1−𝑦𝑖

= 𝜋∑𝑛
𝑖=1 𝑦𝑖(1 − 𝜋)𝑛−∑𝑛

𝑖=1 𝑦𝑖

= 𝜋1̃⋅ ̃𝑦(1 − 𝜋)1̃⋅(1̃− ̃𝑦)
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Exercise F.2. Write the log-likelihood of ̃𝑦.

Solution F.2.

ℓ(𝜋, ̃𝑦) = (
𝑛

∑
𝑖=1

𝑦𝑖)log{𝜋} + (𝑛 −∑𝑦𝑖) log{1 − 𝜋}

= (
𝑛

∑
𝑖=1

𝑦𝑖)(log{𝜋} − log{1 − 𝜋}) + 𝑛 ⋅ log{1 − 𝜋}

= (
𝑛

∑
𝑖=1

𝑦𝑖)log{ 𝜋
1 − 𝜋

} + 𝑛 ⋅ log{1 − 𝜋}

= (
𝑛

∑
𝑖=1

𝑦𝑖)logit(𝜋) + 𝑛 ⋅ log{1 − 𝜋}

F.1.3. The maximum likelihood estimate

Definition F.4 (Maximum likelihood estimate). The maximum likelihood estimate of
a parameter vector Θ, denoted ̂𝜃ML, is the value of Θ that maximizes the likelihood:

̂𝜃ML
def= arg max

Θ
ℒ(Θ) (F.2)

F.1.4. Finding the maximum of a function

Recall from calculus: the maxima of a continuous function 𝑓(𝑥) over a range of input values
ℛ(𝑥) can be found either:

• at the edges of the range of input values, OR:
• where the function is flat (i.e. where the gradient function 𝑓 ′(𝑥) = 0) AND the second

derivative is negative definite (𝑓″(𝑥) < 0).

F.1.5. Directly maximizing the likelihood function for independent data

To find the maximizer(s) of the likelihood function, we need to solve ℒ′(𝜃) = 0 for 𝜃.
However, even for mutually independent data, we quickly run into a problem:

ℒ′(𝜃) = 𝜕
𝜕𝜃

ℒ(𝜃)

= 𝜕
𝜕𝜃

𝑛
∏
𝑖=1

𝑝(𝑋𝑖 = 𝑥𝑖|𝜃)
(F.3)

The derivative of the likelihood of independent data is the derivative of a product. To
evaluate this derivative, we will have to perform a massive application of the product rule
(Theorem B.25).
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F.1.6. The log-likelihood function

It is typically easier to work with the log of the likelihood function:

Definition F.5 (Log-likelihood). The log-likelihood of parameter value 𝜃, for model
pΘ(𝑋̃) and data 𝑋̃ = ̃𝑥, is the natural logarithm of the likelihood1:

ℓ def= log{ℒ( ̃𝑥|𝜃)} (F.4)

Theorem F.3. The likelihood and log-likelihood have the same maximizer:

arg max
𝜃

ℒ(𝜃) = arg max
𝜃

ℓ(𝜃)

Proof. Left to the reader.

Theorem F.4 (Log-likelihood of an independent sample). For mutually independent data
𝑋1, ..., 𝑋𝑛 with shared distribution p(𝑋 = 𝑥):

ℓ(𝑥|𝜃) =
𝑛

∑
𝑖=1

log 𝑝(𝑋 = 𝑥𝑖|𝜃) (F.5)

Proof.
ℓ(𝑥|𝜃) def= logℒ( ̃𝑥|𝜃)

= log
𝑛
∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃)

=
𝑛

∑
𝑖=1

log 𝑝(𝑋 = 𝑥𝑖|𝜃)

For iid data, we will have a much easier time taking the derivative of the log-likelihood:

Theorem F.5 (Derivative of the log-likelihood function for iid data). For iid data:

ℓ′(𝜃) =
𝑛

∑
𝑖=1

𝜕
𝜕𝜃

log p(𝑋 = 𝑥𝑖|𝜃) (F.6)

1https://en.wikipedia.org/wiki/Does_exactly_what_it_says_on_the_tin
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Proof.
ℓ′(𝜃) = 𝜕

𝜕𝜃
ℓ(𝜃)

= 𝜕
𝜕𝜃

𝑛
∑
𝑖=1

log p(𝑋 = 𝑥𝑖|𝜃)

=
𝑛

∑
𝑖=1

𝜕
𝜕𝜃

log p(𝑋 = 𝑥𝑖|𝜃)

F.1.7. The score function

The first derivative2 of the log-likelihood, ℓ′(𝜃), is important enough to have its own name:
the score function.

Definition F.6 (Score function). The score function of a statistical model p(𝑋̃ = ̃𝑥) is
the gradient (i.e., first derivative) of the log-likelihood of that model:

ℓ′ def= 𝜕
𝜕𝜃

ℓ( ̃𝑥|𝜃) (F.7)

We often skip writing the arguments 𝑥 and/or 𝜃, so ℓ′ def= ℓ′( ̃𝑥|𝜃) def= ℓ′(𝜃).

Some statisticians use 𝑈 or 𝑆 instead of ℓ′. We will use ℓ′, both to save 𝑈 and 𝑆 for other
uses and to avoid introducing unnecessary notation to memorize.

Exercise F.3. Derive the score function for a single Bernoulli random variable 𝑋. In other
words, differentiate the marginal log-likelihood of a single Bernoulli random variable 𝑋 with
respect to the event probability parameter, 𝜋. Simplify as much as possible.

Solution F.3. Starting from Solution F.2:

2a.k.a. the gradient3
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ℓ′ def= 𝜕
𝜕𝜋

ℓ

= 𝜕
𝜕𝜋

(𝑥log{𝜋} + (1 − 𝑥)log{1 − 𝜋})

= 𝜕
𝜕𝜋

𝑥log{𝜋} + 𝜕
𝜕𝜋

(1 − 𝑥)log{1 − 𝜋}

= 𝑥 𝜕
𝜕𝜋

log{𝜋} + (1 − 𝑥) 𝜕
𝜕𝜋

log{1 − 𝜋}

= 𝑥1
𝜋
− (1 − 𝑥) 1

1 − 𝜋

= 𝑥 1 − 𝜋
𝜋(1 − 𝜋)

− (1 − 𝑥) 𝜋
𝜋(1 − 𝜋)

= 𝑥(1 − 𝜋) − (1 − 𝑥)𝜋
𝜋(1 − 𝜋)

= 𝑥 − 𝑥𝜋 − 𝜋 + 𝑥𝜋
𝜋(1 − 𝜋)

= 𝑥 − 𝜋
𝜋(1 − 𝜋)

= 𝑥 − 𝜇
𝜋(1 − 𝜋)

= 𝜀
Var(𝑋)

Exercise F.4. Derive the score function for a single Poisson random variable 𝑋.

Solution F.4. The score function is the first derivative of the log-likelihood:

ℓ′ = 𝜕
𝜕𝜆

(𝑥 log𝜆 − 𝜆 − log𝑥!)

= 𝜕
𝜕𝜆

𝑥 log𝜆 − 𝜕
𝜕𝜆

𝑛𝜆 − 𝜕
𝜕𝜆

log𝑥!

= 𝑥 𝜕
𝜕𝜆

log𝜆 − 𝑛 𝜕
𝜕𝜆

𝜆 − 𝜕
𝜕𝜆

log𝑥!

= 𝑥1
𝜆
− 1 − 0

= 1
𝜆
𝑥 − 1

= 𝑥
𝜆
− 𝜆

𝜆

= 𝑥 − 𝜆
𝜆

= 𝑥 − 𝜇
𝜆

= 𝜀
Var(𝑋)
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Exercise F.5. Derive the score function for a single Gaussian random variable 𝑋, with
respect to the mean parameter 𝜇.

Solution F.5. The score function is the first derivative of the log-likelihood:

ℓ′ def= 𝜕
𝜕𝜇

ℓ

= 𝜕
𝜕𝜇

(−1
2

(log{2𝜋𝜎2} + 𝜀2

𝜎2))

= −1
2

𝜕
𝜕𝜇

(log{2𝜋𝜎2} + 𝜀2

𝜎2)

= −1
2

( 𝜕
𝜕𝜇

log{2𝜋𝜎2} + 𝜕
𝜕𝜇

𝜀2

𝜎2)

= −1
2

(0 + 𝜕
𝜕𝜇

(𝑥 − 𝜇)2

𝜎2 )

= −1
2

(−2𝑥 − 𝜇
𝜎2 )

= 𝑥 − 𝜇
𝜎2

= 𝜀
Var(𝑋)

Exercise F.6. Derive the score function for a single exponential random variable 𝑋, with
respect to the mean parameter 𝜇.

Solution F.6. The score function is the first derivative of the log-likelihood:

ℓ′ def= 𝜕
𝜕𝜇

ℓ

= 𝜕
𝜕𝜇

(−log{𝜇} − 𝑥
𝜇
)

= 𝜕
𝜕𝜇

(−log{𝜇}) − 𝜕
𝜕𝜇

𝑥
𝜇

= −1
𝜇
+ 𝑥

𝜇2

= − 𝜇
𝜇2 + 𝑥

𝜇2

= 𝑥 − 𝜇
𝜇2

= 𝜀
Var(𝑋)
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In all four cases above, the score function (with respect to the mean) turned out to be:

ℓ′ = 𝜀
Var(𝑋)

That is no coincidence. All four of these distributions belong to the exponential family/class
of probability distributions4. The distributions in the exponential family share many special
properties. For more details, see Hogg, Tanis, and Zimmerman (2015), Section 6.7 and
Dobson and Barnett (2018), Chapter 3.

F.1.8. Asymptotic distribution of the maximum likelihood estimate

We learned how to quantify our uncertainty about these maximum likelihood estimates;
with sufficient sample size, ̂𝜃ML has an approximately Gaussian distribution (Newey and
McFadden 1994):

Theorem F.6 (Central limit theorem for MLEs).

̂𝜃𝑀𝐿 ∼̇ N(𝜃, [ℐ( ̃𝜃)]
−1

) (F.8)

Proof. See (Lehmann 1999), Theorem 7.3.2.

Recall:

Definition F.7 (Observed information matrix). The observed information matrix,
denoted 𝐼, is defined as the negative of the Hessian of the log-likelihood:

𝐼 def= −ℓ″( ̃𝑥| ̃𝜃) (F.9)

Definition F.8 (Expected information/Fisher information). The expected information
matrix, also known as the Fisher information matrix, is denoted ℐ and is defined as
the expected value of the observed information matrix:

ℐ def= E[𝐼( ̃𝑥|𝜃)] (F.10)

We can estimate ℐ(𝜃) using either ℐ( ̂𝜃ML) or 𝐼( ̃𝑥; ̂𝜃ML).

So we can estimate the standard error of ̂𝜃𝑘 as:

ŜE( ̂𝜃𝑘) = √[( ̂ℐ( ̂𝜃ML))
−1

]
𝑘𝑘

4https://en.wikipedia.org/wiki/Exponential_family

444

https://en.wikipedia.org/wiki/Exponential_family


F. Introduction to Maximum Likelihood Inference

F.1.9. The (Fisher) (expected) information matrix

The variance of ℓ′(𝑥, 𝜃), 𝐶𝑜𝑣 {ℓ′(𝑥, 𝜃)}, is also very important; we call it the “expected
information matrix”, “Fisher information matrix”, or just “information matrix”, and we
represent it using the symbol ℐ(𝐼) (\scriptI in Unicode, \mathcal{I} in LaTeX).

ℐ def= ℐ(𝜃)
def= Cov(ℓ′|𝜃)
= E[ℓ′ℓ′⊤] − E[ℓ′] E[ℓ′]⊤

The elements of ℐ are:

ℐ𝑖𝑗
def= Cov(ℓ′

𝑖, ℓ′
𝑗)

= E[ℓ′
𝑖ℓ′

𝑗] − E[ℓ′
𝑖]E[ℓ′

𝑗]

Here,

E[ℓ′] def= ∫
𝑥∈ℛ(𝑥)

ℓ′(𝑥, 𝜃)p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

( 𝜕
𝜕𝜃

log p(𝑋 = 𝑥|𝜃))p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

𝜕
𝜕𝜃p(𝑋 = 𝑥|𝜃)
p(𝑋 = 𝑥|𝜃)

p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

𝜕
𝜕𝜃

p(𝑋 = 𝑥|𝜃)𝑑𝑥

And similarly

E[ℓ′ℓ′⊤] def= ∫
𝑥∈𝑅(𝑥)

ℓ′(𝑥, 𝜃)ℓ′(𝑥, 𝜃)⊤ p(𝑋 = 𝑥|𝜃) 𝑑𝑥

Note that E[ℓ′] and E[ℓ′ℓ′⊤] are functions of 𝜃 but not of 𝑥; the expectation operator
removed 𝑥.

Also note that for most of the distributions you are familiar with (including Gaussian,
binomial, Poisson, exponential):

E[ℓ′] = 0

So

ℐ(𝜃) = E[ℓ′ℓ′⊤]

Moreover, for those distributions (called the “exponential family”), we have:

ℐ = −E[ℓ″] = E[−ℓ′ℓ′⊤]
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(see Dobson and Barnett (2018), §3.17).

Definition F.9 (Hessian). The matrix of second derivatives of the log-likelihood function
is called the Hessian matrix (of the log-likelihood function) 5:

ℓ″ def= 𝜕
𝜕 ̃𝜃

𝜕
𝜕 ̃𝜃⊤

ℓ( ̃𝑥| ̃𝜃) (F.11)

Theorem F.7 (Elements of the Hessian matrix). If ̃𝜃 is a 𝑝 × 1 vector, then the Hessian is
a 𝑝 × 𝑝 matrix, whose 𝑖𝑗𝑡ℎ entry is:

ℓ″
𝑖𝑗 = 𝜕

𝜕𝜃𝑖

𝜕
𝜕𝜃𝑗

ℓ(𝑋̃ = ̃𝑥| ̃𝜃) (F.12)

Theorem F.8 (Hessian = derivative of transposed score).

ℓ″( ̃𝑥| ̃𝜃) = 𝜕
𝜕 ̃𝜃

(ℓ′( ̃𝑥| ̃𝜃))
⊤

F.1.9.1. Observed information

Sometimes, we use 𝐼(𝜃; 𝑥) def= −ℎ𝑒𝑠𝑠 (note the standard-font “I” here). 𝐼(𝜃; 𝑥) is the observed
information, precision, or concentration matrix (Negative Hessian).

Exclamation Key point

The asymptotics of MLEs gives us ̂𝜃𝑀𝐿 ∼ 𝑁(𝜃, ℑ−1(𝜃)), approximately, for large
sample sizes.

We can estimate ℐ−1(𝜃) by working out E[−ℓ″] or E[ℓ′ℓ′⊤] and plugging in ̂𝜃ML, but
sometimes we instead use 𝐼( ̂𝜃ML, ̃𝑥) for convenience; there are some cases where it’s provably
better according to some criteria (Efron and Hinkley (1978)).

5named after mathematician Otto Hesse6
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F.1.10. Quantifying (un)certainty of MLEs

F.1.10.1. Confidence intervals for MLEs

An asymptotic approximation of a 95% confidence interval for 𝜃𝑘 is

̂𝜃ML ± 𝑧0.975 × ŜE( ̂𝜃𝑘)

where 𝑧𝛽 the 𝛽 quantile of the standard Gaussian distribution.

F.1.10.2. p-values and hypothesis tests for MLEs

(to add)

F.1.10.3. Likelihood ratio tests for MLEs

log(likelihood ratio) tests (c.f. Dobson and Barnett 2018, sec. 5.7):

2(ℓ − ℓH0) ∼ 𝜒2(𝑝 − 𝑞)

See also https://online.stat.psu.edu/stat504/book/export/html/657

F.1.10.4. Prediction intervals for MLEs

𝑋 ∈ [ ̂𝜇 ± 𝑧1−𝛼/2
𝜎
𝑚

]

Where 𝑚 is the sample size of the new data to be predicted (typically 1, except for binary
outcomes, where it needs to be bigger for prediction intervals to make sense).

F.2. Example: Maximum likelihood for Tropical Cyclones in
Australia

(Adapted from Dobson and Barnett (2018) §1.6.5)

F.2.1. Data

The cyclones dataset in the dobson package (Table F.1) records the number of tropical
cyclones in Northeastern Australia during 13 November-to-April cyclone seasons (more
details in Dobson and Barnett (2018) §1.6.5 and help(cyclones, package = "dobson")).
Figure F.1 graphs the number of cyclones (y-axis) by season (x-axis). Let’s use 𝑌𝑖 to
represent these counts, where 𝑖 is an indexing variable for the seasons and 𝑌𝑖 is the number
of cyclones in season 𝑖.
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F.2.2. Exploratory analysis

Suppose we want to learn about how many cyclones to expect per season.

library(dobson)
library(dplyr)
data(cyclones)
library(pander)
pander(cyclones |> relocate(season, .before = everything()))

Table F.1.: Number of tropical cyclones during a season from November to April in North-
eastern Australia

season years number

1 1956/7 6
2 1957/8 5
3 1958/9 4
4 1959/60 6
5 1960/1 6
6 1961/2 3
7 1962/3 12
8 1963/4 7
9 1964/5 4
10 1965/6 2
11 1966/7 6
12 1967/8 7
13 1968/9 4
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library(ggplot2)
library(dplyr)
cyclones |>
mutate(years = factor(years, levels = years)) |>
ggplot(aes(x = years, y = number, group = 1)) +
geom_point() +
geom_line() +
xlab("Season") +
ylab("Number of cyclones") +
expand_limits(y = 0) +
theme(axis.text.x = element_text(vjust = .5, angle = 45))
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Figure F.1.: Number of tropical cyclones per season in northeastern Australia, 1956-1969

There’s no obvious correlation between adjacent seasons, so let’s assume that each season is
independent of the others.

Let’s also assume that they are identically distributed; let’s denote this distribution as
𝑃(𝑌 = 𝑦). Note that there’s no index 𝑖 in this expression, since we are assuming the 𝑌𝑖s
are identically distributed.

We can visualize the distribution using a bar plot (Figure F.2).

cyclones |>
ggplot() +
geom_histogram(aes(x = number)) +
expand_limits(x = 0) +
xlab("Number of cyclones") +
ylab("Count (number of seasons)")
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Table F.2.: Summary statistics for cyclones data

  Overall
(N=13)

number
Mean (SD) 5.54 (2.47)
Median [Min, Max] 6.00 [2.00, 12.0]
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Figure F.2.: Bar plot of cyclones per season

Table F.2 provides summary statistics.

n <- nrow(cyclones)
sumx <- cyclones |>
pull(number) |>
sum()

xbar <- cyclones |>
pull(number) |>
mean()

cyclones |> table1::table1(x = ~number)

F.2.3. Model

We want to estimate 𝑃(𝑌 = 𝑦); that is, 𝑃(𝑌 = 𝑦) is our estimand.
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We could estimate 𝑃(𝑌 = 𝑦) for each value of 𝑦 in 0 ∶ ∞ separately (“nonparametrically”)
using the fraction of our data with 𝑌𝑖 = 𝑦, but then we would be estimating an infinitely
large set of parameters, and we would have low precision. We will probably do better with
a parametric model.

Exercise F.7. What parametric probability distribution family might we use to model
this empirical distribution?

Solution. Let’s use the Poisson. The Poisson distribution is appropriate for this data ,
because the data are counts that could theoretically take any integer value (discrete) in
the range 0 ∶ ∞. Visually, the plot of our data closely resembles a Poisson or binomial
distribution. Since cyclones do not have an “upper limit” on the number of events we could
potentially observe in one season, the Poisson distribution is more appropriate than the
binomial.

Exercise F.8. Write down the Poisson distribution’s probability mass function.

Solution.
𝑃(𝑌 = 𝑦) = 𝜆𝑦𝑒−𝜆

𝑦!
(F.13)

F.2.4. Estimating the model parameters using maximum likelihood

Now, we can estimate the parameter 𝜆 for this distribution using maximum likelihood
estimation.

Exercise F.9 (What is the likelihood?). Write down the likelihood (probability mass
function or probability density function) of a single observation 𝑥, according to your model.

Solution.
ℒ(𝜆; 𝑥) = 𝑝(𝑋 = 𝑥|Λ = 𝜆)

= 𝜆𝑥𝑒−𝜆

𝑥!
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Exercise F.10. Write down the vector of parameters in your model.

Solution. There is only one parameter, 𝜆:

𝜃 = (𝜆)

Exercise F.11. Write down the population mean and variance of a single observation from
your chosen probability model, as a function of the parameters (extra credit - derive them).

Solution.

• Population mean: E[𝑋] = 𝜆
• Population variance: Var(𝑋) = 𝜆

Exercise F.12. Write down the likelihood of the full dataset.

Solution.
ℒ(𝜆; ̃𝑥) = P(𝑋̃ = ̃𝑥)

= P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ..., 𝑋13 = 𝑥13)

=
13
∏
𝑖=1

P(𝑋𝑖 = 𝑥𝑖)

=
13
∏
𝑖=1

𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!

Exercise F.13. Graph the likelihood as a function of 𝜆.

Solution.
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lik <- function(lambda, y = cyclones$number, n = length(y)) {
lambda^sum(y) * exp(-n * lambda) / prod(factorial(y))

}

library(ggplot2)
lik_plot <-
ggplot() +
geom_function(fun = lik, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("likelihood") +
xlab("lambda")

print(lik_plot)
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Figure F.3.: Likelihood of Dobson cyclone data

Exercise F.14. Write down the log-likelihood of the full dataset.
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Solution.
ℓ(𝜆; ̃𝑥) = logℒ(𝜆; ̃𝑥)

= log
𝑛
∏
𝑖=1

𝜆𝑥𝑖e−𝜆

𝑥𝑖!

=
𝑛

∑
𝑖=1

log 𝜆𝑥𝑖e−𝜆

𝑥𝑖!

=
𝑛

∑
𝑖=1

log𝜆𝑥𝑖 + log e−𝜆 − log𝑥𝑖!

=
𝑛

∑
𝑖=1

𝑥𝑖 log𝜆 − 𝜆 − log𝑥𝑖!

=
𝑛

∑
𝑖=1

𝑥𝑖 log𝜆 −
𝑛

∑
𝑖=1

𝜆 −
𝑛

∑
𝑖=1

log𝑥𝑖!

=
𝑛

∑
𝑖=1

𝑥𝑖 log𝜆 − 𝑛𝜆 −
𝑛

∑
𝑖=1

log𝑥𝑖!

Exercise F.15. Graph the log-likelihood as a function of 𝜆.

Solution.

loglik <- function(lambda, y = cyclones$number, n = length(y)) {
sum(y) * log(lambda) - n * lambda - sum(log(factorial(y)))

}

ll_plot <- ggplot() +
geom_function(fun = loglik, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("log-likelihood") +
xlab("lambda")

ll_plot
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Figure F.4.: log-likelihood of Dobson cyclone data

F.2.4.1. The score function

Exercise F.16. Derive the score function for the dataset.

Solution. The score function is the first derivative of the log-likelihood:

ℓ′(𝜆; ̃𝑥) = 𝜕
𝜕𝜆

(
𝑛

∑
𝑖=1

𝑥𝑖 log𝜆 − 𝑛𝜆 −
𝑛

∑
𝑖=1

log𝑥𝑖!)

= 𝜕
𝜕𝜆

𝑛
∑
𝑖=1

𝑥𝑖 log𝜆 − 𝜕
𝜕𝜆

𝑛𝜆 − 𝜕
𝜕𝜆

𝑛
∑
𝑖=1

log𝑥𝑖!

=
𝑛

∑
𝑖=1

𝑥𝑖
𝜕
𝜕𝜆

log𝜆 − 𝑛 𝜕
𝜕𝜆

𝜆 −
𝑛

∑
𝑖=1

𝜕
𝜕𝜆

log𝑥𝑖!

=
𝑛

∑
𝑖=1

𝑥𝑖
1
𝜆
− 𝑛 − 0

= 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛

= (1
𝜆
𝑛 ̄𝑥) − 𝑛

= (1
𝜆
72) − 13
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Exercise F.17. Graph the score function.

Solution.

score <- function(lambda, y = cyclones$number, n = length(y)) {
(sum(y) / lambda) - n

}

ggplot() +
geom_function(fun = score, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("l'(lambda)") +
xlab("lambda") +
geom_hline(yintercept = 0, col = "red")
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Figure F.5.: score function of Dobson cyclone data

F.2.4.2. The Hessian matrix

Exercise F.18. Derive the Hessian matrix.
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Solution. The Hessian function for an iid sample is the 2nd derivative(s) of the log-likelihood:

ℓ″(𝜆; ̃𝑥) = 𝜕
𝜕𝜆

(1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛)

= 𝜕
𝜕𝜆

1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 −
𝜕
𝜕𝜆

𝑛

= − 1
𝜆2

𝑛
∑
𝑖=1

𝑥𝑖

= − 1
𝜆2𝑛 ̄𝑥

= − 1
𝜆2 ⋅ 72

Exercise F.19. Graph the Hessian.

Solution.

hessian <- function(lambda, y = cyclones$number, n = length(y)) {
-sum(y) / (lambda^2)

}

ggplot() +
geom_function(fun = hessian, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("l''(lambda)") +
xlab("lambda") +
geom_hline(yintercept = 0, col = "red")
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Figure F.6.: Hessian function of Dobson cyclone data

Exercise F.20. Write the score equation (estimating equation).

Solution.
ℓ′(𝜆; ̃𝑥) = 0

F.2.5. Finding the MLE analytically

In this case, we can find the MLE of 𝜆 by solving the score equation for 𝜆 analytically
(using algebra):

Exercise F.21. Solve the estimating equation for 𝜆:
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Solution.
0 = 1

𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛

𝑛 = 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖

𝑛𝜆 =
𝑛

∑
𝑖=1

𝑥𝑖

𝜆 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

= ̄𝑥

Let’s call this solution of the estimating equation 𝜆̃ for now:

𝜆̃ def= ̄𝑥

Exercise F.22. Confirm that the Hessian ℓ″(𝜆; ̃𝑥) is negative when evaluated at 𝜆̃.

Solution.
ℓ″(𝜆̃; ̃𝑥) = − 1

𝜆̃2
𝑛 ̄𝑥

= − 1
̄𝑥2𝑛 ̄𝑥

= −𝑛
̄𝑥

< 0

Exercise F.23. Draw conclusions about the MLE of 𝜆.

Solution. Since ℓ″(𝜆̃; ̃𝑥) < 0, 𝜆̃ is at least a local maximizer of the likelihood function ℒ(𝜆).
Since there is only one solution to the estimating equation and the Hessian is negative
definite everywhere, 𝜆̃ must also be the global maximizer of ℒ(𝜆; ̃𝑥):

mle <- mean(cyclones$number)

𝜆̂ML = ̄𝑥 = 5.538462
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Exercise F.24. Graph the log-likelihood with the MLE superimposed.

Solution.

library(dplyr)

mle_data <- tibble(x = mle, y = loglik(mle))
ll_plot + geom_point(data = mle_data, aes(x = x, y = y), col = "red")
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Figure F.7.: log-likelihood of Dobson cyclone data with MLE

F.2.5.1. Information matrices

obs_inf <- function(...) -hessian(...)
ggplot() +
geom_function(fun = obs_inf, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("I(lambda)") +
xlab("lambda") +
geom_hline(yintercept = 0, col = "red")
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Figure F.8.: Observed information function of Dobson cyclone data

F.3. Finding the MLE using the Newton-Raphson algorithm

F.3.1. Iterative maximization

(c.f., Dobson and Barnett (2018), Chapter 4)

Later, when we are trying to find MLEs for likelihoods which we can’t easily differentiate,
we will “hill-climb” using the Newton-Raphson algorithm:

̂𝜃∗ ← ̂𝜃∗ + (𝐼( ̃𝑦; ̂𝜃∗))
−1

ℓ′( ̃𝑦; ̂𝜃∗)

= ̂𝜃∗ − (ℓ″( ̃𝑦; ̂𝜃∗))
−1

ℓ′( ̃𝑦; ̂𝜃∗)

The reasoning for this algorithm is that we can approximate the score function near ̂𝜃∗

using the first-order Taylor polynomial7:

ℓ′(𝜃) ≈ ℓ′∗(𝜃)
def= ℓ′( ̂𝜃∗) + ℓ″( ̂𝜃∗)(𝜃 − ̂𝜃∗)

7https://en.wikipedia.org/wiki/Taylor%27s_theorem
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The approximate score function, ℓ′∗(𝜃), is a linear function of 𝜃, so it is easy to solve the
corresponding approximate score equation, ℓ′∗(𝜃) = 0, for 𝜃:

𝜃 = ̂𝜃∗ − ℓ′( ̂𝜃∗) ⋅ (ℓ″( ̂𝜃∗))
−1

For computational simplicity, we will sometimes use ℑ−1(𝜃) in place of 𝐼 ( ̂𝜃, 𝑦); doing so is
called “Fisher scoring” or the “method of scoring”. Note: this substitution is the opposite
of the substitution that we are making for estimating the variance of the MLE; this time
we should technically use the observed information but we use the expected information
instead.

There’s also an “empirical information matrix” (see McLachlan and Krishnan (2007)):

𝐼𝑒(𝜃, 𝑦)
def=

𝑛
∑
𝑖=1

ℓ′
𝑖 ℓ′

𝑖
⊤ − 1

𝑛
ℓ′ℓ′⊤

where ℓ𝑖 is the log-likelihood of the ith observation. Note that ℓ′ = ∑𝑛
𝑖=1 ℓ

′
𝑖.

1
𝑛𝐼𝑒(𝜃, 𝑦) is the sample equivalent of

ℑ def= ℑ(𝜃) def= 𝐶𝑜𝑣 (ℓ′|𝜃) = 𝐸[ℓ′ℓ′⊤] − 𝐸[ℓ′] 𝐸[ℓ′]⊤

{ℑ𝑗𝑘
def= 𝐶𝑜𝑣 (ℓ′

𝑗, ℓ′
𝑘) = 𝐸[ℓ′

𝑗ℓ′
𝑘] − 𝐸[ℓ′

𝑗]𝐸[ℓ′
𝑘]}

𝐼𝑒(𝜃, 𝑦) is sometimes computationally easier to compute for Newton-Raphson-type maxi-
mization algorithms.

c.f. https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

Example F.1 (Finding the MLE using the Newton-Raphson algorithm).

We found that the MLE was 𝜆̂ = ̄𝑥, by solving the score equation ℓ′(𝜆) = 0 for 𝜆.

What if we hadn’t been able to solve the score equation?

Then we could start with some initial guess 𝜆̂∗, such as 𝜆̂∗ = 3, and use the Newton-Raphson
algorithm.

# specify initial guess:
cur_lambda_est <- 3
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In Exercise F.16, we found that the score function was:

ℓ′(𝜆; ̃𝑥) = (72
𝜆
) − 𝑛

In Exercise F.18, we found that the Hessian was:

ℓ″(𝜆; ̃𝑥) = −72
𝜆2

So we can approximate the score function using the first-order Taylor polynomial8:

ℓ′(𝜆) ≈ ℓ′∗(𝜆)
def= ℓ′(𝜆̂∗) + ℓ″(𝜆̂∗)(𝜆 − 𝜆̂∗)

= (72
𝜆̂∗

− 𝑛) +⎛⎜
⎝
− 72

(𝜆̂∗)
2
⎞⎟
⎠
(𝜆 − 𝜆̂∗)

Figure F.9 compares the true score function and the approximate score function at 𝜆̂∗ = 3.

8https://en.wikipedia.org/wiki/Taylor%27s_theorem
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approx_score <- function(lambda, lhat, ...) {
score(lambda = lhat, ...) +

hessian(lambda = lhat, ...) * (lambda - lhat)
}

point_size <- 5

plot1 <- ggplot() +
geom_function(

fun = score,
aes(col = "true score function"),
n = 1001

) +
geom_function(

fun = approx_score,
aes(col = "approximate score function"),
n = 1001,
args = list(lhat = cur_lambda_est)

) +
geom_point(

size = point_size,
aes(

x = cur_lambda_est, y = score(lambda = cur_lambda_est),
col = "current estimate"

)
) +
geom_point(

size = point_size,
aes(

x = xbar,
y = 0,
col = "true MLE"

)
) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("l'(lambda)") +
xlab("lambda") +
geom_hline(yintercept = 0)

print(plot1)
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Figure F.9.: Score function of Dobson cyclone data and approximate score function
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This is equivalent to estimating the log-likelihood with a second-order Taylor polynomial:

ℓ∗(𝜆) = ℓ(𝜆̂∗) + (𝜆 − 𝜆̂∗)ℓ′(𝜆̂∗) + 1
2
ℓ″(𝜆̂∗)(𝜆 − 𝜆̂∗)2
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approx_loglik <- function(lambda, lhat, ...) {
loglik(lambda = lhat, ...) +

score(lambda = lhat, ...) * (lambda - lhat) +
1 / 2 * hessian(lambda = lhat, ...) * (lambda - lhat)^2

}

plot_loglik <- ggplot() +
geom_function(

fun = loglik,
aes(col = "true log-likelihood"),
n = 1001

) +
geom_function(

fun = approx_loglik,
aes(col = "approximate log-likelihood"),
n = 1001,
args = list(lhat = cur_lambda_est)

) +
geom_point(

size = point_size,
aes(

x = cur_lambda_est, y = loglik(lambda = cur_lambda_est),
col = "current estimate"

)
) +
geom_point(

size = point_size,
aes(

x = xbar,
y = loglik(xbar),
col = "true MLE"

)
) +
xlim(min(cyclones$number) - 1, max(cyclones$number)) +
ylab("l'(lambda)") +
xlab("lambda")

print(plot_loglik)
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Figure F.10.: log-likelihood of Dobson cyclone data and approximate log-likelihood function
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The approximate score function, ℓ′∗(𝜆), is a linear function of 𝜆, so it is easy to solve the
corresponding approximate score equation, ℓ′∗(𝜆) = 0, for 𝜆:

𝜆 = 𝜆̂∗ − ℓ′(𝜆̂∗) ⋅ (ℓ″(𝜆̂∗))
−1

= 4.375

new_lambda_est <-
cur_lambda_est -
score(cur_lambda_est) * hessian(cur_lambda_est)^-1
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plot2 <- plot1 +
geom_point(

size = point_size,
aes(

x = new_lambda_est,
y = 0,
col = "new estimate"

)
) +
geom_segment(

arrow = grid::arrow(),
linewidth = 2,
alpha = .7,
aes(

x = cur_lambda_est,
y = approx_score(
lhat = cur_lambda_est,
lambda = cur_lambda_est

),
xend = new_lambda_est,
yend = 0,
col = "update"

)
)

print(plot2)
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Figure F.11.: score function of Dobson cyclone data and approximate score function

So we update 𝜆̂∗ ← 4.375 and repeat our estimation process:

468



F. Introduction to Maximum Likelihood Inference

plot2 +
geom_function(

fun = approx_score,
aes(col = "new approximate score function"),
n = 1001,
args = list(lhat = new_lambda_est)

) +
geom_point(

size = point_size,
aes(

x = new_lambda_est, y = score(lambda = new_lambda_est),
col = "new estimate"

)
)
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Figure F.12.: score function of Dobson cyclone data and approximate score function

We repeat this process until the likelihood converges:

Compare with Exercise F.23

469



F. Introduction to Maximum Likelihood Inference

Table F.3.: Convergence of Newton-Raphson Algorithm for finding MLE of cyclone data

library(tibble)
cur_lambda_est <- 3 # restarting
diff_loglik <- Inf
tolerance <- 10^-4
max_iter <- 100
NR_info <- tibble( # nolint: object_name_linter
iteration = 0,
lambda = cur_lambda_est |> num(digits = 4),
likelihood = lik(cur_lambda_est),
`log(likelihood)` = loglik(cur_lambda_est) |> num(digits = 4),
score = score(cur_lambda_est),
hessian = hessian(cur_lambda_est)

)

for (cur_iter in 1:max_iter) {
new_lambda_est <-

cur_lambda_est - score(cur_lambda_est) * hessian(cur_lambda_est)^-1

diff_loglik <- loglik(new_lambda_est) - loglik(cur_lambda_est)

new_NR_info <- tibble( # nolint: object_name_linter
iteration = cur_iter,
lambda = new_lambda_est,
likelihood = lik(new_lambda_est),
`log(likelihood)` = loglik(new_lambda_est),
score = score(new_lambda_est),
hessian = hessian(new_lambda_est),
`diff(loglik)` = diff_loglik

)

NR_info <- NR_info |> bind_rows(new_NR_info) # nolint: object_name_linter

cur_lambda_est <- new_lambda_est

if (abs(diff_loglik) < tolerance) {
break

}
}

NR_info
#> # A tibble: 6 x 7
#> iteration lambda likelihood `log(likelihood)` score hessian `diff(loglik)`
#> <dbl> <num:.> <dbl> <num:.4!> <dbl> <dbl> <dbl>
#> 1 0 3.0000 4.00e-18 -40.0610 1.1 e+ 1 -8 NA
#> 2 1 4.3750 4.33e-14 -30.7708 3.46e+ 0 -3.76 9.29e+ 0
#> 3 2 5.2941 2.57e-13 -28.9897 6.00e- 1 -2.57 1.78e+ 0
#> 4 3 5.5277 2.76e-13 -28.9176 2.54e- 2 -2.36 7.21e- 2
#> 5 4 5.5384 2.76e-13 -28.9175 4.93e- 5 -2.35 1.37e- 4
#> 6 5 5.5385 2.76e-13 -28.9175 1.87e-10 -2.35 5.18e-10
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ll_plot +
geom_segment(

data = NR_info,
arrow = grid::arrow(),
alpha = .7,
aes(

x = lambda,
xend = lead(lambda),
y = `log(likelihood)`,
yend = lead(`log(likelihood)`),
col = factor(iteration)

)
)
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Figure F.13.: Newton-Raphson algorithm for finding MLE of model F.13 for cyclone data

F.4. Maximum likelihood inference for univariate Gaussian models

Suppose 𝑋1, ..., 𝑋𝑛 ∼iid 𝑁(𝜇, 𝜎2). Let 𝑋 = (𝑋1,… ,𝑋𝑛)⊤ be these random variables in
vector format. Let 𝑥𝑖 and 𝑥 denote the corresponding observed data. Then 𝜃 = (𝜇, 𝜎2) is
the vector of true parameters, and Θ = (M, Σ2) is the vector of parameters as a random
vector.

ℒ =
𝑛
∏
𝑖=1

(2𝜎2𝜋)−1/2exp{−1
2
(𝑥𝑖 − 𝜇)2

𝜎2 }

Then the log-likelihood is:
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ℓ ∝ −𝑛
2

log𝜎2 − 1
2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2

= −𝑛
2

log𝜎2 − 1
2𝜎2

𝑛
∑
𝑖=1

𝑥2
𝑖 − 2𝑥𝑖𝜇 + 𝜇2

F.4.1. The score function

ℓ′(𝑥, 𝜃) def= 𝜕
𝜕𝜃

ℓ(𝑥, 𝜃) = (
𝜕

𝜕𝜇ℓ(𝜃; 𝑥)
𝜕

𝜕𝜎2 ℓ(𝜃; 𝑥)
) = ( ℓ′

𝜇(𝜃; 𝑥)
ℓ′

𝜎2(𝜃; 𝑥)
)

.

ℓ′(𝑥, 𝜃) is the function we set equal to 0 and solve to find the MLE:

̂𝜃𝑀𝐿 = {𝜃 ∶ ℓ′(𝑥, 𝜃) = 0}

F.4.2. MLE of 𝜇

𝑑ℓ
𝑑𝜇

= −1
2

𝑛
∑
𝑖=1

−2(𝑥𝑖 − 𝜇)
𝜎2

= 1
𝜎2[(

𝑛
∑
𝑖=1

𝑥𝑖)− 𝑛𝜇]

If 𝑑ℓ
𝑑𝜇 = 0, then 𝜇 = 𝑥 def= 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖.

𝑑2ℓ
(𝑑𝜇)2 = −𝑛

𝜎2 < 0

So ̂𝜇𝑀𝐿 = 𝑥.

F.4.3. MLE of 𝜎2

LIGHTBULB Reparametrizing the Gaussian distribution

When solving for 𝜎̂𝑀𝐿, you can treat 𝜎2 as an atomic variable (don’t differentiate
with respect to 𝜎 or things get messy). In fact, you can replace 𝜎2 with 1/𝜏 and
differentiate with respect to 𝜏 instead, and the process might be even easier.

𝑑ℓ
𝑑𝜎2 = 𝜕

𝜕𝜎2 (−𝑛
2

log𝜎2 − 1
2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2 )

= −𝑛
2
(𝜎2)−1 + 1

2
(𝜎2)−2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

If 𝑑ℓ
𝑑𝜎2 = 0, then:
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𝑛
2
(𝜎2)−1 = 1

2
(𝜎2)−2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

We plug in ̂𝜇𝑀𝐿 = 𝑥 to maximize globally (a technique called profiling):

𝜎̂2
𝑀𝐿 = 1

𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2

Now:

𝑑2ℓ
(𝑑𝜎2)2 = 𝜕

𝜕𝜎2 {−𝑛
2
(𝜎2)−1 + 1

2
(𝜎2)−2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= {−𝑛
2

𝜕
𝜕𝜎2 (𝜎2)−1 + 1

2
𝜕

𝜕𝜎2 (𝜎2)−2
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= {𝑛
2
(𝜎2)−2 − (𝜎2)−3

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= (𝜎2)−2 {𝑛
2
− (𝜎2)−1

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

Evaluated at 𝜇 = 𝑥, 𝜎2 = 1
𝑛 ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2, we have:

𝑑2ℓ
(𝑑𝜎2)2 = (𝜎̂2)−2 {𝑛

2
− (𝜎̂2)−1

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2}

= (𝜎̂2)−2 {𝑛
2
− (𝜎̂2)−1 𝑛𝜎̂2}

= (𝜎̂2)−2 {𝑛
2
− 𝑛}

= (𝜎̂2)−2 𝑛{1
2
− 1}

= (𝜎̂2)−2 𝑛(−1
2
) < 0

Finally, we have:

𝑑2ℓ
𝑑𝜇 𝑑𝜎2 = 𝜕

𝜕𝜇
{−𝑛

2
(𝜎2)−1 + 1

2
(𝜎2)−2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= 1
2
(𝜎2)−2 𝜕

𝜕𝜇

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

= 1
2
(𝜎2)−2

𝑛
∑
𝑖=1

−2(𝑥𝑖 − 𝜇)

= −(𝜎2)−2
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)

473



F. Introduction to Maximum Likelihood Inference

Evaluated at 𝜇 = ̂𝜇 = 𝑥, 𝜎2 = 𝜎̂2 = 1
𝑛 ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2, we have:

𝑑2ℓ
𝑑𝜇 𝑑𝜎2 = −(𝜎̂2)−2 (𝑛𝑥 − 𝑛𝑥) = 0

F.4.4. Covariance matrix

𝐼 = [
𝑛
𝜎̂2 0
0 (𝜎̂2)−2 𝑛 (1

2)
] = [𝑎 0

0 𝑑]

So:

𝐼−1 = 1
𝑎𝑑

[𝑑 0
0 𝑎] = [

1
𝑎 0
0 1

𝑑
]

𝐼−1 = [
𝜎̂2

𝑛 0
0 2(𝜎̂2)2

𝑛

]

See Casella and Berger (2002) p322, example 7.2.12.

To prove it’s a maximum, we need:

• ℓ′ = 0

• At least one diagonal element of ℓ″ is negative.

• Determinant of ℓ″ is positive.

F.5. Example: hormone therapy study

Now, we’re going to analyze some real-world data using a Gaussian model, and then we’re
going to do a simulation to examine the properties of maximum likelihood estimation for
that Gaussian model.

The “heart and estrogen/progestin study” (HERS) was a clinical trial of hormone therapy
for prevention of recurrent heart attacks and death among 2,763 post-menopausal women
with existing coronary heart disease (CHD) (Hulley et al. 1998).

We are going to model the distribution of fasting glucose among non-diabetics who don’t
exercise.

# load the data directly from a UCSF website
hers <- haven::read_dta(
paste0( # I'm breaking up the url into two chunks for readability

"https://regression.ucsf.edu/sites/g/files",
"/tkssra6706/f/wysiwyg/home/data/hersdata.dta"

)
)
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Table F.4.: HERS dataset

hers |> head()
#> # A tibble: 6 x 37
#> HT age raceth nonwhite smoking drinkany exercise physact globrat
#> <dbl+lbl> <dbl> <dbl+l> <dbl+lb> <dbl+l> <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
#> 1 0 [placebo] 70 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 5 [muc~ 3 [goo~
#> 2 0 [placebo] 62 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 1 [muc~ 3 [goo~
#> 3 1 [hormone t~ 69 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 3 [abo~ 3 [goo~
#> 4 0 [placebo] 64 1 [Whi~ 0 [no] 1 [yes] 1 [yes] 0 [no] 1 [muc~ 3 [goo~
#> 5 0 [placebo] 65 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 2 [som~ 3 [goo~
#> 6 1 [hormone t~ 68 2 [Afr~ 1 [yes] 0 [no] 1 [yes] 0 [no] 3 [abo~ 3 [goo~
#> # i 28 more variables: poorfair <dbl+lbl>, medcond <dbl>, htnmeds <dbl+lbl>,
#> # statins <dbl+lbl>, diabetes <dbl+lbl>, dmpills <dbl+lbl>,
#> # insulin <dbl+lbl>, weight <dbl>, BMI <dbl>, waist <dbl>, WHR <dbl>,
#> # glucose <dbl>, weight1 <dbl>, BMI1 <dbl>, waist1 <dbl>, WHR1 <dbl>,
#> # glucose1 <dbl>, tchol <dbl>, LDL <dbl>, HDL <dbl>, TG <dbl>, tchol1 <dbl>,
#> # LDL1 <dbl>, HDL1 <dbl>, TG1 <dbl>, SBP <dbl>, DBP <dbl>, age10 <dbl>

n_obs <- 100 # we're going to take a small subset of the data to look at;
# if we took the whole data set, the likelihood function would be hard to
# graph nicely

library(dplyr)
data1 <-
hers |>
filter(

diabetes == 0,
exercise == 0

) |>
head(n_obs)

glucose_data <-
data1 |>
pull(glucose)

library(ggplot2)
plot1 <-
data1 |>
ggplot(aes(x = glucose)) +
geom_histogram(aes(x = glucose, after_stat(density))) +
theme_classic()

print(plot1)
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Looks somewhat plausibly Gaussian. Good enough for this example!

F.5.1. Find the MLEs

mu_hat <- mean(glucose_data)
sigma_sq_hat <- mean((glucose_data - mean(glucose_data))^2)

Our MLEs are:

• ̂𝜇 = 98.66

• 𝜎̂2 = 104.7444

Here’s the estimated distribution, superimposed on our histogram:

plot1 +
geom_function(

fun = function(x) dnorm(x, mean = mu_hat, sd = sqrt(sigma_sq_hat)),
col = "red"

)
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Looks like a somewhat decent fit? We could probably do better, but that’s for another
time.

F.5.2. Construct the likelihood and log-likelihood functions

it’s often computationally more effective to construct the log-likelihood first and then
exponentiate it to get the likelihood

loglik <- function(
mu, # I'm assigning default values, which the function will use
# unless we tell it otherwise
sigma = sd(x), # note that you can define some default inputs
# based on other arguments
x = glucose_data,
n = length(x)) {

normalizing_constants <- -n / 2 * log((sigma^2) * 2 * pi)

likelihood_kernel <- -1 / (2 * sigma^2) * {
# I have to do this part in a somewhat complicated way
# so that we can pass in vectors of possible values of mu
# and get the likelihood for each value;
# for the binomial case it's easier
sum(x^2) - 2 * sum(x) * mu + n * mu^2

}

answer <- normalizing_constants + likelihood_kernel

return(answer)
}
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# `...` means pass any inputs to lik() along to loglik()
lik <- function(...) exp(loglik(...))

F.5.3. Graph the Likelihood as a function of 𝜇

(fixing 𝜎2 at 𝜎̂2 = 104.7444)

ggplot() +
geom_function(fun = function(x) lik(mu = x, sigma = sigma_sq_hat)) +
xlim(mean(glucose_data) + c(-1, 1) * sd(glucose_data)) +
xlab("possible values of mu") +
ylab("likelihood") +
geom_vline(xintercept = mean(glucose_data), col = "red")
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F.5.4. Graph the Log-likelihood as a function of 𝜇

(fixing 𝜎2 at 𝜎̂2 = 104.7444)

ggplot() +
geom_function(fun = function(x) loglik(mu = x, sigma = sigma_sq_hat)) +
xlim(mean(glucose_data) + c(-1, 1) * sd(glucose_data)) +
xlab("possible values of mu") +
ylab("log(likelihood)") +
geom_vline(xintercept = mean(glucose_data), col = "red")
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F.5.5. Likelihood and log-likelihood for 𝜎, conditional on 𝜇 = ̂𝜇:

ggplot() +
geom_function(fun = function(x) lik(sigma = x, mu = mean(glucose_data))) +
xlim(sd(glucose_data) * c(.9, 1.1)) +
geom_vline(

xintercept = sd(glucose_data) * sqrt(n_obs - 1) / sqrt(n_obs),
col = "red"

) +
xlab("possible values for sigma") +
ylab("Likelihood")
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ggplot() +
geom_function(

fun = function(x) loglik(sigma = x, mu = mean(glucose_data))
) +
xlim(sd(glucose_data) * c(0.9, 1.1)) +
geom_vline(

xintercept =
sd(glucose_data) * sqrt(n_obs - 1) / sqrt(n_obs),

col = "red"
) +
xlab("possible values for sigma") +
ylab("log(likelihood)")
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F.5.6. Standard errors by sample size:

Recall from Section F.4.4 that the asymptotic standard error of ̂𝜇𝑀𝐿 is

ŜE( ̂𝜇) = √[( ̂ℐ( ̂𝜇𝑀𝐿))
−1

]

= 𝜎̂√
𝑛

se_mu_hat <- function(n, sigma = sd(glucose_data)) sigma / sqrt(n)
ggplot() +
geom_function(fun = se_mu_hat) +
scale_x_log10(

limits = c(10, 10^5), name = "Sample size",
labels = scales::label_comma()

) +
ylab("Standard error of mu (mg/dl)") +
theme_classic()
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F.5.7. Power

F.5.7.1. Rejection region

For example, suppose we wish to detect a difference from the hypothesized value 𝜇0 = 95.
We reject the null hypothesis for any mean value outside the “non-rejection interval”

𝜇0 ± 𝐹−1
𝑡(𝑛−1)(1 − 𝛼/2)√𝜎2

𝑛

mu_0 <- 95
n <- length(glucose_data)
se <- se_mu_hat(n = n)
margin <- qt(0.975, df = n - 1) * se
upperbound <- mu_0 + margin
lowerbound <- mu_0 - margin

In this case, the non-rejection interval is [92.959028, 97.040972].

F.5.7.2. Calculate power under a simple alternative

Consider the simple alternative that the true value is actually the estimated mean calculated
from the data (i.e. 98.66). Let’s also assume that the known standard deviation is what we
estimated from the data.

prob_low <- pt(
q = (lowerbound - mu_hat) / se,
df = n - 1,
lower.tail = TRUE

)
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prob_high <- pt(
q = (upperbound - mu_hat) / se,
df = n - 1,
lower.tail = FALSE

)

power <- prob_low + prob_high
print(power)
#> [1] 0.940662

F.5.7.3. Power as a function of sample size

power <- function(n = 100, null = 95, alt = 98.66) {
# there's no such thing as fractional sample size:
n <- floor(n)
# using the function we wrote earlier:
se <- se_mu_hat(n = n)
reject_upper <- ((null + qt(0.975, df = n - 1) * se) - alt) / se
reject_lower <- ((null - qt(0.975, df = n - 1) * se) - alt) / se
p_reject_high <-

pt(
q = reject_lower,
df = n - 1

)
p_reject_low <-

pt(
q = reject_upper,
df = n - 1,
lower = FALSE

)
p_reject <- p_reject_high + p_reject_low
return(p_reject)

}
power_plot <-
ggplot() +
geom_function(fun = power, n = 100) +
xlim(c(2, 200)) + # n = 1 is not allowed for t-distribution
ylim(0, 1) +
ylab("Power") +
xlab("n") +
theme_bw()

print(power_plot)

483



F. Introduction to Maximum Likelihood Inference

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
n

P
ow

er

F.5.8. Simulations

F.5.8.1. Create simulation framework

Here’s a function that performs a single simulation of a Gaussian modeling analysis:

do_one_sim <- function(
n = 100,
mu = mean(glucose_data),
mu_0 = mean(glucose_data) * 0.9,
sigma2 = var(glucose_data),
return_data = FALSE # if this is set to true, we will create a list()
# containing both the analytic results and the vector of simulated data

) {
# generate data
x <- rnorm(n = 100, mean = mu, sd = sqrt(sigma2))

# analyze data
mu_hat <- mean(x)
sigmahat <- sd(x)
se_hat <- sigmahat / sqrt(n)
confint <- mu_hat + c(-1, 1) * se_hat * qt(.975, df = n - 1)
tstat <- abs(mu_hat - mu_0) / se_hat
pval <- pt(df = n - 1, q = tstat, lower = FALSE) * 2
confint_covers <- between(mu, confint[1], confint[2])
test_rejects <- pval < 0.05

# if you want spaces, hyphens, or characters in your column names,
# use "", '', or ``:
to_return <- tibble(
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"mu-hat" = mu_hat,
"sigma-hat" = sigmahat,
"se_hat" = se_hat,
"confint_left" = confint[1],
"confint_right" = confint[2],
"tstat" = tstat,
"pval" = pval,
"confint covers true mu" = confint_covers,
"test rejects null hypothesis" = test_rejects

)

if (return_data) {
return(

list(
data = x,
results = to_return

)
)

} else {
return(to_return)

}
}

Let’s see what this function outputs for us:

do_one_sim()
#> # A tibble: 1 x 9
#> `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat pval
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 98.2 10.5 1.05 96.1 100. 9.00 1.65e-14
#> # i 2 more variables: `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>

Looks good!

Now let’s check it against the t.test() function from the stats package:

set.seed(1)
mu <- mean(glucose_data)
mu_0 <- 80
sim_output <- do_one_sim(mu_0 = mu_0, return_data = TRUE)
our_results <-
sim_output$results |>
mutate(source = "`do_one_sim()`")

results_t_test <- t.test(sim_output$data, mu = mu_0)

results2 <-
tibble(

source = "`stats::t.test()`",
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"mu-hat" = results_t_test$estimate,
"sigma-hat" = results_t_test$stderr * sqrt(length(sim_output$data)),
"se_hat" = results_t_test$stderr,
confint_left = results_t_test$conf.int[1],
confint_right = results_t_test$conf.int[2],
tstat = results_t_test$statistic,
pval = results_t_test$p.value,
"confint covers true mu" = between(mu, confint_left, confint_right),
`test rejects null hypothesis` = pval < 0.05

)

comparison <-
bind_rows(

our_results,
results2

) |>
relocate(

"source",
.before = everything()

)

comparison
#> # A tibble: 2 x 10
#> source `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat pval
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 `do_one~ 99.8 9.24 0.924 97.9 102. 21.4 6.23e-39
#> 2 `stats:~ 99.8 9.24 0.924 97.9 102. 21.4 6.23e-39
#> # i 2 more variables: `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>

Looks like we got it right!

F.5.8.2. Run 1000 simulations

Here’s a function that calls the previous function n_sims times and summarizes the results:

do_n_sims <- function(
n_sims = 1000,
... # this symbol means "allow additional arguments to be passed on to the
# `do_sim_once` function

) {
sim_results <- NULL # we're going to create a "tibble" of results,
# row by row (slightly different from the hint on the homework)

for (i in 1:n_sims) {
set.seed(i) # sets a different seed for each simulation iteration,
# to get a different dataset each time

current_results <-
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do_one_sim(...) |> # here's where the simulation actually gets run
mutate(
sim_number = i

) |>
relocate("sim_number", .before = everything())

sim_results <-
sim_results |>
bind_rows(current_results)

}

return(sim_results)
}

sim_results <- do_n_sims(
n_sims = 1000,
mu = mean(glucose_data),
sigma2 = var(glucose_data),
n = 100 # this is the number of samples per simulated data set

)

sim_results
#> # A tibble: 1,000 x 10
#> sim_number `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 99.8 9.24 0.924 97.9 102. 11.9
#> 2 2 98.3 11.9 1.19 96.0 101. 8.00
#> 3 3 98.8 8.81 0.881 97.0 101. 11.3
#> 4 4 99.7 9.40 0.940 97.8 102. 11.6
#> 5 5 99.0 9.72 0.972 97.1 101. 10.5
#> 6 6 98.6 10.6 1.06 96.4 101. 9.18
#> 7 7 100. 9.86 0.986 98.1 102. 11.5
#> 8 8 97.7 11.1 1.11 95.5 99.9 8.03
#> 9 9 98.1 9.86 0.986 96.2 100. 9.45
#> 10 10 97.3 9.68 0.968 95.3 99.2 8.74
#> # i 990 more rows
#> # i 3 more variables: pval <dbl>, `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>

The simulation results are in! Now we have to analyze them.

F.5.8.3. Analyze simulation results

To do that, we write another function:

summarize_sim <- function(
sim_results,
mu = mean(glucose_data),
sigma2 = var(glucose_data),
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n = 100) {
# calculate the true standard error based on the data-generating parameters:
se_mu_hat <- sqrt(sigma2 / n)

sim_results |>
summarize(

`bias[mu-hat]` = mean(.data$`mu-hat`) - mu,
`SE(mu-hat)` = sd(.data$`mu-hat`),
`bias[SE-hat]` = mean(.data$se_hat) - se_mu_hat,
`SE(SE-hat)` = sd(.data$se_hat),
coverage = mean(.data$`confint covers true mu`),
power = mean(.data$`test rejects null hypothesis`)

)
}

Let’s try it out:

sim_summary <- summarize_sim(
sim_results,
mu = mean(glucose_data),
# this function needs to know the true parameter values in order to assess
# bias
sigma2 = var(glucose_data),
n = 100

)

sim_summary
#> # A tibble: 1 x 6
#> `bias[mu-hat]` `SE(mu-hat)` `bias[SE-hat]` `SE(SE-hat)` coverage power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.00501 1.00 -0.00113 0.0736 0.959 1

From this simulation, we observe that our estimate of 𝜇, ̂𝜇, has minimal bias, and so does
our estimate of 𝑆𝐸( ̂𝜇), ̂𝑆𝐸( ̂𝜇).

The confidence intervals captured the true value even more often than they were supposed
to, and the hypothesis test always rejected the null hypothesis.

I wonder what would happen with a different sample size, a different true 𝜇 value, or a
different 𝜎2 value…

F.6. likelihood graphs

library(pander)
library(ggplot2)
library(plotly)
library(dplyr)
library(haven)
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# load the data from package
hers = haven::read_dta(fs::path_package("rme", "extdata/hersdata.dta"))
# "https://regression.ucsf.edu/sites/g/files/tkssra16191/files/wysiwyg/home/data/hersdata.dta"

data1 =
hers |>
filter(

diabetes == 0,
exercise == 0)

n.obs <- nrow(data1)

glucose_data =
data1 |>
pull(glucose)

plot1 =
data1 |>
ggplot() +
geom_histogram(aes(x = glucose), bins = 30) +
theme_classic()

plot1 |> ggplotly()
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Looks somewhat plausibly Gaussian. Good enough for this example!

F.7. Construct the likelihood and log-likelihood functions

# it's computationally better to construct the log-likelihood first and then
# exponentiate it to get the likelihood
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loglik = function(
mu = mean(x), # I'm assigning default values, which the function will use
# unless we tell it otherwise
sigma = sd(x), # note that you can define some defaults based on other arguments
x = glucose_data,
n = length(x)

)
{

normalizing_constants = -n/2 * log((sigma^2) * 2 * pi)

likelihood_kernel = - 1/(2 * sigma^2) *
{

# I have to do this part in a somewhat complicated way
# so that we can pass in vectors of possible values of mu
# and get the likelihood for each value;
# for the binomial case it's easier
sum(x^2) - 2 * sum(x) * mu + n * mu^2

}

answer = normalizing_constants + likelihood_kernel

return(answer)

}

# `...` means pass any inputs to lik() along to loglik()
lik = function(...) exp(loglik(...))

F.7.1. Graph the Likelihood

mu_likplot <-
ggplot() +
geom_function(fun = function(x) lik(mu = x)) +
xlim(mean(glucose_data) + c(-1,1) * sd(glucose_data)) +
ylab("likelihood") +
xlab("mu") +
geom_vline(xintercept = mean(glucose_data), col = "red")

Figure F.14.: Likelihood of hers data w.r.t. 𝜇
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F.7.2. Graph the Log-likelihood

ggplot() +
geom_function(fun = function(x) loglik(mu = x)) +
xlim(mean(glucose_data) + c(-1,1) * sd(glucose_data)) +
ylab('log(likelihood)') +
xlab("mu") +
geom_vline(xintercept = mean(glucose_data), col = "red")
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Figure F.15.: Log-likelihood of hers data w.r.t. 𝜇

F.8. Likelihood and log-likelihood for 𝜎2, conditional on 𝜇 = ̂𝜇:

lik_plot = ggplot() +
geom_function(fun = function(x) lik(sigma = x, mu = mean(glucose_data))) +
xlim(sd(glucose_data) * c(.9,1.1)) +
geom_vline(

xintercept = sd(glucose_data) * sqrt(n.obs - 1)/sqrt(n.obs),
col = "red") +

ylab('Likelihood')

loglik_plot = ggplot() +
geom_function(

fun = function(x) loglik(sigma = x, mu = mean(glucose_data))
) +
xlim(sd(glucose_data) * c(0.9, 1.1)) +
geom_vline(

xintercept =
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sd(glucose_data) * sqrt(n.obs - 1) / sqrt(n.obs),
col = "red") +

ylab("log(likelihood)")
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## Graph the log-likelihood ranging over both parameters at once:

library(plotly)

n_points = 25
mu = seq(90, 105, length.out = n_points)
sigma = seq(6, 20,

length.out = n_points)
names(mu) = round(mu, 5)
names(sigma) = round(sigma, 5)
lliks = outer(mu, sigma, loglik)
liks = outer(mu, sigma, lik)

plotly::plot_ly(
type = "surface",
x = ~mu,
y = ~sigma,
z = ~t(lliks))

# see https://stackoverflow.com/questions/69472185/correct-use-of-coordinates-to-plot-surface-data-with-plotly for explanation of why transpose `t()` is needed

Figure F.16.: Log-likelihood of hers data w.r.t. 𝜇 and 𝜎2
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

Suppose 𝑋1, ..., 𝑋𝑛 ∼iid 𝑁(𝑀, 1)

Suppose 𝑀 ∼ 𝑁(0, 1).

Then:
𝑝(𝑀 = 𝜇|𝑋 = 𝑥) ∝ 𝑝(𝑀 = 𝜇,𝑋 = 𝑥)

= 𝑝(𝑋 = 𝑥|𝑀 = 𝜇)𝑝(𝑀 = 𝜇)

∝ exp{−1
2
𝑛𝜇2 − 2𝜇𝑛 ̄𝑥}exp{−1

2
𝜇2}

= exp{−1
2
(𝑛 + 1)𝜇2 − 2𝜇𝑛 ̄𝑥}

∝ exp{−1
2
(𝑛 + 1)(𝜇 − 𝑛

𝑛 + 1
̄𝑥)2}

So:
𝑝(𝑀 = 𝜇|𝑋 = 𝑥) ∼ 𝑁( 𝑛

𝑛 + 1
̄𝑥, (𝑛 + 1)−1)

Let’s put this in perspective.

Here’s a frequentist CI:

set.seed(1)
mu <- 2
sigma <- 1
n <- 20
x <- rnorm(n = n, mean = mu, sd = sigma)
xbar <- mean(x)
se <- sigma / sqrt(n)
CI_freq <- xbar + se * qnorm(c(.025, .975))
print(CI_freq)
#> [1] 1.75226 2.62879
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lik0 <- function(mu) dnorm(x = x, mean = mu, sd = 1) |> prod()
lik <- function(mu) {
(2 * pi * sigma^2)^(-n / 2) *

exp(
-1 / (2 * sigma^2) *
(sum(x^2) - 2 * mu * sum(x) + n * (mu^2))

)
}
library(ggplot2)
ngraph <- 1001
plot1 <- ggplot() +
geom_function(fun = lik, aes(col = "likelihood"), n = ngraph) +
xlim(c(-5, 10)) +
theme_bw() +
labs(col = "") +
theme(legend.position = "bottom")

print(plot1)
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Here’s a Bayesian CI:

mu_prior_mean <- 0
mu_prior_sd <- 1
mu_post_mean <- n / (n + 1) * xbar
mu_post_var <- 1 / (n + 1)
mu_post_sd <- sqrt(mu_post_var)
CI_bayes <- qnorm(
p = c(.025, .975),
mean = mu_post_mean,
sd = mu_post_sd

)
print(CI_bayes)
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#> [1] 1.65851 2.51391
prior <- function(mu) dnorm(mu, mean = mu_prior_mean, sd = mu_prior_sd)
posterior <- function(mu) dnorm(mu, mean = mu_post_mean, sd = mu_post_sd)
plot2 <- plot1 +
geom_function(fun = prior, aes(col = "prior"), n = ngraph) +
geom_function(fun = posterior, aes(col = "posterior"), n = ngraph)

print(plot2 + scale_y_log10())
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Here’s 𝑝(𝑀 ∈ (𝑙(𝑥), 𝑟(𝑥))|𝑋 = 𝑥):

pr_in_CI <- pnorm(
CI_freq,
mean = mu_post_mean,
sd = mu_post_sd

) |> diff()
print(pr_in_CI)
#> [1] 0.930583

G.1. Example with JAGS

This example demonstrates Bayesian inference using JAGS (Just Another Gibbs Sampler)
for a simple Bernoulli model from Dobson’s text.

G.1.1. Load Required Packages

library(rjags)
library(runjags)
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runjags::findJAGS()
#> [1] "/usr/bin/jags"

G.1.2. Run the JAGS Model

We’ll use a simple Bernoulli model to estimate a probability parameter using Bayesian
inference.

# JAGS chain initialization function
initsfunction <- function(chain) {
stopifnot(chain %in% (1:4)) # max 4 chains allowed
rng_seed <- (1:4)[chain]
rng_name <- c(

"base::Wichmann-Hill", "base::Marsaglia-Multicarry",
"base::Super-Duper", "base::Mersenne-Twister"

)[chain]
return(list(".RNG.seed" = rng_seed, ".RNG.name" = rng_name))

}

# Generate sample data
set.seed(1)
data1 <- rbinom(n = 91, size = 1, prob = .6)

# Run JAGS model
jags_post0 <- run.jags(
n.chains = 2,
inits = initsfunction,
model = system.file("extdata/model.dobson.jags", package = "rme"),
data = list(r = data1, N = length(data1)),
monitor = "p"

)
#> Compiling rjags model...
#> Calling the simulation using the rjags method...
#> Note: the model did not require adaptation
#> Burning in the model for 4000 iterations...
#> Running the model for 10000 iterations...
#> Simulation complete
#> Calculating summary statistics...
#> Calculating the Gelman-Rubin statistic for 1 variables....
#> Finished running the simulation

G.1.3. Examine Results

jags_post0$mcmc |> as.array() |> head()
#> chain
#> iter [,1] [,2]
#> 5001 0.584687 0.550332
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#> 5002 0.576621 0.562455
#> 5003 0.651983 0.628144
#> 5004 0.598258 0.604274
#> 5005 0.611863 0.583400
#> 5006 0.565635 0.606325

G.2. Other resources

UC Davis courses

• STA 015C1: “Introduction to Statistical Data Science III”
• STA 035C2: “Statistical Data Science III”
• STA 1453: “Bayesian Statistical Inference”
• ECL 2344: “Bayesian Models - A Statistical Primer”
• PLS 2075: “Applied Statistical Modeling for the Environmental Sciences”
• PSC 205H6: “Applied Bayesian Statistics for Social Scientists”
• POL 2807: “Bayesian Methods: for Social & Behavioral Sciences”
• BAX 4428: “Advanced Statistics”

Books

• Ross (2022) is a free online textbook
• “Population health thinking with Bayesian networks” (Tomas J. Aragon 2018) is on

my to-read list
• McElreath (2020)

– very popular recently
– author used to be a UCD professor
– ECL 2349 uses this book
– videos: https://www.youtube.com/playlist?list=PLDcUM9US4XdPz-

KxHM4XHt7uUVGWWVSus
– course materials: https://github.com/rmcelreath/stat_rethinking_2024

• Korner-Nievergelt and Korner-Nievergelt (2015)
• Cowles (2013)
• Kéry, Schaub, and Beissinger (2012)
• Hobbs and Hooten (2015) has been used in PLS 20710

1https://catalog.ucdavis.edu/search/?q=STA+015C
2https://catalog.ucdavis.edu/search/?q=STA+035C
3https://catalog.ucdavis.edu/search/?q=STA+145
4https://catalog.ucdavis.edu/search/?q=ECL+234
5https://catalog.ucdavis.edu/search/?q=PLS+207
6https://catalog.ucdavis.edu/search/?q=PSC+205H
7https://catalog.ucdavis.edu/search/?q=POL+280
8https://catalog.ucdavis.edu/search/?q=BAX+442
9https://catalog.ucdavis.edu/search/?q=ECL+234

10https://catalog.ucdavis.edu/search/?q=PLS+207
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
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ggplot2::theme_bw() +
# ggplot2::labs(col = "") +

ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 6)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
run_graphs = TRUE

H.1. Parameters versus random variables

The parameters of a probability distribution shouldn’t involve the random variables being
modeled:

Exclamation-Triangle This is wrong

𝑋 ∼ 𝑃𝑜𝑖𝑠(𝜆)

𝜆̂𝑀𝐿 →𝐷 𝑁(𝑋̄, 𝜆/𝑛)

Solution.
𝜆̂𝑀𝐿 →𝐷 𝑁(𝜆, 𝜆/𝑛)

Expectations are means, not sums, despite the similarity of Σ and E. Really, we should use
𝜇 instead of E.

H.2. R

H.2.1. Don’t copy-paste code

Successful programmers don’t use copy-paste! Write functions instead.1

H.3. Quarto

H.3.1. Separate divs and slide breaks

Make sure not to put a div ::: on the next line after a slide break ---:

1https://r4ds.hadley.nz/functions#introduction

502

https://r4ds.hadley.nz/functions#introduction


H. Common Mistakes

---
::: notes
:::

There needs to be an empty line between them:

---

::: notes
:::

H.3.2. library(printr) currently breaks df-print: paged

See https://github.com/yihui/printr/issues/41

H.4. LaTeX

• don’t use align* or align* in quarto; only aligned

Double superscript issues: https://www.overleaf.com/learn/latex/Errors/Double_
superscript
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I. Notation

Table I.1.: Notation used in this book

symbol meaning LaTeX

¬ not \neg
∀ all \forall
∃ some \exists
∪ union, “or” \cup
∩ intersection, “and” \cap
∣ given, conditional on \mid, |
∑ sum \sum
∏ product \prod
𝜇 mean \mu
E expectation \mathbb{E}
𝑥⊤ transpose of 𝑥 x^{\top}
′ transpose or derivative1 '
⟂⟂ independent �
∴ therefore, thus \therefore
𝜂 linear component of a GLM2 \eta
⌊𝑥⌋ floor of 𝑥: largest integer smaller than 𝑥 \lfloor x

\rfloor
⌈𝑥⌉ ceiling of 𝑥: smallest integer larger than 𝑥 \lceil x

\rceil

I.1. Information matrices

There is no consistency in the notation for observed and expected information matrices
(see Table I.2).

Table I.2.: notation for information matrices

book observed information expected information

Dobson and Barnett (2018) 𝑈 ′ ℑ
Dunn and Smyth (2018) ℑ ℐ
McLachlan and Krishnan (2007) 𝐼 ℐ
Wood (2017) ̂𝐼 ℐ

1depending on whether it is applied to a matrix or a function
2https://en.wikipedia.org/wiki/Generalized_linear_model#:~:text=The%20linear%20predictor%20is%

20the,data%20through%20the%20link%20function
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I. Notation

These notes currently have a mixture of notations, depending on my whims and what
reference I had last looked at. Eventually, I will try to standardize my notation to 𝐼 for
observed information and ℐ for expected information.

I.2. Percent sign (“%”)

The percent sign “%” is just a shorthand for “/100”. The word “percent” comes from the
Latin “per centum”; “centum” is Latin for 100, so “percent” means “per hundred” (c.f.,
https://en.wikipedia.org/wiki/Percentage)

So, contrary to what you may have learned previously, 10% = 0.1 is a true and correct
equality, just as 10kg = 10, 000g is true and correct.

Proof.
10% = 10/100

= 10
100

= 0.1

You are welcome to switch between decimal and percent notation freely; just make sure
you execute it correctly.

I.3. Proofs

We can use any of:

• ∴ (\therefore in LaTeX),
• ⇒ (\Rightarrow),
• ⊧ (\models)

to denote logical entailments (deductive consequences).

Let’s save → (\rightarrow) for convergence results.

I.4. Why is notation in probability and statistics so inconsistent
and disorganized?

In grad school, we are asked to learn from increasingly disorganized materials and lectures.
Not coincidentally, as the amount of organization decreases, the amount of complexity
increases, the amount of difficulty increases, the number of reliable references decreases,
and the amount of inconsistency in notation and content increases (both between multiple
references and within single references!). In other words, as you approach the cutting-edge
of most fields, you start to encounter into content that hasn’t been fully thought through or
standardized. This lack of clarity is unfortunate and undesirable, but it is understandable
and inevitable.
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I. Notation

It’s worth noting that calculus was formalized in the 1600s3, elementary algebra was for-
malized around 8204, and arithmetic even earlier5. And calculus still has several competing
notation systems6. In contrast, the field of statistics only emerged in the late 1800s and
early 1900s7, so it’s not surprising that the notation and terminology is still developing.
Generalized linear models were only formalized in 1972 (Nelder and Wedderburn (1972)),
which is very recent in terms of the pace of scientific development8.

3https://en.wikipedia.org/wiki/Leibniz%27s_notation
4https://en.wikipedia.org/wiki/Al-Jabr
5https://en.wikipedia.org/wiki/Arithmetic#History
6https://en.wikipedia.org/wiki/Notation_for_differentiation
7https://en.wikipedia.org/wiki/History_of_statistics#Development_of_modern_statistics
8https://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions
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J. Statistical computing in R

J.1. Online R learning resources

There are an overwhelming number of great resources for learning R; here are some
recommendations:

• The RStudio Education website1, especially:

– Finding your way to R2

• R for Epidemiology (Cannell and Livingston (2024))
• The Epidemiologist R Handbook (Batra (2024))
• Practical R for Epidemiologists (Myatt (2022))
• R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund (2023))
• Advanced R (Wickham (2019))
• R Graphics Cookbook (Chang (2024))
• R Packages (Wickham and Bryan (2023))
• Nahhas (2023) (same author as Nahhas (2024))
• Myatt (2022)
• Tomas J. Aragon (2017) (previously Tomas J. Aragon (2013)): Author is State

Public Health Officer and Director, California Department of Public Health, https:
//drtomasaragon.github.io/)

• SAS and R (Kleinman and Horton (2009))
• The “sassy system”3 is “an integrated set of packages designed to make programmers

more productive in R, particularly those with a background in SAS® software. The
system leverages useful concepts and thought patterns to create a more efficient and
satisfactory R programming experience.”

– In particular, the procs4 package in R provides versions of common SAS proce-
dures, such as ‘proc freq’, ‘proc means’, ‘proc ttest’, ‘proc reg’, ‘proc transpose’,
‘proc sort’, and ‘proc print’

• R for SAS and SPSS users (Muenchen (2011))
• Building reproducible analytical pipelines with R (Rodrigues (2023))
• Posit Recipes: Some tasty R code snippets: https://posit.cloud/learn/recipes

J.2. UC Davis R programming courses

There are several dedicated UC Davis courses on R programming:

1https://education.rstudio.com
2https://education.rstudio.com/learn/
3https://r-sassy.org/
4https://cran.r-project.org/web/packages/procs/
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• BIS 015L5: Introduction to Data Science for Biologists

– see course materials at https://jmledford3115.github.io/datascibiol/

• ENV 2246/ ECL 2247: Data Management & Visualization in R

– see lecture videos and course materials at https://ucd-r-davis.github.io/R-
DAVIS/

• ESP 1068: Environmental Data Science

• STA 015B9: Introduction to Statistical Data Science II

• STA 03210: Gateway to Statistical Data Science

• STA 035A11: Statistical Data Science

• STA 035B12: Statistical Data Science II

• STA 141A13: Fundamentals of Statistical Data Science

• STA 24214: Introduction to Statistical Programming

• ABG 25015: Mathematical Modeling in Biological Systems

• PSC 203A16 “Data Cleaning & Management in the Social Sciences”

• PSC 203B17 “Data Visualization in the Social Sciences”

DataLab18 maintains another list of courses: https://datalab.ucdavis.edu/courses/

DataLab also provides short-form workshops on R programming and data science: https:
//datalab.ucdavis.edu/workshops/

J.3. Demographics tables

Demographics tables are important first steps in many data analyses and papers.

The gtsummary package is flexible and can probably provide whatever table options you’re
looking for, and if not, the developers are usually very welcoming of feature requests.

If gtsummary is really not doing what you want, other packages I’ve used for demographics
tables include:

• https://cran.r-project.org/web/packages/procs/ (replicates common SAS commands)
• https://cran.r-project.org/web/packages/arsenal/index.html (from the Mayo Clinics)
• https://cran.r-project.org/web/packages/table1/index.html

5https://catalog.ucdavis.edu/search/?q=BIS+015L
6https://catalog.ucdavis.edu/search/?q=ENV+224
7https://catalog.ucdavis.edu/search/?q=ECL+224
8https://catalog.ucdavis.edu/search/?q=ESP+106
9https://statistics.ucdavis.edu/expanded-descriptions/15b

10https://statistics.ucdavis.edu/expanded-descriptions/32
11https://statistics.ucdavis.edu/expanded-descriptions/35A
12https://statistics.ucdavis.edu/expanded-descriptions/35B
13https://statistics.ucdavis.edu/expanded-descriptions/141A
14https://statistics.ucdavis.edu/expanded-descriptions/242
15https://catalog.ucdavis.edu/search/?q=ABG+250
17https://catalog.ucdavis.edu/search/?q=PSC+203B
18https://datalab.ucdavis.edu/
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J.4. Writing functions

• Read this ASAP: https://r4ds.hadley.nz/functions.html
• Use this as a reference: https://adv-r.hadley.nz/functions.html

J.4.1. Methods versus functions

See https://adv-r.hadley.nz/oo.html#oop-systems

J.4.2. Debugging code

• https://adv-r.hadley.nz/debugging.html

• https://www.maths.ed.ac.uk/~swood34/RCdebug/RCdebug.html

J.5. data.frames and tibbles

J.5.1. Displaying tibbles

See vignette("digits", package = "tibble")

J.6. The tidyverse

The tidyverse is an opinionated collection of R packages designed for data
science. All packages share an underlying design philosophy, grammar, and data
structures.

• https://www.tidyverse.org/

These packages are being actively developed by Hadley Wickham19 and his colleagues at
posit2021.

Details:

• Wickham et al. (2019)
• Wickham, Çetinkaya-Rundel, and Grolemund (2023)
• Kuhn and Silge (2022)

19https://hadley.nz/
20https://posit.co/
21the company formerly known as RStudio22
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J.7. Piping

See Wickham, Çetinkaya-Rundel, and Grolemund (2023)23 for details.

There are currently (2025) two commonly-used pipe operators in R:

• %>%: the “magrittr pipe”, from the magrittr24 package (Bache and Wickham (2022);
re-exported25 by dplyr26 and others) .

• |>: the “native pipe”, from base R (≥ 4.1.0)

See https://www.tidyverse.org/blog/2023/04/base-vs-magrittr-pipe for a comparison of
their behavior.

J.7.1. Which pipe should I use?

Wickham, Çetinkaya-Rundel, and Grolemund (2023) recommends the native pipe27:

For simple cases, |> and %>% behave identically. So why do we recommend
the base pipe? Firstly, because it’s part of base R, it’s always available for you
to use, even when you’re not using the tidyverse. Secondly, |> is quite a bit
simpler than %>%: in the time between the invention of %>% in 2014 and
the inclusion of |> in R 4.1.0 in 2021, we gained a better understanding of the
pipe. This allowed the base implementation to jettison infrequently used and
less important features.

J.7.2. Why doesn’t ggplot2 use piping?

Here’s tidyverse creator Hadley Wickham’s answer (from 2018):

I think it’s worth unpacking this question into a few smaller pieces:

• Should ggplot2 use the pipe? IMO, yes.
• Could ggplot2 support both the pipe and plus? No
• Would it be worth it to create a ggplot3 that uses the pipe? No.

https://forum.posit.co/t/why-cant-ggplot2-use/4372/7

23https://r4ds.hadley.nz/data-transform.html#sec-the-pipe
24https://cran.r-project.org/web/packages/magrittr/index.html
25https://r-pkgs.org/dependencies-in-practice.html#re-exporting
26https://cran.r-project.org/web/packages/dplyr/index.html
27https://r4ds.hadley.nz/data-transform.html#sec-the-pipe:~:text=So%20why%20do%20we%

20recommend%20the%20base%20pipe%3F
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J.8. Grouping operations in dplyr

The dplyr package provides two approaches for grouping data:

• Persistent grouping with group_by(): Creates a grouped data frame that remains
grouped for subsequent operations until explicitly ungrouped

• Per-operation grouping with the .by argument: Applies grouping for a single
operation only, without modifying the data frame structure

Recommendation: Default to using per-operation grouping with the .by argument, as it
is more explicit, reduces the risk of accidentally operating on grouped data, and eliminates
the need to remember to ungroup().

For a detailed comparison of these approaches, see ?dplyr_by28.

J.9. Quarto

Quarto is a system for writing documents with embedded R code and/or results:

• Read this ASAP: https://r4ds.hadley.nz/communicate
• Then use this for reference: https://quarto.org/docs/reference/
• Learn LaTeX in 30 minutes (not everything in here is relevant to Quarto): https:

//www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
• LaTeX symbol reference guide: https://oeis.org/wiki/List_of_LaTeX_mathematical_

symbols
• LaTeX commands: https://www.overleaf.com/learn/latex/Commands

To compile Quarto documents to pdf, run these commands first:

install.packages("tinytex")
tinytex::install_tinytex()

See Knuth (1984) for additional discussion of literate programming.

J.10. One source file, multiple outputs

One of quarto’s excellent features is the ability to convert the same source file into multiple
output formats; in particular, I am using the same set of source files to generate an html
website, a pdf document, and a set of revealjs slide decks.

I use ::: notes divs to mark text chunks to omit from the revealjs format but include in
the website and pdf format.

28https://dplyr.tidyverse.org/reference/dplyr_by.html
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J.11. Packages

This book espouses our philosophy of package development: anything that can
be automated, should be automated. Do as little as possible by hand. Do as
much as possible with functions. The goal is to spend your time thinking about
what you want your package to do rather than thinking about the minutiae of
package structure.

• https://r-pkgs.org/introduction.html#:~:text=This%20book%20espouses,of%20pack-
age%20structure.

• Read this ASAP: https://r-pkgs.org/whole-game.html

• Use the rest of Wickham and Bryan (2023) as a reference

J.12. Submitting packages to CRAN

• Read this first: https://r-pkgs.org/release.html
• A problems-and-solutions book is under construction: https://contributor.r-project.

org/cran-cookbook/

J.13. Git

94% of respondents to a 2022 Stack Overflow survey29 reported using git for version
control.

More details30

• Happy Git with R https://happygitwithr.com/

• https://usethis.r-lib.org/articles/pr-functions.html

• Git Magic http://www-cs-students.stanford.edu/~blynn/gitmagic/

• https://ohshitgit.com/

• https://maelle.github.io/saperlipopette/

J.14. Spatial data science

• Pebesma and Bivand (2023)

J.15. Shiny apps

• Read Wickham (2021) first
• Use Fay et al. (2021) as a reference

29https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
30https://r-pkgs.org/software-development-practices.html#sec-sw-dev-practices-git-github
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J.16. Making the most of RStudio

Over time, explore all the tabs and menus; there are a lot of great quality-of-life features.

• use the History tab to view past commands; you can rerun them or copy them into
a source code file in one click! (up-arrow in the Console also enables this process, but
less easily).

J.17. Contributing to R

Many modern R packages are developed on Github, and welcome bug reports and pull
requests (suggested edits to source code) through the Github interface.

To contribute to “base R” (the core systems), see https://contributor.r-project.org/
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K. Goldbach’s Conjecture

K.1. Statement of the Conjecture

Goldbach’s Conjecture is one of the oldest and most famous unsolved problems in
number theory. It was first proposed by the German mathematician Christian Goldbach in
a letter to Leonhard Euler in 1742.

K.1.1. Strong Goldbach Conjecture

Definition K.1 (Strong Goldbach Conjecture). Every even integer greater than 2 can be
expressed as the sum of two prime numbers.

Formally, for every even integer 𝑛 > 2, there exist prime numbers 𝑝 and 𝑞 such that:

𝑛 = 𝑝 + 𝑞

K.1.2. Weak Goldbach Conjecture

Definition K.2 (Weak Goldbach Conjecture). Every odd integer greater than 5 can be
expressed as the sum of three prime numbers.

Formally, for every odd integer 𝑛 > 5, there exist prime numbers 𝑝, 𝑞, and 𝑟 such that:

𝑛 = 𝑝 + 𝑞 + 𝑟

K.2. Historical Context

• 1742: Christian Goldbach proposed the conjecture in a letter to Leonhard Euler
• 1937: Ivan Vinogradov proved that every sufficiently large odd integer can be

expressed as the sum of three primes, making significant progress toward the weak
conjecture

• 2013: Harald Helfgott completed the proof of the weak Goldbach conjecture
• Present: The strong Goldbach conjecture remains unproven, though it has been

verified computationally for all even numbers up to extremely large values
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K.3. Examples

Example K.1 (Small even numbers). Here are some examples of even numbers expressed
as the sum of two primes:

• 4 = 2 + 2
• 6 = 3 + 3
• 8 = 3 + 5
• 10 = 3 + 7 = 5 + 5
• 12 = 5 + 7
• 14 = 3 + 11 = 7 + 7
• 16 = 3 + 13 = 5 + 11
• 18 = 5 + 13 = 7 + 11
• 20 = 3 + 17 = 7 + 13

Note that for most even numbers, there are multiple ways to express them as the sum of
two primes.

K.4. Computational Verification

# Note: This code prioritizes clarity and educational value over performance.
# For production use with large numbers, consider optimizations such as:
# - Sieve of Eratosthenes for generating primes
# - Pre-allocating data structures instead of using rbind()

# Function to check if a number is prime
is_prime <- function(n) {

if (n < 2) return(FALSE)
if (n == 2) return(TRUE)
if (n %% 2 == 0) return(FALSE)
if (n == 3) return(TRUE)

# Check odd divisors from 3 to sqrt(n)
i <- 3
while (i * i <= n) {

if (n %% i == 0) return(FALSE)
i <- i + 2

}
return(TRUE)

}

# Function to find Goldbach pairs for an even number
find_goldbach_pairs <- function(n) {

if (n <= 2 || n %% 2 != 0) {
return(NULL)

}

pairs <- list()
for (p in 2:(n / 2)) {
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q <- n - p
if (is_prime(p) && is_prime(q)) {

pairs[[length(pairs) + 1]] <- c(p, q)
}

}
return(pairs)

}

# Test the conjecture for even numbers from 4 to 100
verify_goldbach <- function(max_n = 100) {
results <- data.frame(

n = integer(),
num_pairs = integer(),
first_pair = character(),
stringsAsFactors = FALSE

)

for (n in seq(4, max_n, by = 2)) {
pairs <- find_goldbach_pairs(n)
if (length(pairs) > 0) {

first_pair_str <- paste(pairs[[1]], collapse = " + ")
results <- rbind(results, data.frame(
n = n,
num_pairs = length(pairs),
first_pair = first_pair_str,
stringsAsFactors = FALSE

))
}

}

return(results)
}

# Verify for even numbers up to 100
goldbach_results <- verify_goldbach(100)
print(goldbach_results)
#> n num_pairs first_pair
#> 1 4 1 2 + 2
#> 2 6 1 3 + 3
#> 3 8 1 3 + 5
#> 4 10 2 3 + 7
#> 5 12 1 5 + 7
#> 6 14 2 3 + 11
#> 7 16 2 3 + 13
#> 8 18 2 5 + 13
#> 9 20 2 3 + 17
#> 10 22 3 3 + 19
#> 11 24 3 5 + 19
#> 12 26 3 3 + 23
#> 13 28 2 5 + 23
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#> 14 30 3 7 + 23
#> 15 32 2 3 + 29
#> 16 34 4 3 + 31
#> 17 36 4 5 + 31
#> 18 38 2 7 + 31
#> 19 40 3 3 + 37
#> 20 42 4 5 + 37
#> 21 44 3 3 + 41
#> 22 46 4 3 + 43
#> 23 48 5 5 + 43
#> 24 50 4 3 + 47
#> 25 52 3 5 + 47
#> 26 54 5 7 + 47
#> 27 56 3 3 + 53
#> 28 58 4 5 + 53
#> 29 60 6 7 + 53
#> 30 62 3 3 + 59
#> 31 64 5 3 + 61
#> 32 66 6 5 + 61
#> 33 68 2 7 + 61
#> 34 70 5 3 + 67
#> 35 72 6 5 + 67
#> 36 74 5 3 + 71
#> 37 76 5 3 + 73
#> 38 78 7 5 + 73
#> 39 80 4 7 + 73
#> 40 82 5 3 + 79
#> 41 84 8 5 + 79
#> 42 86 5 3 + 83
#> 43 88 4 5 + 83
#> 44 90 9 7 + 83
#> 45 92 4 3 + 89
#> 46 94 5 5 + 89
#> 47 96 7 7 + 89
#> 48 98 3 19 + 79
#> 49 100 6 3 + 97

INFO Computational Evidence

The strong Goldbach conjecture has been verified computationally for all even integers
up to at least 4 × 1018 (as of 2020). While this provides strong empirical evidence, it
does not constitute a mathematical proof.

K.5. Current Status

• Weak Goldbach Conjecture: Proven (Harald Helfgott, 2013)
• Strong Goldbach Conjecture: Unproven (remains an open problem)
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The strong Goldbach conjecture is considered one of the most important unsolved problems
in mathematics. Despite centuries of effort by mathematicians and extensive computational
verification, a general proof remains elusive.

K.6. Relevance to Applied Mathematics

While Goldbach’s conjecture itself is a problem in pure mathematics (number theory),
studying such problems develops important skills:

• Understanding the relationship between conjectures and proofs
• Distinguishing between empirical evidence and mathematical proof
• Working with number-theoretic concepts
• Developing computational verification methods

These skills are valuable in applied mathematics and statistics, where we often work with
theoretical results that must be verified empirically.

K.7. References

Additional resources on Goldbach’s conjecture:

• (hardy2008introduction?)
• https://en.wikipedia.org/wiki/Goldbach%27s_conjecture
• https://mathworld.wolfram.com/GoldbachConjecture.html
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L. Contributing to rme

Contributions to these notes are very much appreciated; anything from one-character typo
corrections to new chapters or rewrites. The GitHub repository for this project1 provides a
Pull Request system for submitting contributions. See https://happygitwithr.com/pr-extend
for an explanation of the pull request system and the available R utility functions for working
with pull requests.

L.1. Style guide

• Every abstract concept (definition or theorem) should have at least one concrete
example immediately following it.

• More structure (headers, labels) is better.

• Make each conceptual chunk as compact as possible:

– Decompose large, complicated, difficult concepts into smaller, simpler, and easier
pieces.

– Decompose long derivations into smaller lemmas.
– When manipulating part of a larger expression, isolate that part in a lemma.

• Add slide breaks2 between exercises/theorems and solutions/proofs

L.2. Fixing typos

This book is written using Quarto3. You can fix typos, spelling mistakes, or grammatical
errors directly using the GitHub web interface by making changes in the corresponding
source file. This generally means you’ll need to edit a .qmd file.

L.3. Bigger changes

If you want to make a bigger change, it’s a good idea to first file an issue and make sure
someone from the development team agrees that it’s needed.

1https://github.com/d-morrison/rme
2https://quarto.org/docs/presentations/revealjs/#creating-slides
3https://quarto.org/docs/books/
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L. Contributing to rme

L.3.1. Pull request4 process

• Fork the package and clone onto your computer. If you haven’t done this before,
we recommend using usethis::create_from_github("d-morrison/rme", fork =
TRUE).

• Install all development dependencies with devtools::install_dev_deps(). Make
sure you can build the book by running quarto render in a Terminal.

• Create a Git branch for your pull request (PR). We recommend using
usethis::pr_init("brief-description-of-change"). Details at https:
//usethis.r-lib.org/articles/pr-functions.html

• Make your changes, commit to git, and then create a PR by running
usethis::pr_push(), and following the prompts in your browser. The title
of your PR should briefly describe the change. The body of your PR should contain
Fixes #issue-number.

• Add a bullet to the top of NEWS.md (i.e. just below the first header). Follow the style
described in https://style.tidyverse.org/news.html.

L.3.2. Code style

• New code should follow the tidyverse style guide5. You can use the styler6 package to
apply these styles, but please don’t restyle code that has nothing to do with your PR.

L.4. Code of Conduct

Please note that the rme project is released with a Contributor Code of Conduct7. By
contributing to this project you agree to abide by its terms.

L.5. Additional references

For a detailed discussion on contributing to this and other projects, please see the Tidyverse
development contributing guide8 and the Tidyverse code review principles9. This project is
not part of the tidyverse, but we have borrowed their development processes.

4https://usethis.r-lib.org/articles/pr-functions.html#whats-a-pull-request
5https://style.tidyverse.org
6https://CRAN.R-project.org/package=styler
7CODE_OF_CONDUCT.md
8https://rstd.io/tidy-contrib
9https://code-review.tidyverse.org/
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M. Exam formula sheet

M.1. Epi 202: Probability

Var( ̃𝑎 ⋅ 𝑋̃) = Var(
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖)

= ̃𝑎⊤Var(𝑋̃) ̃𝑎

=
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗Cov(𝑋𝑖, 𝑋𝑗)

M.2. Epi 203: Statistical inference

ℒ(𝜃) def= p(𝑋̃ = ̃𝑥|Θ = 𝜃)

ℓ def= log{ℒ( ̃𝑥|𝜃)}

ℓ′ def= 𝜕
𝜕𝜃

ℓ( ̃𝑥|𝜃)

ℓ″ def= 𝜕
𝜕 ̃𝜃

𝜕
𝜕 ̃𝜃⊤

ℓ( ̃𝑥| ̃𝜃)

ℓ″
𝑖𝑗 = 𝜕

𝜕𝜃𝑖

𝜕
𝜕𝜃𝑗

ℓ(𝑋̃ = ̃𝑥| ̃𝜃)

𝐼 def= −ℓ″( ̃𝑥| ̃𝜃)

ℐ def= E[𝐼( ̃𝑥|𝜃)]

̂𝜃𝑀𝐿 ∼̇ N(𝜃, [ℐ( ̃𝜃)]
−1

)
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M.3. Epi 204: Generalized linear models

Generalized linear models have three components:

1. The outcome distribution family: p(𝑌 |𝜇( ̃𝑥))

2. The link function: 𝑔(𝜇( ̃𝑥)) = 𝜂( ̃𝑥)

3. The linear component: 𝜂( ̃𝑥) = ̃𝑥 ⋅ 𝛽

[𝜋 def= Pr(𝑌 = 1|𝑋̃ = ̃𝑥)]

logit(𝜋)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜋
1−𝜋
−−→
←−−

𝜔
1+𝜔

[𝜔 def= odds(𝑌 = 1|𝑋̃ = ̃𝑥)]
log{𝜔}
−−−−→
←−−−−

exp{𝜂}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
expit(𝜂)

[𝜂( ̃𝑥) def= log-odds(𝑌 = 1|𝑋̃ = ̃𝑥)]

Figure M.1.: Diagram of logistic regression link and inverse link functions

𝜃( ̃𝑥, ̃𝑥∗) = exp{(Δ ̃𝑥) ⋅ ̃𝛽}

M.3.1. Estimates of odds ratios from 2x2 contingency tables

̂𝜃 = 𝑎𝑑
𝑏𝑐
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M.3.2. Survival analysis

M.3.2.1. Probability distribution functions

Table M.1.: Probability distribution functions

Name Symbols Definition

Probability density function (PDF) f(𝑡),p(𝑡) p(𝑇 = 𝑡)
Cumulative distribution function (CDF) F(𝑡),P(𝑡) P(𝑇 ≤ 𝑡)
Survival function S(𝑡), F̄(𝑡) P(𝑇 > 𝑡)
Hazard function 𝜆(𝑡),h(𝑡) p(𝑇 = 𝑡|𝑇 ≥ 𝑡)
Cumulative hazard function Λ(𝑡),H(𝑡) ∫𝑡

𝑢=−∞
𝜆(𝑢)𝑑𝑢

Log-hazard function 𝜂(𝑡) log{𝜆(𝑡)}

M.3.2.2. Diagram of survival distribution function relationships

f(𝑡)
−𝑆′(𝑡)

←−−−−
S(𝑡)𝜆(𝑡)

S(𝑡)
exp{−Λ(𝑡)}
←−−−−−− Λ(𝑡)

∫𝑡
𝑢=0

𝜆(𝑢)𝑑𝑢
←−−−−−−− 𝜆(𝑡)

exp{𝜂(𝑡)}
←−−−−− 𝜂(𝑡)

f(𝑡)
f(𝑡)/𝜆(𝑡)

−−−−−−→
∫∞
𝑢=𝑡

f(𝑢)𝑑𝑢
S(𝑡) −−−−−→

− log S(𝑡)
Λ(𝑡) −−−→

Λ′(𝑡)
𝜆(𝑡) −−−−−→

log{𝜆(𝑡)}
𝜂(𝑡)

M.3.2.3. Survival likelihood contributions, assuming non-informative censoring

p(𝑌 = 𝑦,𝐷 = 𝑑) = [f𝑇(𝑦)]𝑑[S𝑇(𝑦)]1−𝑑

= [𝜆𝑇(𝑦)]𝑑[S𝑇(𝑦)]

M.3.2.4. Nonparametric time-to-event distribution estimators

𝜆̂𝑖 =
𝑑𝑖
𝑛𝑖

Ŝ𝐾𝑀(𝑡) def= ∏
{𝑖∶ 𝑡𝑖<𝑡}

[1 − 𝜆̂𝑖]

Λ̂𝑁𝐴(𝑡) def= ∑
{𝑖∶ 𝑡𝑖<𝑡}

𝜆̂𝑖
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M.3.2.5. Proportional hazards model structure

Joint likelihood of data set: ℒ def= p( ̃𝑌 = ̃𝑦, 𝐷̃ = ̃𝑑|X = x)

Marginal likelihood contribution of obs. i : ℒ𝑖
def= p(𝑌𝑖 = 𝑦𝑖, 𝐷𝑖 = 𝑑𝑖|𝑋̃𝑖 = ̃𝑥𝑖)

Independent Observations Assumption: ℒ = ∏𝑛
𝑖=1 ℒ𝑖

Non-Informative Censoring Assumption: 𝑇𝑖 ⟂⟂ 𝐶𝑖|𝑋̃𝑖

ℒ𝑖 ∝ [f𝑇(𝑦𝑖| ̃𝑥𝑖)]𝑑𝑖 [S𝑇(𝑦𝑖| ̃𝑥𝑖)]1−𝑑𝑖 = S𝑇(𝑦𝑖| ̃𝑥𝑖) ⋅ [𝜆𝑇(𝑦𝑖| ̃𝑥𝑖)]𝑑𝑖

Survival function: S(𝑡| ̃𝑥) def= P(𝑇 > 𝑡|𝑋̃ = ̃𝑥) = ∫∞
𝑢=𝑡

f(𝑢| ̃𝑥)𝑑𝑢 = exp{−Λ(𝑡| ̃𝑥)}

Probability density function: f(𝑡| ̃𝑥) def= p(𝑇 = 𝑡|𝑋̃ = ̃𝑥) = −S′(𝑡| ̃𝑥) = 𝜆(𝑡| ̃𝑥)S(𝑡| ̃𝑥)

Cumulative hazard function: Λ(𝑡| ̃𝑥) def= ∫𝑡
𝑢=0

𝜆(𝑢| ̃𝑥)𝑑𝑢 = −log{S(𝑡| ̃𝑥)}

Hazard function: 𝜆(𝑡| ̃𝑥) def= p(𝑇 = 𝑡|𝑇 ≥ 𝑡, 𝑋̃ = ̃𝑥) = Λ′(𝑡| ̃𝑥) = f(𝑡|𝑥̃)
S(𝑡|𝑥̃)

Hazard ratio: 𝜃(𝑡| ̃𝑥 ∶ ̃𝑥∗) def= 𝜆(𝑡|𝑥̃)
𝜆(𝑡|𝑥̃∗)

Log-Hazard function: 𝜂(𝑡| ̃𝑥) def= log{𝜆(𝑡| ̃𝑥)} = 𝜂0(𝑡) + Δ𝜂(𝑡| ̃𝑥)

Proportional Hazards Assumption:

𝜆(𝑡| ̃𝑥) = 𝜆0(𝑡) ⋅ 𝜃( ̃𝑥)
Λ(𝑡| ̃𝑥) = Λ0(𝑡) ⋅ 𝜃( ̃𝑥)
𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + Δ𝜂( ̃𝑥)

Logarithmic Link Function Assumption:

• Link function:
log{𝜆(𝑡| ̃𝑥)} = 𝜂(𝑡| ̃𝑥)

log{𝜃( ̃𝑥)} = Δ𝜂( ̃𝑥)

• Inverse link function:
𝜆(𝑡| ̃𝑥) = exp{𝜂(𝑡| ̃𝑥)}

𝜃( ̃𝑥) = exp{Δ𝜂( ̃𝑥)}

Linear Predictor Component:

𝜂(𝑡| ̃𝑥) = 𝜂0(𝑡) + Δ𝜂(𝑡| ̃𝑥)

Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽

Linear Predictor Component Functional Form Assumption:

Δ𝜂(𝑡| ̃𝑥) = ̃𝑥 ⋅ ̃𝛽 def= 𝛽1𝑥1 +⋯+ 𝛽𝑝𝑥𝑝
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M.3.2.6. Proportional hazards model partial likelihood formula:

ℒ∗
𝑖 = 𝜃( ̃𝑥𝑖)

∑𝑘∈𝑅(𝑡𝑖) 𝜃( ̃𝑥𝑘)

ℒ∗ = ∏
{𝑖∶ 𝑑𝑖=1}

ℒ∗
𝑖

M.3.2.7. Proportional hazards model baseline cumulative hazard estimator:

Λ̂0(𝑡) = ∑
𝑡𝑖<𝑡

𝑑𝑖
∑𝑘∈𝑅(𝑡𝑖) 𝜃(𝑥𝑘)
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