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Preface

This web-book is derived from my lecture slides for Epidemiology 204:
“Quantitative Epidemiology III: Statistical Models”, at UC Davis.

I have drawn these materials from many sources, including but not limited
to:

• David Rocke1’s materials from the 2021 edition of Epi 2042

• Vittinghoff et al. (2012)

• Dobson and Barnett (2018)

License

This book is licensed to you under Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License3.

The code samples in this book are licensed under Creative Commons CC0
1.0 Universal (CC0 1.0)4, i.e. public domain.

1https://dmrocke.ucdavis.edu/
2https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
3http://creativecommons.org/licenses/by-nc-nd/4.0/
4https://creativecommons.org/publicdomain/zero/1.0/

1

https://dmrocke.ucdavis.edu/
https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/publicdomain/zero/1.0/


1. Introduction

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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1. Introduction

library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9

3



1. Introduction

1.1. Introduction to Epi 204

Welcome to Epidemiology 204: Quantitative Epidemiology III (Statistical
Models).

In this course, we will start where Epi 203 left off: with linear regression
models.

Note

Epi 203/STA 130B/STA 131B is a prerequisite for this course. If you
haven’t passed one of these courses, please talk to me after class.

1.1.1. What you should know

Epi 202: probability models for different data types

• binomial
• Poisson
• Gaussian
• exponential

Epi 203: inference for one or several homogenous populations

• the maximum likelihood inference framework:

– likelihood functions
– log-likelihood functions
– score functions
– estimating equations
– information matrices
– point estimates
– standard errors
– confidence intervals

4



1. Introduction

– hypothesis tests
– p-values

• Hypothesis tests for one, two, and >2 groups:

– t-tests/ANOVA for Gaussian models
– chi-square tests for binomial and Poisson models

• Some linear regression

Stat 108: linear regression models

• building models for Gaussian outcomes

– multiple predictors
– interactions

• regression diagnostics
• fundamentals of R programming; e.g.:

– Wickham, Çetinkaya-Rundel, and Grolemund (2023)
– Dalgaard (2008)

• RMarkdown or Quarto for formatting homework1

– LaTeX for writing math in RMarkdown/Quarto

1.1.2. What we will cover in this course

• Linear (Gaussian) regression models (review and more details)

• Regression models for non-Gaussian outcomes

– binary
– count
– time to event

• Statistical analysis using R
1https://r4ds.hadley.nz/quarto
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1. Introduction

1.2. Regression models

Why do we need them?

• continuous predictors

• not enough data to analyze some subgroups individually

1.2.1. Example: Adelie penguins

3000

3500

4000

4500

32 36 40 44
Bill length (mm)

B
od

y 
m

as
s 

(g
)

Figure 1.1.: Palmer penguins
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1. Introduction

1.2.2. Linear regression

ggpenguins2 =
ggpenguins +
stat_smooth(method = "lm",

formula = y ~ x,
geom = "smooth")

ggpenguins2 |> print()
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Figure 1.2.: Palmer penguins with linear regression fit
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1.2.3. Curved regression lines

ggpenguins2 = ggpenguins +
stat_smooth(

method = "lm",
formula = y ~ log(x),
geom = "smooth") +

xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2
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Figure 1.3.: Palmer penguins - curved regression lines
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1.2.4. Multiple regression

ggpenguins =
palmerpenguins::penguins |>
ggplot(

aes(x = bill_length_mm ,
y = body_mass_g,
color = species

)
) +
geom_point() +
stat_smooth(

method = "lm",
formula = y ~ x,
geom = "smooth") +

xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins |> print()
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Figure 1.4.: Palmer penguins - multiple groups

1.2.5. Modeling non-Gaussian outcomes

library(glmx)
data(BeetleMortality)
beetles = BeetleMortality |>
mutate(

pct = died/n,
survived = n - died

)

plot1 =
beetles |>

10



1. Introduction

ggplot(aes(x = dose, y = pct)) +
geom_point(aes(size = n)) +
xlab("Dose (log mg/L)") +
ylab("Mortality rate (%)") +
scale_y_continuous(labels = scales::percent) +
# xlab(bquote(log[10]), bquote(CS[2])) +
scale_size(range = c(1,2))

print(plot1)
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Figure 1.5.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)
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1. Introduction

1.2.6. Why don’t we use linear regression?

beetles_long =
beetles |>
reframe(.by = everything(),

outcome = c(
rep(1, times = died),
rep(0, times = survived))

)

lm1 =
beetles_long |>
lm(

formula = outcome ~ dose,
data = _)

range1 = range(beetles$dose) + c(-.2, .2)

f.linear = function(x) predict(lm1, newdata = data.frame(dose = x))

plot2 =
plot1 +
geom_function(fun = f.linear, aes(col = "Straight line")) +
labs(colour="Model", size = "")

print(plot2)
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Figure 1.6.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)
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1.2.7. Zoom out
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Figure 1.7.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

1.2.8. log transformation of dose?

lm2 =
beetles_long |>
lm(formula = outcome ~ log(dose), data = _)

f.linearlog = function(x) predict(lm2, newdata = data.frame(dose = x))

plot3 = plot2 +

14



1. Introduction

expand_limits(x = c(1.6, 2)) +
geom_function(fun = f.linearlog, aes(col = "Log-transform dose"))

print(plot3 + expand_limits(x = c(1.6, 2)))
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Figure 1.8.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

1.2.9. Logistic regression

glm1 = beetles |>
glm(formula = cbind(died, survived) ~ dose, family = "binomial")
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1. Introduction

f = function(x) predict(glm1, newdata = data.frame(dose = x), type = "response")

plot4 = plot3 + geom_function(fun = f, aes(col = "Logistic regression"))
print(plot4)
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Figure 1.9.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

1.2.10. Three parts to regression models

• What distribution does the outcome have for a specific subpopulation
defined by covariates? (outcome model)

• How does the combination of covariates relate to the mean? (link
function)

16



1. Introduction

• How do the covariates combine? (linear predictor, interactions)

1.3. Other resources

These notes represent my still-developing perspective on regression mod-
els in epidemiology. Many other statisticians and epidemiologists have
published their own perspectives, and you are encouraged to explore your
many options and find ones that resonate with you. I have attempted to
cite my sources throughout these notes.

Here are some additional resources:

• Dunn, Smyth, et al. (2018) is a recent textbook on GLMs. It
doesn’t cover time-to-event models, and it doesn’t use the mod-
ern tidyverse2 packages (ggplot23, dplyr4, etc.), but otherwise
it seems great.

• Moore (2016) is a recent textbook on survival analysis. It also
doesn’t use the tidyverse, but otherwise seems great.

• Harrell (2015) is another popular textbook. It uses ggplot25 but not
dplyr6, and covers GLMs and survival analysis. An abbreviated
but continuously updated version with audio clips is available at
https://hbiostat.org/rmsc/.

• Fox (2015) is another standard text.

• McCullagh and Nelder (1989) is a classic, theoretical textbook on
GLMs

2https://tidyverse.org/
3https://ggplot2.tidyverse.org/
4https://dplyr.tidyverse.org/
5https://ggplot2.tidyverse.org/
6https://dplyr.tidyverse.org/
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1. Introduction

• Dalgaard (2008) covers GLMs and survival analysis at an applied
level, using base R

• Vittinghoff et al. (2012) covers GLMs, survival analysis, and causal
inference, using Stata

• Faraway (2016) has GLMs but not survival analysis

• https://online.stat.psu.edu/stat504/book/ provides course notes for
“STAT 504 - Analysis of Discrete Data” at Penn State University. It
includes logistic regression and Poisson regression, as well as 2-way
tables and other related topics, and includes SAS code.

• Nahhas (n.d.) is currently in-development

18
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Part I.

Generalized Linear Models
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This section is primarily adapted starting from the textbook “An Intro-
duction to Generalized Linear Models” (4th edition, 2018) by Annette J.
Dobson and Adrian G. Barnett:

https://doi.org/10.1201/9781315182780

The type of predictive model one uses depends on several issues; one is
the type of response.

• Measured values such as quantity of a protein, age, weight usually
can be handled in an ordinary linear regression model, possibly after
a log transformation.

• Patient survival, which may be censored, calls for a different method
(survival analysis, Cox regression).

• If the response is binary, then can we use logistic regression models

• If the response is a count, we can use Poisson regression

• If the count has a higher variance than is consistent with the Poisson,
we can use a negative binomial or over-dispersed Poisson

• Other forms of response can generate other types of generalized linear
models

We need a linear predictor of the same form as in linear regression �x.
In theory, such a linear predictor can generate any type of number as a
prediction, positive, negative, or zero

We choose a suitable distribution for the type of data we are predicting
(normal for any number, gamma for positive numbers, binomial for binary
responses, Poisson for counts)

We create a link function which maps the mean of the distribution onto
the set of all possible linear prediction results, which is the whole real line

20
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(-∞, ∞). The inverse of the link function takes the linear predictor to the
actual prediction.

• Ordinary linear regression has identity link (no transformation by
the link function) and uses the normal distribution

• If one is predicting an inherently positive quantity, one may want to
use the log link since ex is always positive.

• An alternative to using a generalized linear model with a log link,
is to transform the data using the log. This is a device that works
well with measurement data and may be usable in other cases, but
it cannot be used for 0/1 data or for count data that may be 0.

Table 1.1.: R glm() Families
Family Links
gaussian identity, log, inverse
binomial logit, probit, cauchit, log, cloglog
gamma inverse, identity, log
inverse.gaussian 1/mu^2, inverse, identity, log
Poisson log, identity, sqrt
quasi identity, logit, probit, cloglog,

inverse, log, 1/mu^2 and sqrt
quasibinomial logit, probit, identity, cloglog,

inverse, log, 1/mu^2 and sqrt
quasipoisson log, identity, logit, probit, cloglog,

inverse, 1/mu^2 and sqrt

21



Table 1.2.: R glm() Link Functions; 𝜂 = 𝑋𝛽 = 𝑔(𝜇)

Name Domain Range
Link
Function

Inverse Link
Function

identity (−∞, ∞) (−∞, ∞) 𝜂 = 𝜇 𝜇 = 𝜂
log (0, ∞) (−∞, ∞) 𝜂 = log {𝜇} 𝜇 = exp {𝜂}
inverse (0, ∞) (0, ∞) 𝜂 = 1/𝜇 𝜇 = 1/𝜂
logit (0, 1) (−∞, ∞) 𝜂 =

log {𝜇/(1 − 𝜇)}
𝜇 =
exp {𝜂} /(1 +
exp {𝜂})

probit (0, 1) (−∞, ∞) 𝜂 =
Φ−1(𝜇)

𝜇 = Φ(𝜂)

cloglog (0, 1) (−∞, ∞) 𝜂 =
log {−log {1 − 𝜇}}

𝜇 =
1 − exp {−exp {𝜂}}

1/mu^2 (0, ∞) (0, ∞) 𝜂 = 1/𝜇2 𝜇 = 1/√𝜂
sqrt (0, ∞) (0, ∞) 𝜂 = √𝜇 𝜇 = 𝜂2
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2. Linear (Gaussian) Models

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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2. Linear (Gaussian) Models

library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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Note

This content is adapted from:

• Dobson and Barnett (2018), Chapters 2-6
• Dunn, Smyth, et al. (2018), Chapters 2-3
• Vittinghoff et al. (2012), Chapter 4

There are numerous textbooks specifically for linear regression, in-
cluding:

• Kutner et al. (2005): used for UCLA Biostatistics MS level
linear models class

• Chatterjee and Hadi (2015): used for Stanford MS-level linear
models class

• Seber and Lee (2012): used for UCLA Biostatistics PhD level
linear models class

• Kleinbaum et al. (2014): same first author as Kleinbaum and
Klein (2010) and Kleinbaum and Klein (2012)

2.1. Overview

2.1.1. Why this course includes linear regression

• This course is about generalized linear models (for non-Gaussian out-
comes)

• UC Davis STA 108 (“Applied Statistical Methods: Regression Anal-
ysis”) is a prerequisite for this course, so everyone here should have
some understanding of linear regression already.

• We will review linear regression to:
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• make sure everyone is caught up
• to provide an epidemiological perspective on model intepretation.

2.1.2. Chapter overview

• Section 2.2: how to interpret linear regression models

• Section 2.3: how to estimate linear regression models

• Section 2.4: how to quantify uncertainty about our estimates

• Section 2.8: how to tell if your model is insufficiently complex

2.2. Understanding Gaussian Linear Regression
Models

2.2.1. Motivating example: birthweights and gestational age

Suppose we want to learn about the distributions of birthweights (outcome
𝑌 ) for (human) babies born at different gestational ages (covariate 𝐴)
and with different chromosomal sexes (covariate 𝑆) (Dobson and Barnett
(2018) Example 2.2.2).

2.2.1.1. Data as table

library(dobson)
data("birthweight", package = "dobson")
birthweight |> knitr::kable()
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Table 2.1.: birthweight data (Dobson and Barnett (2018) Example 2.2.2)
boys gestational age boys weight girls gestational age girls weight

40 2968 40 3317
38 2795 36 2729
40 3163 40 2935
35 2925 38 2754
36 2625 42 3210
37 2847 39 2817
41 3292 40 3126
40 3473 37 2539
37 2628 36 2412
38 3176 38 2991
40 3421 39 2875
38 2975 40 3231

2.2.1.2. Reshape data for graphing

bw =
birthweight |>
pivot_longer(

cols = everything(),
names_to = c("sex", ".value"),
names_sep = "s "

) |>
rename(age = `gestational age`) |>
mutate(

sex = sex |>
case_match(

"boy" ~ "male",
"girl" ~ "female") |>

factor(levels = c("female", "male")))
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bw

Table 2.2.: birthweight data reshaped
sex age weight
male 40 2968
female 40 3317
male 38 2795
female 36 2729
male 40 3163
female 40 2935
male 35 2925
female 38 2754
male 36 2625
female 42 3210
male 37 2847
female 39 2817
male 41 3292
female 40 3126
male 40 3473
female 37 2539
male 37 2628
female 36 2412
male 38 3176
female 38 2991
male 40 3421
female 39 2875
male 38 2975
female 40 3231
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2.2.1.3. Data as graph

plot1 = bw |>
ggplot(aes(

x = age,
y = weight,
linetype = sex,
shape = sex,
col = sex)) +

theme_bw() +
xlab("Gestational age (weeks)") +
ylab("Birthweight (grams)") +
theme(legend.position = "bottom") +
# expand_limits(y = 0, x = 0) +
geom_point(alpha = .7)

print(plot1 + facet_wrap(~ sex))
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Figure 2.1.: birthweight data (Dobson and Barnett (2018) Example
2.2.2)

2.2.1.4. Data notation

Let’s define some notation to represent this data.

• 𝑌 : birthweight (measured in grams)

• 𝑆: chromosomal sex: “male” (XY) or “female” (XX)
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• 𝑀 : indicator variable for 𝑆 = “male”1

• 𝑀 = 0 if female (XX)

• 𝑀 = 1 if male (XY)

• 𝐹 : indicator variable for 𝑆 = “female”2

• 𝐹 = 1 if female (XX)

• 𝐹 = 0 if male (XY)

• 𝐴: estimated gestational age at birth (measured in weeks).

Note

Female is the reference level for the categorical variable 𝑆 (chromo-
somal sex) and corresponding indicator variable 𝑀 . The choice of
a reference level is arbitrary and does not limit what we can do with
the resulting model; it only makes it more computationally conve-
nient to make inferences about comparisons involving that reference
group.

2.2.2. Parallel lines regression

We don’t have enough data to model the distribution of birth weight sep-
arately for each combination of gestational age and sex, so let’s instead
consider a (relatively) simple model for how that distribution varies with
gestational age and sex:

𝑝(𝑌 = 𝑦|𝐴 = 𝑎, 𝑆 = 𝑠) ∼iid 𝑁(𝜇(𝑎, 𝑠), 𝜎2)

1𝑀 is implicitly a deterministic function of 𝑆
2𝐹 is implicitly a deterministic function of 𝑆
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2. Linear (Gaussian) Models

𝜇(𝑎, 𝑠) def= 𝔼 [𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠]
= 𝛽0 + 𝛽𝐴𝑎 + 𝛽𝑀𝑚

(2.1)

Table 2.3 shows the parameter estimates from R. Figure 2.2 shows the
estimated model, superimposed on the data.

bw_lm1 = lm(
formula = weight ~ sex + age,
data = bw)

bw_lm1 |>
parameters() |>
print_md(

include_reference = TRUE,
# show_sigma = TRUE,
select = "{estimate}")

Table 2.3.: Estimate of Model 2.1 for birthweight data
Parameter Estimate
(Intercept) -1773.32
sex (female) 0.00
sex (male) 163.04
age 120.89

bw =
bw |>
mutate(`E[Y|X=x]` = fitted(bw_lm1)) |>
arrange(sex, age)

plot2 =
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plot1 %+% bw +
geom_line(aes(y = `E[Y|X=x]`))

print(plot2)
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Figure 2.2.: Parallel-slopes model of birthweight

2.2.2.1. Model assumptions and predictions

To learn what this model is assuming, let’s plug in a few values.

Exercise 2.1. According to this model, what’s the mean birthweight for
a female born at 36 weeks?
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coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.3 163.0 120.9

Solution.

pred_female = coef(bw_lm1)["(Intercept)"] + coef(bw_lm1)["age"]*36
coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.3 163.0 120.9
# print(pred_female)
### built-in prediction:
# predict(bw_lm1, newdata = tibble(sex = "female", age = 36))

𝐸[𝑌 |𝐴 = 0, 𝐴 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36
= 2578.8739

Exercise 2.2. What’s the mean birthweight for a male born at 36 weeks?

coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.3 163.0 120.9

Solution.

34



2. Linear (Gaussian) Models

pred_male =
coef(bw_lm1)["(Intercept)"] +
coef(bw_lm1)["sexmale"] +
coef(bw_lm1)["age"]*36

coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.3 163.0 120.9

𝐸[𝑌 |𝑀 = 1, 𝐴 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36
= 2741.9132

Exercise 2.3. What’s the difference in mean birthweights between males
born at 36 weeks and females born at 36 weeks?

coef(bw_lm1)
#> (Intercept) sexmale age
#> -1773.3 163.0 120.9

Solution.
𝐸[𝑌 |𝑀 = 1, 𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0, 𝐴 = 36]
= 2741.9132 − 2578.8739
= 163.0393

Shortcut:
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𝐸[𝑌 |𝑀 = 1, 𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0, 𝐴 = 36]
= (𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36) − (𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36)
= 𝛽𝑀
= 163.0393

Note that age doesn’t show up in this difference: in other words, according
to this model, the difference between females and males with the same
gestational age is the same for every age.

That’s an assumption of the model; it’s built-in to the parametric struc-
ture, even before we plug in the estimated values of those parameters.

That’s why the lines are parallel.

2.2.3. Interactions

What if we don’t like that parallel lines assumption?

Then we need to allow an “interaction” between age 𝐴 and sex 𝑆:

𝐸[𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠] = 𝛽0 + 𝛽𝐴𝑎 + 𝛽𝑀𝑚 + 𝛽𝐴𝑀(𝑎 ⋅ 𝑚) (2.2)

Now, the slope of mean birthweight 𝐸[𝑌 |𝐴, 𝑆] with respect to gestational
age 𝐴 depends on the value of sex 𝑆.

bw_lm2 = lm(weight ~ sex + age + sex:age, data = bw)
bw_lm2 |>
parameters() |>
print_md(

include_reference = TRUE,
# show_sigma = TRUE,
select = "{estimate}")

36



2. Linear (Gaussian) Models

Table 2.4.: Birthweight model with interaction term
Parameter Estimate
(Intercept) -2141.67
sex (female) 0.00
sex (male) 872.99
age 130.40
sex (male) × age -18.42

bw =
bw |>
mutate(

predlm2 = predict(bw_lm2)
) |>
arrange(sex, age)

plot1_interact =
plot1 %+% bw +
geom_line(aes(y = predlm2))

print(plot1_interact)

37



2. Linear (Gaussian) Models

2400

2700

3000

3300

36 38 40 42
Gestational age (weeks)

B
ir

th
w

ei
gh

t (
gr

am
s)

sex female male

Figure 2.3.: Birthweight model with interaction term

Now we can see that the lines aren’t parallel.

Here’s another way we could rewrite this model (by collecting terms in-
volving 𝑆):

𝐸[𝑌 |𝐴, 𝑀] = 𝛽0 + 𝛽𝑀𝑀 + (𝛽𝐴 + 𝛽𝐴𝑀𝑀)𝐴
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Note

If you want to understand a coefficient in a model with interactions,
collect terms for the corresponding variable, and you will see what
other variables are interacting with the variable you are interested
in.

In this case, the coefficient 𝑆 is interacting with 𝐴. So the slope of 𝑌 with
respect to 𝐴 depends on the value of 𝑀 .

According to this model, there is no such thing as “the slope of birthweight
with respect to age”. There are two slopes, one for each sex.3 We can only
talk about “the slope of birthweight with respect to age among males” and
“the slope of birthweight with respect to age among females”.

Then: that coefficient is the difference in means per unit change in its
corresponding coefficient, when the other collected variables are set to
0.

To learn what this model is assuming, let’s plug in a few values.

Exercise 2.4. According to this model, what’s the mean birthweight for
a female born at 36 weeks?

Solution.

3using the definite article “the” would mean there is only one slope.
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pred_female = coef(bw_lm2)["(Intercept)"] + coef(bw_lm2)["age"]*36

𝐸[𝑌 |𝐴 = 0, 𝑋2 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ (0 ∗ 36) = 2552.7333

Exercise 2.5. What’s the mean birthweight for a male born at 36 weeks?

Solution.

pred_male =
coef(bw_lm2)["(Intercept)"] +
coef(bw_lm2)["sexmale"] +
coef(bw_lm2)["age"]*36 +
coef(bw_lm2)["sexmale:age"] * 36

𝐸[𝑌 |𝐴 = 0, 𝑋2 = 36] = 𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 36
= 2762.7069

Exercise 2.6. What’s the difference in mean birthweights between males
born at 36 weeks and females born at 36 weeks?
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Solution.
𝐸[𝑌 |𝑀 = 1, 𝐴 = 36] − 𝐸[𝑌 |𝑀 = 0, 𝐴 = 36]
= (𝛽0 + 𝛽𝑀 ⋅ 1 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 1 ⋅ 36)

− (𝛽0 + 𝛽𝑀 ⋅ 0 + 𝛽𝐴 ⋅ 36 + 𝛽𝐴𝑀 ⋅ 0 ⋅ 36)
= 𝛽𝑆 + 𝛽𝐴𝑀 ⋅ 36
= 209.9736

Note that age now does show up in the difference: in other words, accord-
ing to this model, the difference in mean birthweights between females
and males with the same gestational age can vary by gestational age.

That’s how the lines in the graph ended up non-parallel.

2.2.4. Stratified regression

We could re-write the interaction model as a stratified model, with a slope
and intercept for each sex:

𝔼 [𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠] = 𝛽𝑀𝑚 + 𝛽𝐴𝑀(𝑎 ⋅ 𝑚) + 𝛽𝐹 𝑓 + 𝛽𝐴𝐹 (𝑎 ⋅ 𝑓) (2.3)

Compare this stratified model with our interaction model, Equation 2.2:

𝔼 [𝑌 |𝐴 = 𝑎, 𝑆 = 𝑠] = 𝛽0 + 𝛽𝐴𝑎 + 𝛽𝑀𝑚 + 𝛽𝐴𝑀(𝑎 ⋅ 𝑚)

In the stratified model, the intercept term 𝛽0 has been relabeled as 𝛽𝐹 .

bw_lm2 = lm(weight ~ sex + age + sex:age, data = bw)
bw_lm2 |>
parameters() |>
print_md(

include_reference = TRUE,
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# show_sigma = TRUE,
select = "{estimate}")

Table 2.5.: Birthweight model with interaction term
Parameter Estimate
(Intercept) -2141.67
sex (female) 0.00
sex (male) 872.99
age 130.40
sex (male) × age -18.42

bw_lm_strat =
bw |>
lm(

formula = weight ~ sex + sex:age - 1,
data = _)

bw_lm_strat |>
parameters() |>
print_md(

# show_sigma = TRUE,
select = "{estimate}")

Table 2.6.: Birthweight model - stratified betas
Parameter Estimate
sex (female) -2141.67
sex (male) -1268.67
sex (female) × age 130.40
sex (male) × age 111.98
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Table 2.6.: Birthweight model - stratified betas
Parameter Estimate

2.2.5. Curved-line regression

If we transform some of our covariates (𝑋s) and plot the resulting model
on the original covariate scale, we end up with curved regression lines:

bw_lm3 = lm(weight ~ sex:log(age) - 1, data = bw)
library(palmerpenguins)

ggpenguins <-
palmerpenguins::penguins |>
dplyr::filter(species == "Adelie") |>
ggplot(

aes(x = bill_length_mm , y = body_mass_g)) +
geom_point() +
xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2 = ggpenguins +
stat_smooth(

method = "lm",
formula = y ~ log(x),
geom = "smooth") +

xlab("Bill length (mm)") +
ylab("Body mass (g)")

ggpenguins2 |> print()
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Figure 2.4.: palmerpenguins model with bill_length entering on log
scale

2.3. Estimating Linear Models via Maximum
Likelihood

2.3.1. Likelihood, log-likelihood, and score functions for linear
regression

In EPI 203 and [intro-MLEs.qmd#sec-intro-MLEs], we learned how to fit
outcome-only models of the form 𝑝(𝑋 = 𝑥|𝜃) to iid data x = (𝑥1, …, 𝑥𝑛)
using maximum likelihood estimation.

Now, we apply the same procedure to linear regression models:
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ℒ( ̃𝑦|x, 𝛽, 𝜎2) =
𝑛

∏
𝑖=1

(2𝜋𝜎2)−1/2exp {− 1
2𝜎2 (𝑦𝑖 − ̃𝑥𝑖

′𝛽)2} (2.4)

ℓ( ̃𝑦|x, 𝛽, 𝜎2) = −𝑛
2 log {𝜎2} − 1

2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − ̃𝑥𝑖
′𝛽)2 (2.5)

ℓ′
𝛽( ̃𝑦|x, 𝛽, 𝜎2) = − 1

2𝜎2
𝜕

𝜕𝛽 (
𝑛

∑
𝑖=1

(𝑦𝑖 − ̃𝑥𝑖
′𝛽)2) (2.6)

2.3.2. Some tools from vector calculus

A few tools from linear algebra will make this analysis go easier (see Fieller
(2016), Section 7.2 for details).

𝑓𝛽(x) = (𝑓𝛽(𝑥1), 𝑓𝛽(𝑥2), ..., 𝑓𝛽(𝑥𝑛))⊤

Let x and 𝛽 be vectors of length 𝑝, or in other words, matrices of length
𝑝 × 1:

𝑥 =
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑝

⎤
⎥⎥
⎦

𝛽 =
⎡
⎢⎢
⎣

𝛽1
𝛽2
⋮

𝛽𝑝

⎤
⎥⎥
⎦

Then

𝑥′ ≡ 𝑥⊤ ≡ [𝑥1, 𝑥2, ..., 𝑥𝑝]

and
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𝑥′𝛽 = [𝑥1, 𝑥2, ..., 𝑥𝑝]
⎡
⎢⎢
⎣

𝛽1
𝛽2
⋮

𝛽𝑝

⎤
⎥⎥
⎦

= 𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝

If 𝑓(𝛽) is a function that takes 𝛽 as input and outputs a scalar, such as
𝑓(𝛽) = 𝑥′𝛽, then:

𝜕
𝜕𝛽 𝑓(𝛽) =

⎡
⎢⎢⎢
⎣

𝜕
𝜕𝛽1

𝑓(𝛽)
𝜕

𝜕𝛽2
𝑓(𝛽)
⋮

𝜕
𝜕𝛽𝑝

𝑓(𝛽)

⎤
⎥⎥⎥
⎦

In particular, if 𝑓(𝛽) = 𝑥′𝛽, then:

𝜕
𝜕𝛽 𝑥′𝛽 =

⎡
⎢⎢⎢
⎣

𝜕
𝜕𝛽1

(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)
𝜕

𝜕𝛽2
(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)

⋮
𝜕

𝜕𝛽𝑝
(𝑥1𝛽1 + 𝑥2𝛽2 + ... + 𝑥𝑝𝛽𝑝)

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑝

⎤
⎥⎥
⎦

= x

In general:

𝜕
𝜕𝛽 𝑥′𝛽 = 𝑥

This looks a lot like non-vector calculus, except that you have to transpose
the coefficient.
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Similarly,

𝜕
𝜕𝛽 𝛽′𝛽 = 2𝛽

This is like taking the derivative of 𝑥2.

And finally, if 𝑆 is a 𝑝 × 𝑝 matrix, then:

𝜕
𝜕𝛽 𝛽′𝑆𝛽 = 2𝑆𝛽

Again, this is like taking the derivative of 𝑐𝑥2 with respect to 𝑥 in non-
vector calculus.

Thus:

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑓𝛽(𝑥𝑖))2 = (y − 𝑋𝛽)′(y − 𝑋𝛽)

(y − 𝑋𝛽)′ = (y′ − (𝑋𝛽)′) = (y′ − 𝛽′𝑋′)
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So

(y − 𝑋𝛽)′(y − 𝑋𝛽) = (y′ − 𝛽′𝑋′)(y − 𝑋𝛽)
= 𝑦′𝑦 − 𝛽′𝑋′𝑦 − 𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽
= 𝑦′𝑦 − 2𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽

2.3.3. Analyzing the linear regression score function

𝜕
𝜕𝛽 (

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥′
𝑖𝛽)2) = 𝜕

𝜕𝛽 (y − 𝑋𝛽)′(y − 𝑋𝛽)

= 𝜕
𝜕𝛽 (𝑦′𝑦 − 2𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽)

= (−2𝑋′𝑦 + 2𝑋′𝑋𝛽)

So if ℓ(𝛽, 𝜎2) = 0, then

0 = (−2𝑋′𝑦 + 2𝑋′𝑋𝛽)
2𝑋′𝑦 = 2𝑋′𝑋𝛽
𝑋′𝑦 = 𝑋′𝑋𝛽

(𝑋′𝑋)−1𝑋′𝑦 = 𝛽

The second derivative matrix ℓ″
𝛽,𝛽′(𝛽, 𝜎2; X, y) is negative definite at 𝛽 =

(𝑋′𝑋)−1𝑋′𝑦, so ̂𝛽𝑀𝐿 = (𝑋′𝑋)−1𝑋′𝑦 is the MLE for 𝛽.
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Similarly (not shown):

𝜎̂2
𝑀𝐿 = 1

𝑛(𝑌 − 𝑋 ̂𝛽)′(𝑌 − 𝑋 ̂𝛽)

And

ℐ𝛽 = 𝐸[−ℓ″
𝛽,𝛽′(𝑌 |𝑋, 𝛽, 𝜎2)]

= 1
𝜎2 𝑋′𝑋

So:

𝑉 𝑎𝑟( ̂𝛽) ≈ (ℐ𝛽)−1 = 𝜎2(𝑋′𝑋)−1

and

̂𝛽∼̇𝑁(𝛽, ℐ−1
𝛽 )

These are all results you have hopefully seen before.

In the Gaussian linear regression case, we also have exact results:

̂𝛽𝑗

̂se ( ̂𝛽𝑗)
∼ 𝑡𝑛−𝑝
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In our model 2 above, ̂ℐ(𝛽) is:

bw_lm2 |> vcov()
#> (Intercept) sexmale age sexmale:age
#> (Intercept) 1353968 -1353968 -34871.0 34871.0
#> sexmale -1353968 2596387 34871.0 -67211.0
#> age -34871 34871 899.9 -899.9
#> sexmale:age 34871 -67211 -899.9 1743.5

If we take the square roots of the diagonals, we get the standard errors
listed in the model output:

bw_lm2 |> vcov() |> diag() |> sqrt()
#> (Intercept) sexmale age sexmale:age
#> 1163.60 1611.33 30.00 41.76

bw_lm2 |> parameters() |> print_md()

Table 2.7.: Estimated model for birthweight data with interaction term
Parameter Coefficient SE 95% CI t(20) p
(Intercept) -2141.67 1163.60 (-4568.90,

285.56)
-1.84 0.081

sex (male) 872.99 1611.33 (-2488.18,
4234.17)

0.54 0.594

age 130.40 30.00 (67.82, 192.98) 4.35 <
.001

sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

So we can do confidence intervals, hypothesis tests, and p-values exactly
as in the one-variable case we looked at previously.
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2.3.4. Residual Standard Deviation

𝜎̂ represents an estimate of the Residual Standard Deviation parameter, 𝜎.
We can extract 𝜎̂ from the fitted model, using the sigma() function:

sigma(bw_lm2)
#> [1] 180.6

2.3.4.1. 𝜎 is NOT “Residual standard error”

In the summary.lm() output, this estimate is labeled as "Residual
standard error":

summary(bw_lm2)
#>
#> Call:
#> lm(formula = weight ~ sex + age + sex:age, data = bw)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -246.7 -138.1 -39.1 176.6 274.3
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -2141.7 1163.6 -1.84 0.08057 .
#> sexmale 873.0 1611.3 0.54 0.59395
#> age 130.4 30.0 4.35 0.00031 ***
#> sexmale:age -18.4 41.8 -0.44 0.66389
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

51



2. Linear (Gaussian) Models

#>
#> Residual standard error: 181 on 20 degrees of freedom
#> Multiple R-squared: 0.643, Adjusted R-squared: 0.59
#> F-statistic: 12 on 3 and 20 DF, p-value: 0.000101

However, this is a misnomer:

library(printr) # captures ? documentation
?stats::sigma
#> Extract Residual Standard Deviation 'Sigma'
#>
#> Description:
#>
#> Extract the estimated standard deviation of the errors, the
#> "residual standard deviation" (misnamed also "residual standard
#> error", e.g., in 'summary.lm()''s output, from a fitted model).
#>
#> Many classical statistical models have a _scale parameter_,
#> typically the standard deviation of a zero-mean normal (or
#> Gaussian) random variable which is denoted as sigma. 'sigma(.)'
#> extracts the _estimated_ parameter from a fitted model, i.e.,
#> sigma^.
#>
#> Note:
#>
#> The misnomer "Residual standard *error*" has been part of too many
#> R (and S) outputs to be easily changed there.
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2.4. Inference about Gaussian Linear Regression
Models

2.4.1. Motivating example: birthweight data

Research question: is there really an interaction between sex and age?

𝐻0 ∶ 𝛽𝐴𝑀 = 0
𝐻𝐴 ∶ 𝛽𝐴𝑀 ≠ 0
𝑃(| ̂𝛽𝐴𝑀 | > | − 18.4172| ∣ 𝐻0) = ?

2.4.2. Wald tests and CIs

R can give you Wald tests for single coefficients and corresponding CIs:

bw_lm2 |>
parameters() |>
print_md(

include_reference = TRUE)

Parameter Coefficient SE 95% CI t(20) p
(Intercept) -2141.67 1163.60 (-4568.90,

285.56)
-1.84 0.081

sex (female) 0.00
sex (male) 872.99 1611.33 (-2488.18,

4234.17)
0.54 0.594

age 130.40 30.00 (67.82, 192.98) 4.35 <
.001

sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664
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To understand what’s happening, let’s replicate these results by hand for
the interaction term.

2.4.3. P-values

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE)

Parameter Coefficient SE 95% CI t(20) p
sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

beta_hat = coef(summary(bw_lm2))["sexmale:age", "Estimate"]
se_hat = coef(summary(bw_lm2))["sexmale:age", "Std. Error"]
dfresid = bw_lm2$df.residual
t_stat = abs(beta_hat)/se_hat
pval_t =
pt(-t_stat, df = dfresid, lower.tail = TRUE) +
pt(t_stat, df = dfresid, lower.tail = FALSE)

𝑃 (| ̂𝛽𝐴𝑀 | > | − 18.4172|∣𝐻0)

= Pr (∣
̂𝛽𝐴𝑀

̂𝑆𝐸( ̂𝛽𝐴𝑀)
∣ > ∣−18.4172

41.7558 ∣∣𝐻0)

= Pr (|𝑇20| > 0.4411|𝐻0)
= 0.6639

This matches the result in the table above.
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2.4.4. Confidence intervals

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE)

Parameter Coefficient SE 95% CI t(20) p
sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

q_t = qt(
p = 0.975,
df = dfresid,
lower.tail = TRUE)

q_t = qt(
p = 0.025,
df = dfresid,
lower.tail = TRUE)

confint_radius_t =
se_hat * q_t

confint_t = beta_hat + c(-1,1) * confint_radius_t

print(confint_t)
#> [1] 68.68 -105.52

This also matches.
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2.4.5. Gaussian approximations

Here are the asymptotic (Gaussian approximation) equivalents:

2.4.6. P-values

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE)

Parameter Coefficient SE 95% CI t(20) p
sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

pval_z = pnorm(abs(t_stat), lower = FALSE) * 2

print(pval_z)
#> [1] 0.6592

2.4.7. Confidence intervals

bw_lm2 |>
parameters(keep = "sexmale:age") |>
print_md(

include_reference = TRUE)
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Parameter Coefficient SE 95% CI t(20) p
sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

confint_radius_z = se_hat * qnorm(0.975, lower = TRUE)
confint_z =
beta_hat + c(-1,1) * confint_radius_z

print(confint_z)
#> [1] -100.26 63.42

2.4.8. Likelihood ratio statistics

logLik(bw_lm2)
#> 'log Lik.' -156.6 (df=5)
logLik(bw_lm1)
#> 'log Lik.' -156.7 (df=4)

lLR = (logLik(bw_lm2) - logLik(bw_lm1)) |> as.numeric()
delta_df = (bw_lm1$df.residual - df.residual(bw_lm2))

x_max = 1

d_lLR = function(x, df = delta_df) dchisq(x, df = df)

chisq_plot =
ggplot() +
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geom_function(fun = d_lLR) +
stat_function( fun = d_lLR, xlim = c(lLR, x_max), geom = "area", fill = "gray") +
geom_segment(aes(x = lLR, xend = lLR, y = 0, yend = d_lLR(lLR)), col = "red") +
xlim(0.0001,x_max) +
ylim(0,4) +
ylab("p(X=x)") +
xlab("log(likelihood ratio) statistic [x]") +
theme_classic()

chisq_plot |> print()

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
log(likelihood ratio) statistic [x]

p(
X

=
x)

Figure 2.5.: Chi-square distribution

Now we can get the p-value:
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pchisq(
q = 2*lLR,
df = delta_df,
lower = FALSE) |>
print()

#> [1] 0.6298

In practice you don’t have to do this by hand; there are functions to do it
for you:

# built in
library(lmtest)
lrtest(bw_lm2, bw_lm1)

#Df LogLik Df Chisq Pr(>Chisq)
5 -156.6 NA NA NA
4 -156.7 -1 0.2323 0.6298

2.5. Goodness of fit

2.5.1. AIC and BIC

When we use likelihood ratio tests, we are comparing how well different
models fit the data.

Likelihood ratio tests require “nested” models: one must be a special case
of the other.
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If we have non-nested models, we can instead use the Akaike Information
Criterion (AIC) or Bayesian Information Criterion (BIC):

• AIC = −2 ∗ ℓ( ̂𝜃) + 2 ∗ 𝑝
• BIC = −2 ∗ ℓ( ̂𝜃) + 𝑝 ∗ log(𝑛)

where ℓ is the log-likelihood of the data evaluated using the parameter esti-
mates ̂𝜃, 𝑝 is the number of estimated parameters in the model (including
𝜎̂2), and 𝑛 is the number of observations.

You can calculate these criteria using the logLik() function, or use the
built-in R functions:

2.5.1.1. AIC in R

-2 * logLik(bw_lm2) |> as.numeric() +
2*(length(coef(bw_lm2))+1) # sigma counts as a parameter here

#> [1] 323.2

AIC(bw_lm2)
#> [1] 323.2

2.5.1.2. BIC in R

-2 * logLik(bw_lm2) |> as.numeric() +
(length(coef(bw_lm2))+1) * log(nobs(bw_lm2))

#> [1] 329

BIC(bw_lm2)
#> [1] 329
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Large values of AIC and BIC are worse than small values. There are no
hypothesis tests or p-values associated with these criteria.

2.5.2. (Residual) Deviance

Let 𝑞 be the number of distinct covariate combinations in a data set.

bw.X.unique =
bw |>
count(sex, age)

n_unique.bw = nrow(bw.X.unique)

For example, in the birthweight data, there are 𝑞 = 12 unique patterns
(Table 2.14).

bw.X.unique

Table 2.14.: Unique covariate combinations in the birthweight data, with
replicate counts

sex age n
female 36 2
female 37 1
female 38 2
female 39 2
female 40 4
female 42 1
male 35 1
male 36 1
male 37 2
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Table 2.14.: Unique covariate combinations in the birthweight data, with
replicate counts

sex age n
male 38 3
male 40 4
male 41 1

Definition 2.1 (Replicates). If a given covariate pattern has more than
one observation in a dataset, those observations are called replicates.

Example 2.1 (Replicates in the birthweight data). In the birthweight
dataset, there are 2 replicates of the combination “female, age 36” (Ta-
ble 2.14).

Exercise 2.7 (Replicates in the birthweight data). Which covariate
pattern(s) in the birthweight data has the most replicates?

Solution 2.1 (Replicates in the birthweight data). Two covariate patterns
are tied for most replicates: males at age 40 weeks and females at age 40
weeks. 40 weeks is the usual length for human pregnancy (Polin, Fox, and
Abman (2011)), so this result makes sense.

62



2. Linear (Gaussian) Models

bw.X.unique |> dplyr::filter(n == max(n))

sex age n
female 40 4
male 40 4

2.5.2.1. Saturated models

The most complicated model we could fit would have one parameter (a
mean) for each covariate pattern, plus a variance parameter:

lm_max =
bw |>
mutate(age = factor(age)) |>
lm(

formula = weight ~ sex:age - 1,
data = _)

lm_max |>
parameters() |>
print_md()
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Table 2.16.: Saturated model for the birthweight data
Parameter Coefficient SE 95% CI t(12) p
sex (male) ×
age35

2925.00 187.92 (2515.55,
3334.45)

15.56 <
.001

sex (female) ×
age36

2570.50 132.88 (2280.98,
2860.02)

19.34 <
.001

sex (male) ×
age36

2625.00 187.92 (2215.55,
3034.45)

13.97 <
.001

sex (female) ×
age37

2539.00 187.92 (2129.55,
2948.45)

13.51 <
.001

sex (male) ×
age37

2737.50 132.88 (2447.98,
3027.02)

20.60 <
.001

sex (female) ×
age38

2872.50 132.88 (2582.98,
3162.02)

21.62 <
.001

sex (male) ×
age38

2982.00 108.50 (2745.60,
3218.40)

27.48 <
.001

sex (female) ×
age39

2846.00 132.88 (2556.48,
3135.52)

21.42 <
.001

sex (female) ×
age40

3152.25 93.96 (2947.52,
3356.98)

33.55 <
.001

sex (male) ×
age40

3256.25 93.96 (3051.52,
3460.98)

34.66 <
.001

sex (male) ×
age41

3292.00 187.92 (2882.55,
3701.45)

17.52 <
.001

sex (female) ×
age42

3210.00 187.92 (2800.55,
3619.45)

17.08 <
.001

We call this model the full, maximal, or saturated model for this
dataset.

We can calculate the log-likelihood of this model as usual:
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logLik(lm_max)
#> 'log Lik.' -151.4 (df=13)

We can compare this model to our other models using chi-square tests, as
usual:

lrtest(lm_max, bw_lm2)

#Df LogLik Df Chisq Pr(>Chisq)
13 -151.4 NA NA NA
5 -156.6 -8 10.36 0.241

The likelihood ratio statistic for this test is

𝜆 = 2 ∗ (ℓfull − ℓ) = 10.3554

where:

• ℓmax is the log-likelihood of the full model: -151.4016
• ℓ is the log-likelihood of our comparison model (two slopes, two

intercepts): -156.5793

This statistic is called the deviance or residual deviance for our two-
slopes and two-intercepts model; it tells us how much the likelihood of
that model deviates from the likelihood of the maximal model.

The corresponding p-value tells us whether there we have enough evidence
to detect that our two-slopes, two-intercepts model is a worse fit for the
data than the maximal model; in other words, it tells us if there’s evidence
that we missed any important patterns. (Remember, a nonsignificant p-
value could mean that we didn’t miss anything and a more complicated
model is unnecessary, or it could mean we just don’t have enough data to
tell the difference between these models.)
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2.5.3. Null Deviance

Similarly, the least complicated model we could fit would have only one
mean parameter, an intercept:

E[𝑌 |𝑋 = 𝑥] = 𝛽0

We can fit this model in R like so:

lm0 = lm(weight ~ 1, data = bw)

lm0 |> parameters() |> print_md()

Parameter Coefficient SE 95% CI t(23) p
(Intercept) 2967.67 57.58 (2848.56, 3086.77) 51.54 < .001

This model also has a likelihood:

logLik(lm0)
#> 'log Lik.' -169 (df=2)

And we can compare it to more complicated models using a likelihood
ratio test:

lrtest(bw_lm2, lm0)

#Df LogLik Df Chisq Pr(>Chisq)
5 -156.6 NA NA NA
2 -169.0 -3 24.75 0
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The likelihood ratio statistic for the test comparing the null model to the
maximal model is

𝜆 = 2 ∗ (ℓfull − ℓ0) = 35.1067
where:

• ℓ0 is the log-likelihood of the null model: -168.955
• ℓfull is the log-likelihood of the maximal model: -151.4016

In R, this test is:

lrtest(lm_max, lm0)

#Df LogLik Df Chisq Pr(>Chisq)
13 -151.4 NA NA NA
2 -169.0 -11 35.11 2e-04

This log-likelihood ratio statistic is called the null deviance. It tells us
whether we have enough data to detect a difference between the null and
full models.

2.6. Rescaling

2.6.1. Rescale age

bw =
bw |>
mutate(

`age - mean` = age - mean(age),
`age - 36wks` = age - 36
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)

lm1c = lm(weight ~ sex + `age - 36wks`, data = bw)

lm2c = lm(weight ~ sex + `age - 36wks` + sex:`age - 36wks`, data = bw)

parameters(lm2c, ci_method = "wald") |> print_md()

Parameter Coefficient SE 95% CI t(20) p
(Intercept) 2552.73 97.59 (2349.16,

2756.30)
26.16 <

.001
sex (male) 209.97 129.75 (-60.68,

480.63)
1.62 0.121

age - 36wks 130.40 30.00 (67.82, 192.98) 4.35 <
.001

sex (male) × age -
36wks

-18.42 41.76 (-105.52,
68.68)

-0.44 0.664

Compare with what we got without rescaling:

parameters(bw_lm2, ci_method = "wald") |> print_md()

Parameter Coefficient SE 95% CI t(20) p
(Intercept) -2141.67 1163.60 (-4568.90,

285.56)
-1.84 0.081

sex (male) 872.99 1611.33 (-2488.18,
4234.17)

0.54 0.594

age 130.40 30.00 (67.82, 192.98) 4.35 <
.001
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Parameter Coefficient SE 95% CI t(20) p
sex (male) ×
age

-18.42 41.76 (-105.52, 68.68) -0.44 0.664

2.7. Prediction

2.7.1. Prediction for linear models

Definition 2.2 (Predicted value). In a regression model p(𝑦|𝑥), the pre-
dicted value of 𝑦 given 𝑥 is the estimated mean of 𝑌 given 𝑋:

̂𝑦 def= Ê [𝑌 |𝑋 = 𝑥]

For linear models, the predicted value can be straightforwardly calculated
by multiplying each predictor value 𝑥𝑗 by its corresponding coefficient 𝛽𝑗
and adding up the results:

̂𝑌 = ̂𝐸[𝑌 |𝑋 = 𝑥]
= 𝑥′ ̂𝛽
= ̂𝛽0 ⋅ 1 + ̂𝛽1𝑥1 + ... + ̂𝛽𝑝𝑥𝑝

2.7.2. Example: prediction for the birthweight data
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X = c(1,1,40)
sum(X * coef(bw_lm1))
#> [1] 3225

R has built-in functions for prediction:

x = tibble(age = 40, sex = "male")
bw_lm1 |> predict(newdata = x)
#> 1
#> 3225

If you don’t provide newdata, R will use the covariate values from the
original dataset:

predict(bw_lm1)
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#> 3225 3062 2984 2579 3225 3062 2621 2821 2742 3304 2863 2942 3346 3062 3225 2700
#> 17 18 19 20 21 22 23 24
#> 2863 2579 2984 2821 3225 2942 2984 3062

These special predictions are called the fitted values of the dataset:

Definition 2.3. For a given dataset ( ̃𝑌 , 𝑋̃) and corresponding fitted
model p ̂𝛽(𝑦|𝑥), the fitted value of 𝑦𝑖 is the predicted value of 𝑦 when
𝑋 = 𝑥𝑖 using the estimate parameters ̂𝛽.

R has an extra function to get these values:

fitted(bw_lm1)
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#> 3225 3062 2984 2579 3225 3062 2621 2821 2742 3304 2863 2942 3346 3062 3225 2700
#> 17 18 19 20 21 22 23 24
#> 2863 2579 2984 2821 3225 2942 2984 3062
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2.7.3. Quantifying uncertainty in predictions

bw_lm1 |>
predict(

newdata = x,
se.fit = TRUE)

#> $fit
#> 1
#> 3225
#>
#> $se.fit
#> [1] 61.46
#>
#> $df
#> [1] 21
#>
#> $residual.scale
#> [1] 177.1

This is a list(); you can extract the elements with $ or magrittr::use_series():

bw_lm1 |>
predict(

newdata = x,
se.fit = TRUE) |>

use_series(se.fit)
#> [1] 61.46

You can get confidence intervals for 𝔼 [𝑌 |𝑋 = 𝑥]:
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bw_lm1 |> predict(
newdata = x,
interval = "confidence")

fit lwr upr
3225 3098 3353

You can also get prediction intervals for the value of an individual
outcome 𝑌 :

bw_lm1 |>
predict(newdata = x, interval = "predict")

fit lwr upr
3225 2836 3615

The warning from the last command is: “predictions on current data refer
to future responses” (since you already know what happened to the current
data, and thus don’t need to predict it).

See ?predict.lm for more.
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2.8. Diagnostics

Tip

This section is adapted from Dobson and Barnett (2018, secs. 6.2–
6.3) and Dunn, Smyth, et al. (2018) Chapter 3a.

ahttps://link.springer.com/chapter/10.1007/978-1-4419-0118-7_3

2.8.1. Assumptions in linear regression models

𝑌 |𝑋̃ ∼� 𝑁(𝑋̃′𝛽, 𝜎2)

1. Normality: The distribution conditional on a given 𝑋 value is normal

2. Correct Functional Form: The conditional means have the structure

𝐸[𝑌 |𝑋̃ = ̃𝑥] = ̃𝑥′𝛽
3. Homoskedasticity: The variance 𝜎2 is constant (with respect to ̃𝑥)

4. Independence: The observations are statistically independent

2.8.2. Direct visualization

The most direct way to examine the fit of a model is to compare it to the
raw observed data.
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bw =
bw |>
mutate(

predlm2 = predict(bw_lm2)
) |>
arrange(sex, age)

plot1_interact =
plot1 %+% bw +
geom_line(aes(y = predlm2))

print(plot1_interact)

2400

2700

3000

3300

36 38 40 42
Gestational age (weeks)

B
ir

th
w

ei
gh

t (
gr

am
s)

sex female male

Figure 2.6.: Birthweight model with interaction term
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It’s not easy to assess these assumptions from this model. If there are
multiple continuous covariates, it becomes even harder to visualize the
raw data.

2.8.3. Residuals

Maybe we can transform the data and model in some way to make it easier
to inspect.

Definition 2.4 (Residual noise). The residual noise in a probabilistic
model 𝑝(𝑌 ) is the difference between an observed value 𝑦 and its distribu-
tional mean:

𝜖(𝑦) def= 𝑦 − 𝔼 [𝑌 ] (2.7)

We use the same notation for residual noise that we used for errors. 𝔼 [𝑌 ]
can be viewed as an estimate of 𝑌 , before 𝑦 is observed. Conversely, each
observation 𝑦 can be viewed as an estimate of 𝔼 [𝑌 ] (albeit an imprecise
one, individually, since 𝑛 = 1).

We can rearrange Equation 2.7 to view 𝑦 as the sum of its mean plus the
residual noise:

𝑦 = 𝔼 [𝑌 ] + 𝜖𝑦

Theorem 2.1 (Residuals in Gaussian models). If 𝑌 has a Gaussian dis-
tribution, then 𝜖𝑌 also has a Gaussian distribution, and vice versa.

Proof. Left to the reader.
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Definition 2.5 (Residual errors of a fitted model value). The residual
of a fitted value ̂𝑦 (shorthand: “residual”) is its error:

𝑒( ̂𝑦) def= 𝜖 ( ̂𝑦)
= 𝑦 − ̂𝑦

𝑒( ̂𝑦) can be seen as the maximum likelihood estimate of the residual
noise:

𝑒( ̂𝑦) = 𝑦 − ̂𝑦
= ̂𝜖𝑀𝐿

2.8.3.1. General characteristics of residuals

Theorem 2.2. For unbiased estimators ̂𝜃:

𝔼 [𝑒(𝑦)] = 0 (2.8)

Var (𝑒(𝑦)) ≈ 𝜎2 (2.9)

Proof.

Equation 2.8:

𝔼 [𝑒(𝑦)] = 𝔼 [𝑦 − ̂𝑦]
= 𝔼 [𝑦] − 𝔼 [ ̂𝑦]
= 𝔼 [𝑦] − 𝔼 [𝑦]
= 0
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Equation 2.9:

Var (𝑒(𝑦)) = Var (𝑦 − ̂𝑦)
= Var (𝑦) + Var ( ̂𝑦) − 2Cov (𝑦, ̂𝑦)
≈̇Var (𝑦) + 0 − 2 ⋅ 0
= Var (𝑦)
= 𝜎2

2.8.3.2. Characteristics of residuals in Gaussian models

With enough data and a correct model, the residuals will be approximately
Guassian distributed, with variance 𝜎2, which we can estimate using 𝜎̂2:
that is:

𝑒𝑖 ∼iid 𝑁(0, 𝜎̂2)

Example 2.2 (residuals in birthweight data). R provides a function for
residuals:

resid(bw_lm2)
#> 1 2 3 4 5 6 7 8 9 10
#> 176.27 -140.73 -144.13 -59.53 177.47 -126.93 -68.93 242.67 -139.33 51.67
#> 11 12 13 14 15 16 17 18 19 20
#> 156.67 -125.13 274.28 -137.71 -27.69 -246.69 -191.67 189.33 -11.67 -242.64
#> 21 22 23 24
#> -47.64 262.36 210.36 -30.62
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Exercise 2.8. Check R’s output by computing the residuals directly.

Solution.

bw$weight - fitted(bw_lm2)
#> 1 2 3 4 5 6 7 8 9 10
#> 176.27 -140.73 -144.13 -59.53 177.47 -126.93 -68.93 242.67 -139.33 51.67
#> 11 12 13 14 15 16 17 18 19 20
#> 156.67 -125.13 274.28 -137.71 -27.69 -246.69 -191.67 189.33 -11.67 -242.64
#> 21 22 23 24
#> -47.64 262.36 210.36 -30.62

This matches R’s output!

2.8.3.3. Graph the residuals

bw = bw |>
mutate(resids_intxn =

weight - fitted(bw_lm2))

plot_bw_resid =
bw |>
ggplot(aes(

x = age,
y = resids_intxn,
linetype = sex,
shape = sex,
col = sex)) +

theme_bw() +
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xlab("Gestational age (weeks)") +
ylab("residuals (grams)") +
theme(legend.position = "bottom") +
# expand_limits(y = 0, x = 0) +
geom_point(alpha = .7)

print(plot_bw_resid + facet_wrap(~ sex))
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Figure 2.7.: Residuals of interaction model for birthweight data

Definition 2.6 (Standardized residuals).

𝑟𝑖 = 𝑒𝑖
𝑆𝐷(𝑒𝑖)
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Hence, with enough data and a correct model, the standardized residuals
will be approximately standard Gaussian; that is,

𝑟𝑖 ∼iid 𝑁(0, 1)

2.8.4. Marginal distributions of residuals

To look for problems with our model, we can check whether the residuals
𝑒𝑖 and standardized residuals 𝑟𝑖 look like they have the distributions that
they are supposed to have, according to the model.

2.8.4.1. Standardized residuals in R

rstandard(bw_lm2)
#> 1 2 3 4 5 6 7 8
#> 1.15982 -0.92601 -0.87479 -0.34723 1.03507 -0.73473 -0.39901 1.43752
#> 9 10 11 12 13 14 15 16
#> -0.82539 0.30606 0.92807 -0.87616 1.91428 -0.86559 -0.16430 -1.46376
#> 17 18 19 20 21 22 23 24
#> -1.11016 1.09658 -0.06761 -1.46159 -0.28696 1.58040 1.26717 -0.19805
resid(bw_lm2)/sigma(bw_lm2)
#> 1 2 3 4 5 6 7 8
#> 0.97593 -0.77920 -0.79802 -0.32962 0.98258 -0.70279 -0.38166 1.34357
#> 9 10 11 12 13 14 15 16
#> -0.77144 0.28606 0.86741 -0.69282 1.51858 -0.76244 -0.15331 -1.36584
#> 17 18 19 20 21 22 23 24
#> -1.06123 1.04825 -0.06463 -1.34341 -0.26376 1.45262 1.16471 -0.16954
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These are not quite the same, because R is doing something more compli-
cated and precise to get the standard errors. Let’s not worry about those
details for now; the difference is pretty small in this case:

rstandard_compare_plot =
tibble(

x = resid(bw_lm2)/sigma(bw_lm2),
y = rstandard(bw_lm2)) |>

ggplot(aes(x = x, y = y)) +
geom_point() +
theme_bw() +
coord_equal() +
xlab("resid(bw_lm2)/sigma(bw_lm2)") +
ylab("rstandard(bw_lm2)") +
geom_abline(

aes(
intercept = 0,
slope = 1,
col = "x=y")) +

labs(colour="") +
scale_colour_manual(values="red")

print(rstandard_compare_plot)
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Let’s add these residuals to the tibble of our dataset:

bw =
bw |>
mutate(

fitted_lm2 = fitted(bw_lm2),

resid_lm2 = resid(bw_lm2),
# resid_lm2 = weight - fitted_lm2,

std_resid_lm2 = rstandard(bw_lm2),
# std_resid_lm2 = resid_lm2 / sigma(bw_lm2)

)
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bw |>
select(

sex,
age,
weight,
fitted_lm2,
resid_lm2,
std_resid_lm2

)

sex age weight fitted_lm2 resid_lm2 std_resid_lm2
female 36 2729 2553 176.27 1.1598
female 36 2412 2553 -140.73 -0.9260
female 37 2539 2683 -144.13 -0.8748
female 38 2754 2814 -59.53 -0.3472
female 38 2991 2814 177.47 1.0351
female 39 2817 2944 -126.93 -0.7347
female 39 2875 2944 -68.93 -0.3990
female 40 3317 3074 242.67 1.4375
female 40 2935 3074 -139.33 -0.8254
female 40 3126 3074 51.67 0.3061
female 40 3231 3074 156.67 0.9281
female 42 3210 3335 -125.13 -0.8762
male 35 2925 2651 274.28 1.9143
male 36 2625 2763 -137.71 -0.8656
male 37 2847 2875 -27.69 -0.1643
male 37 2628 2875 -246.69 -1.4638
male 38 2795 2987 -191.67 -1.1102
male 38 3176 2987 189.33 1.0966
male 38 2975 2987 -11.67 -0.0676
male 40 2968 3211 -242.64 -1.4616
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sex age weight fitted_lm2 resid_lm2 std_resid_lm2
male 40 3163 3211 -47.64 -0.2870
male 40 3473 3211 262.36 1.5804
male 40 3421 3211 210.36 1.2672
male 41 3292 3323 -30.62 -0.1981

Now let’s build histograms:

resid_marginal_hist =
bw |>
ggplot(aes(x = resid_lm2)) +
geom_histogram()

print(resid_marginal_hist)
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Figure 2.8.: Marginal distribution of (nonstandardized) residuals

Hard to tell with this small amount of data, but I’m a bit concerned that
the histogram doesn’t show a bell-curve shape.

std_resid_marginal_hist =
bw |>
ggplot(aes(x = std_resid_lm2)) +
geom_histogram()

print(std_resid_marginal_hist)
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Figure 2.9.: Marginal distribution of standardized residuals

This looks similar, although the scale of the x-axis got narrower, because
we divided by 𝜎̂ (roughly speaking).

Still hard to tell if the distribution is Gaussian.

2.8.5. QQ plot of standardized residuals

Another way to assess normality is the QQ plot of the standardized resid-
uals versus normal quantiles:
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library(ggfortify)
# needed to make ggplot2::autoplot() work for `lm` objects

qqplot_lm2_auto =
bw_lm2 |>
autoplot(

which = 2, # options are 1:6; can do multiple at once
ncol = 1) +

theme_classic()

print(qqplot_lm2_auto)
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If the Gaussian model were correct, these points should follow the dotted
line.

Fig 2.4 panel (c) in Dobson and Barnett (2018) is a little different; they
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didn’t specify how they produced it, but other statistical analysis systems
do things differently from R.

See also Dunn, Smyth, et al. (2018) §3.5.44.

2.8.5.1. QQ plot - how it’s built

Let’s construct it by hand:

bw = bw |>
mutate(

p = (rank(std_resid_lm2) - 1/2)/n(), # "Blom's method"
expected_quantiles_lm2 = qnorm(p)

)

qqplot_lm2 =
bw |>
ggplot(

aes(
x = expected_quantiles_lm2,
y = std_resid_lm2,
col = sex,
shape = sex)

) +
geom_point() +
theme_classic() +
theme(legend.position='none') + # removing the plot legend
ggtitle("Normal Q-Q") +

4https://link.springer.com/chapter/10.1007/978-1-4419-0118-7_3#Sec14:~:
text=3.5.4%20Q%E2%80%93Q%20Plots%20and%20Normality
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xlab("Theoretical Quantiles") +
ylab("Standardized residuals")

# find the expected line:

ps <- c(.25, .75) # reference probabilities
a <- quantile(rstandard(bw_lm2), ps) # empirical quantiles
b <- qnorm(ps) # theoretical quantiles

qq_slope = diff(a)/diff(b)
qq_intcpt = a[1] - b[1] * qq_slope

qqplot_lm2 =
qqplot_lm2 +
geom_abline(slope = qq_slope, intercept = qq_intcpt)

print(qqplot_lm2)
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2.8.6. Conditional distributions of residuals

If our Gaussian linear regression model is correct, the residuals 𝑒𝑖 and
standardized residuals 𝑟𝑖 should have:

• an approximately Gaussian distribution, with:
• a mean of 0
• a constant variance

This should be true for every value of 𝑥.
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If we didn’t correctly guess the functional form of linear component of the
mean,

E[𝑌 |𝑋 = 𝑥] = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝

Then the the residuals might have nonzero mean.

Regardless of whether we guessed the mean function correctly, ther the
variance of the residuals might differ between values of 𝑥.

2.8.6.1. Residuals versus fitted values

To look for these issues, we can plot the residuals 𝑒𝑖 against the fitted
values ̂𝑦𝑖 (Figure 2.10).

autoplot(bw_lm2, which = 1, ncol = 1) |> print()
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Figure 2.10.: birthweight model (Equation 2.2): residuals versus fitted
values

If the model is correct, the blue line should stay flat and close to 0, and
the cloud of dots should have the same vertical spread regardless of the
fitted value.

If not, we probably need to change the functional form of linear component
of the mean,

E[𝑌 |𝑋 = 𝑥] = 𝛽0 + 𝛽1𝑋1 + ... + 𝛽𝑝𝑋𝑝

2.8.6.2. Example: PLOS Medicine title length data

(Adapted from Dobson and Barnett (2018), §6.7.1)

92



2. Linear (Gaussian) Models

data(PLOS, package = "dobson")
library(ggplot2)
fig1 =
PLOS |>
ggplot(

aes(x = authors,
y = nchar)

) +
geom_point() +
theme(legend.position = "bottom") +
labs(col = "") +
guides(col=guide_legend(ncol=3))

fig1
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Figure 2.11.: Number of authors versus title length in PLOS Medicine ar-
ticles

Linear fit

lm_PLOS_linear = lm(
formula = nchar ~ authors,
data = PLOS)

fig2 = fig1 +
geom_smooth(

method = "lm",
fullrange = TRUE,
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aes(col = "lm(y ~ x)"))
fig2

library(ggfortify)
autoplot(lm_PLOS_linear, which = 1, ncol = 1)
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Figure 2.12.: Number of authors versus title length in PLOS Medicine,
with linear model fit

Quadratic fit

lm_PLOS_quad = lm(
formula = nchar ~ authors + I(authors^2),
data = PLOS)

fig3 =
fig2 +

geom_smooth(
method = "lm",

95



2. Linear (Gaussian) Models

fullrange = TRUE,
formula = y ~ x + I(x ^ 2),
aes(col = "lm(y ~ x + I(x^2))")

)
fig3

autoplot(lm_PLOS_quad, which = 1, ncol = 1)
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(b) Residuals vs fitted

Figure 2.13.: Number of authors versus title length in PLOS Medicine,
with quadratic model fit

Linear versus quadratic fits

library(ggfortify)
autoplot(lm_PLOS_linear, which = 1, ncol = 1)

autoplot(lm_PLOS_quad, which = 1, ncol = 1)
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(a) Linear
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(b) Quadratic

Figure 2.14.: Residuals versus fitted plot for linear and quadratic fits to
PLOS data

Cubic fit

lm_PLOS_cub = lm(
formula = nchar ~ authors + I(authors^2) + I(authors^3),
data = PLOS)

fig4 =
fig3 +

geom_smooth(
method = "lm",
fullrange = TRUE,
formula = y ~ x + I(x ^ 2) + I(x ^ 3),
aes(col = "lm(y ~ x + I(x^2) + I(x ^ 3))")

)
fig4

autoplot(lm_PLOS_cub, which = 1, ncol = 1)
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Figure 2.15.: Number of authors versus title length in PLOS Medicine,
with cubic model fit

Logarithmic fit

lm_PLOS_log = lm(nchar ~ log(authors), data = PLOS)

fig5 = fig4 +
geom_smooth(

method = "lm",
fullrange = TRUE,
formula = y ~ log(x),
aes(col = "lm(y ~ log(x))")

)
fig5

autoplot(lm_PLOS_log, which = 1, ncol = 1)
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Figure 2.16.: logarithmic fit

Model selection

anova(lm_PLOS_linear, lm_PLOS_quad)

Table 2.26.: linear vs quadratic
Res.Df RSS Df Sum of Sq F Pr(>F)

876 947502 NA NA NA NA
875 880950 1 66552 66.1 0

anova(lm_PLOS_quad, lm_PLOS_cub)
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Table 2.27.: quadratic vs cubic
Res.Df RSS Df Sum of Sq F Pr(>F)

875 880950 NA NA NA NA
874 865933 1 15018 15.16 1e-04

AIC/BIC

AIC(lm_PLOS_quad)
#> [1] 8568
AIC(lm_PLOS_cub)
#> [1] 8555

AIC(lm_PLOS_cub)
#> [1] 8555
AIC(lm_PLOS_log)
#> [1] 8544

BIC(lm_PLOS_cub)
#> [1] 8578
BIC(lm_PLOS_log)
#> [1] 8558

Extrapolation is dangerous
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fig_all = fig5 +
xlim(0, 60)
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Figure 2.17.: Number of authors versus title length in PLOS Medicine

2.8.6.3. Scale-location plot

We can also plot the square roots of the absolute values of the standardized
residuals against the fitted values (Figure 2.18).
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autoplot(bw_lm2, which = 3, ncol = 1) |> print()
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Figure 2.18.: Scale-location plot of birthweight data

Here, the blue line doesn’t need to be near 0, but it should be flat. If
not, the residual variance 𝜎2 might not be constant, and we might need
to transform our outcome 𝑌 (or use a model that allows non-constant
variance).

2.8.6.4. Residuals versus leverage

We can also plot our standardized residuals against “leverage”, which
roughly speaking is a measure of how unusual each 𝑥𝑖 value is. Very
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unusual 𝑥𝑖 values can have extreme effects on the model fit, so we might
want to remove those observations as outliers, particularly if they have
large residuals.

autoplot(bw_lm2, which = 5, ncol = 1) |> print()
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Figure 2.19.: birthweight model with interactions (Equation 2.2): resid-
uals versus leverage

The blue line should be relatively flat and close to 0 here.
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2.8.7. Diagnostics constructed by hand

bw =
bw |>
mutate(

predlm2 = predict(bw_lm2),
residlm2 = weight - predlm2,
std_resid = residlm2 / sigma(bw_lm2),
# std_resid_builtin = rstandard(bw_lm2), # uses leverage
sqrt_abs_std_resid = std_resid |> abs() |> sqrt()

)

Residuals vs fitted

resid_vs_fit = bw |>
ggplot(

aes(x = predlm2, y = residlm2, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)

print(resid_vs_fit)
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Standardized residuals vs fitted

bw |>
ggplot(

aes(x = predlm2, y = std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)
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Standardized residuals vs gestational age

bw |>
ggplot(

aes(x = age, y = std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)
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sqrt(abs(rstandard())) vs fitted

Compare with autoplot(bw_lm2, 3)

bw |>
ggplot(

aes(x = predlm2, y = sqrt_abs_std_resid, col = sex, shape = sex)
) +
geom_point() +
theme_classic() +
geom_hline(yintercept = 0)
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2.9. Model selection

(adapted from Dobson and Barnett (2018) §6.3.3; for more information on
prediction, see James et al. (2013) and Harrell (2015)).

If we have a lot of covariates in our dataset, we might want to choose a
small subset to use in our model.

There are a few possible metrics to consider for choosing a “best” model.

2.9.1. Mean squared error

We might want to minimize the mean squared error, E[(𝑦 − ̂𝑦)2], for
new observations that weren’t in our data set when we fit the model.
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Unfortunately,
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

gives a biased estimate of E[(𝑦 − ̂𝑦)2] for new data. If we want an unbiased
estimate, we will have to be clever.

2.9.1.1. Cross-validation

data("carbohydrate", package = "dobson")
library(cvTools)
full_model <- lm(carbohydrate ~ ., data = carbohydrate)
cv_full =
full_model |> cvFit(

data = carbohydrate, K = 5, R = 10,
y = carbohydrate$carbohydrate)

reduced_model = update(full_model,
formula = ~ . - age)

cv_reduced =
reduced_model |> cvFit(

data = carbohydrate, K = 5, R = 10,
y = carbohydrate$carbohydrate)
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results_reduced =
tibble(

model = "wgt+protein",
errs = cv_reduced$reps[])

results_full =
tibble(model = "wgt+age+protein",

errs = cv_full$reps[])

cv_results =
bind_rows(results_reduced, results_full)

cv_results |>
ggplot(aes(y = model, x = errs)) +
geom_boxplot()

wgt+age+protein

wgt+protein

6.0 6.5 7.0 7.5 8.0
errs

m
od

el
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comparing metrics

compare_results = tribble(
~ model, ~ cvRMSE, ~ r.squared, ~adj.r.squared, ~ trainRMSE, ~loglik,
"full", cv_full$cv, summary(full_model)$r.squared, summary(full_model)$adj.r.squared, sigma(full_model), logLik(full_model) |> as.numeric(),
"reduced", cv_reduced$cv, summary(reduced_model)$r.squared, summary(reduced_model)$adj.r.squared, sigma(reduced_model), logLik(reduced_model) |> as.numeric())

compare_results

model cvRMSE r.squared adj.r.squared trainRMSE loglik
full 6.932 0.4805 0.3831 5.956 -61.84
reduced 6.693 0.4454 0.3802 5.971 -62.49

anova(full_model, reduced_model)

Res.Df RSS Df Sum of Sq F Pr(>F)
16 567.7 NA NA NA NA
17 606.0 -1 -38.36 1.081 0.3139

2.9.1.2. stepwise regression
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library(olsrr)
olsrr:::ols_step_both_aic(full_model)
#>
#>
#> Stepwise Summary
#> -------------------------------------------------------------------------
#> Step Variable AIC SBC SBIC R2 Adj. R2
#> -------------------------------------------------------------------------
#> 0 Base Model 140.773 142.764 83.068 0.00000 0.00000
#> 1 protein (+) 137.950 140.937 80.438 0.21427 0.17061
#> 2 weight (+) 132.981 136.964 77.191 0.44544 0.38020
#> -------------------------------------------------------------------------
#>
#> Final Model Output
#> ------------------
#>
#> Model Summary
#> ---------------------------------------------------------------
#> R 0.667 RMSE 5.505
#> R-Squared 0.445 MSE 35.648
#> Adj. R-Squared 0.380 Coef. Var 15.879
#> Pred R-Squared 0.236 AIC 132.981
#> MAE 4.593 SBC 136.964
#> ---------------------------------------------------------------
#> RMSE: Root Mean Square Error
#> MSE: Mean Square Error
#> MAE: Mean Absolute Error
#> AIC: Akaike Information Criteria
#> SBC: Schwarz Bayesian Criteria
#>
#> ANOVA
#> -------------------------------------------------------------------
#> Sum of
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#> Squares DF Mean Square F Sig.
#> -------------------------------------------------------------------
#> Regression 486.778 2 243.389 6.827 0.0067
#> Residual 606.022 17 35.648
#> Total 1092.800 19
#> -------------------------------------------------------------------
#>
#> Parameter Estimates
#> ----------------------------------------------------------------------------------------
#> model Beta Std. Error Std. Beta t Sig lower upper
#> ----------------------------------------------------------------------------------------
#> (Intercept) 33.130 12.572 2.635 0.017 6.607 59.654
#> protein 1.824 0.623 0.534 2.927 0.009 0.509 3.139
#> weight -0.222 0.083 -0.486 -2.662 0.016 -0.397 -0.046
#> ----------------------------------------------------------------------------------------

2.9.1.3. Lasso

arg 𝑚𝑖𝑛𝜃ℓ(𝜃) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

library(glmnet)
y = carbohydrate$carbohydrate
x = carbohydrate |>
select(age, weight, protein) |>
as.matrix()

fit = glmnet(x,y)
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autoplot(fit, xvar = 'lambda')
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Figure 2.20.: Lasso selection

cvfit = cv.glmnet(x,y)
plot(cvfit)
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coef(cvfit, s = "lambda.1se")
#> 4 x 1 sparse Matrix of class "dgCMatrix"
#> s1
#> (Intercept) 34.4241
#> age .
#> weight -0.0662
#> protein 0.6607
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2.10. Categorical covariates with more than two
levels

2.10.1. Example: birthweight

In the birthweight example, the variable sex had only two observed val-
ues:

unique(bw$sex)
#> [1] female male
#> Levels: female male

If there are more than two observed values, we can’t just use a single
variable with 0s and 1s.

2.10.2.

For example, Table 2.30 shows the (in)famous5 iris data (Anderson
(1935)), and Table 2.31 provides summary statistics. The data include
three species: “setosa”, “versicolor”, and “virginica”.

head(iris)

Table 2.30.: The iris data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa

5https://www.meganstodel.com/posts/no-to-iris/
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Table 2.30.: The iris data
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

library(table1)
table1(
x = ~ . | Species,
data = iris,
overall = FALSE

)

If we want to model Sepal.Length by species, we could create a variable 𝑋
that represents “setosa” as 𝑋 = 1, “virginica” as 𝑋 = 2, and “versicolor”
as 𝑋 = 3.

data(iris) # this step is not always necessary, but ensures you're starting
# from the original version of a dataset stored in a loaded package

iris =
iris |>
tibble() |>
mutate(

X = case_when(
Species == "setosa" ~ 1,
Species == "virginica" ~ 2,
Species == "versicolor" ~ 3

117



2. Linear (Gaussian) Models

Table 2.31.: Summary statistics for the iris data

  setosa versicolor virginica
(N=50) (N=50) (N=50)

Sepal.Length
Mean (SD) 5.01 (0.352) 5.94 (0.516) 6.59 (0.636)
Median [Min, Max] 5.00 [4.30, 5.80] 5.90 [4.90, 7.00] 6.50 [4.90, 7.90]

Sepal.Width
Mean (SD) 3.43 (0.379) 2.77 (0.314) 2.97 (0.322)
Median [Min, Max] 3.40 [2.30, 4.40] 2.80 [2.00, 3.40] 3.00 [2.20, 3.80]

Petal.Length
Mean (SD) 1.46 (0.174) 4.26 (0.470) 5.55 (0.552)
Median [Min, Max] 1.50 [1.00, 1.90] 4.35 [3.00, 5.10] 5.55 [4.50, 6.90]

Petal.Width
Mean (SD) 0.246 (0.105) 1.33 (0.198) 2.03 (0.275)
Median [Min, Max] 0.200 [0.100, 0.600] 1.30 [1.00, 1.80] 2.00 [1.40, 2.50]
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)
)

iris |>
distinct(Species, X)

Table 2.32.: iris data with numeric coding of species
Species X
setosa 1
versicolor 3
virginica 2

Then we could fit a model like:

iris_lm1 = lm(Sepal.Length ~ X, data = iris)
iris_lm1 |> parameters() |> print_md()

Table 2.33.: Model of iris data with numeric coding of Species
Parameter Coefficient SE 95% CI t(148) p
(Intercept) 4.91 0.16 (4.60, 5.23) 30.83 < .001
X 0.47 0.07 (0.32, 0.61) 6.30 < .001

2.10.3. Let’s see how that model looks:

iris_plot1 = iris |>
ggplot(
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aes(
x = X,
y = Sepal.Length)

) +
geom_point(alpha = .1) +
geom_abline(

intercept = coef(iris_lm1)[1],
slope = coef(iris_lm1)[2]) +

theme_bw(base_size = 18)
print(iris_plot1)
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Figure 2.21.: Model of iris data with numeric coding of Species

We have forced the model to use a straight line for the three estimated
means. Maybe not a good idea?
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2.10.4. Let’s see what R does with categorical variables by
default:

iris_lm2 = lm(Sepal.Length ~ Species, data = iris)
iris_lm2 |> parameters() |> print_md()

Table 2.34.: Model of iris data with Species as a categorical variable
Parameter Coefficient SE 95% CI t(147) p
(Intercept) 5.01 0.07 (4.86, 5.15) 68.76 < .001
Species
(versicolor)

0.93 0.10 (0.73, 1.13) 9.03 < .001

Species (virginica) 1.58 0.10 (1.38, 1.79) 15.37 < .001

2.10.5. Re-parametrize with no intercept

If you don’t want the default and offset option, you can use “-1” like we’ve
seen previously:

iris.lm2b = lm(Sepal.Length ~ Species - 1, data = iris)
iris.lm2b |> parameters() |> print_md()

Parameter Coefficient SE 95% CI t(147) p
Species (setosa) 5.01 0.07 (4.86, 5.15) 68.76 < .001
Species
(versicolor)

5.94 0.07 (5.79, 6.08) 81.54 < .001

Species (virginica) 6.59 0.07 (6.44, 6.73) 90.49 < .001
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2.10.6. Let’s see what these new models look like:

iris_plot2 =
iris |>
mutate(

predlm2 = predict(iris_lm2)) |>
arrange(X) |>
ggplot(aes(x = X, y = Sepal.Length)) +
geom_point(alpha = .1) +
geom_line(aes(y = predlm2), col = "red") +
geom_abline(

intercept = coef(iris_lm1)[1],
slope = coef(iris_lm1)[2]) +

theme_bw(base_size = 18)

print(iris_plot2)
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Figure 2.22.

2.10.7. Let’s see how R did that:

formula(iris_lm2)
#> Sepal.Length ~ Species
model.matrix(iris_lm2) |> as_tibble() |> unique()

(Intercept) Speciesversicolor Speciesvirginica
1 0 0
1 1 0
1 0 1
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This is called a “corner point parametrization”.

formula(iris.lm2b)
#> Sepal.Length ~ Species - 1
model.matrix(iris.lm2b) |> as_tibble() |> unique()

Speciessetosa Speciesversicolor Speciesvirginica
1 0 0
0 1 0
0 0 1

This can be called a “group point parametrization”.

There are more options; see Dobson and Barnett (2018) §6.4.1 and the
codingMatrices package6 vignette7 (Venables (2023)).

2.11. Ordinal covariates

(c.f. Dobson and Barnett (2018) §2.4.4)

We can create ordinal variables in R using the ordered() function8.

Example 2.3.

6https://CRAN.R-project.org/package=codingMatrices
7https://cran.r-project.org/web/packages/codingMatrices/vignettes/codingMatrices.

pdf
8or equivalently, factor(ordered = TRUE)
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url = paste0(
"https://regression.ucsf.edu/sites/g/files/tkssra6706/",
"f/wysiwyg/home/data/hersdata.dta")

library(haven)
hers = read_dta(url)

hers |> head()

Table 2.38.: HERS dataset
HTageracethnonwhitesmokingdrinkanyexercisephysactglobratpoorfairmedcondhtnmedsstatinsdiabetesdmpillsinsulinweightBMIwaistWHRglucoseweight1BMI1waist1WHR1glucose1tcholLDLHDLTGtchol1LDL1HDL1TG1SBPDBPage10
0 702 1 0 0 0 5 3 0 0 1 1 0 0 0 73.823.6996.00.9328473.623.6393.00.91294189122.45273201137.64877138787.0
0 622 1 0 0 0 1 3 0 1 1 0 0 0 0 70.928.6293.00.96411173.428.8995.00.96478307241.644107216150.64887118706.2
1 691 0 0 0 0 3 3 0 0 1 0 1 0 0 102.042.51110.20.78211496.140.73103.00.77498254166.257154254156.066160134786.9
0 641 0 1 1 0 1 3 0 1 1 0 0 0 0 64.424.3987.00.8779458.622.5277.00.80293204116.256159207122.657137152726.4
0 651 0 0 0 0 2 3 0 0 0 0 0 0 0 57.921.9077.00.79410158.922.2876.50.75792214150.642107235172.235139175956.5
1 682 1 0 1 0 3 3 0 0 0 0 0 0 0 60.929.0596.01.00011657.727.5286.00.910115212137.852111202126.653112174986.8

# C(contr = codingMatrices::contr.diff)
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Logistic regression and variations

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
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library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
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pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9

Acknowledgements
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3.1. Introduction

3.1.1. What is logistic regression?

Logistic regression is a framework for modeling binary outcomes, con-
ditional on one or more predictors (a.k.a. covariates).

Exercise 3.1 (Examples of binary outcomes). What are some examples
of binary outcomes in the health sciences?

Solution. Examples of binary outcomes include:

1https://dmrocke.ucdavis.edu/
2https://dmrocke.ucdavis.edu/Class/EPI204-Spring-2021/EPI204-Spring-2021.html
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• exposure (exposed vs unexposed)
• disease (diseased vs healthy)
• recovery (recovered vs unrecovered)
• relapse (relapse vs remission)
• return to hospital (returned vs not)
• vital status (dead vs alive)

Logistic regression uses the Bernoulli distribution to model the outcome
variable, conditional on one or more covariates.

Exercise 3.2. Write down a mathematical definition of the Bernoulli
distribution.

Solution. The Bernoulli distribution family for a random variable 𝑋 is
defined as:

Pr(𝑋 = 𝑥) = 𝟙𝑥∈{0,1}𝜋𝑥(1 − 𝜋)1−𝑥

= { 𝜋, 𝑥 = 1
1 − 𝜋, 𝑥 = 0
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3.1.2. Logistic regression versus linear regression

Logistic regression differs from linear regression, which uses the Gaussian
(“normal”) distribution to model the outcome variable, conditional on the
covariates.

Exercise 3.3. Recall: what kinds of outcomes is linear regression used
for?

Solution. Linear regression is typically used for numerical outcomes that
aren’t event counts or waiting times for an event. Examples of outcomes
that are often analyzed using linear regression include include weight,
height, and income.

3.2. Risk Estimation and Prediction

In Epi 203, you have already seen methods for modeling binary outcomes
using one covariate that is also binary (such as exposure/non-exposure).
In this section, we review one-covariate analyses, with a special focus on
risk ratios and odds ratios, which are important concepts for interpreting
logistic regression.

Example 3.1 (Oral Contraceptive Use and Heart Attack).
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• Research question: how does oral contraceptive (OC) use affect the
risk of myocardial infarction (MI; a.k.a. heart attack)?

This was an issue when oral contraceptives were first developed, because
the original formulations used higher concentrations of hormones. Modern
OCs don’t have this issue.

Table 3.1 contains simulated data for an imaginary follow-up (a.k.a.
prospective) study in which two groups are identified, one using OCs and
another not using OCs, and both groups are tracked for three years to
determine how many in each groups have MIs.

Exercise 3.4. Review: estimate the probabilities of MI for OC users and
non-OC users in Example 3.1.

Solution.
p̂(𝑀𝐼|𝑂𝐶) = 13

5000 = 0.0026

p̂(𝑀𝐼|¬𝑂𝐶) = 7
10000 = 7 × 10−4
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Table 3.1.: Simulated data from study of oral contraceptive use and heart
attack risk

library(dplyr)
oc_mi =
tribble(

~OC, ~MI, ~Total,
"OC use", 13, 5000,
"No OC use", 7, 10000

) |>
mutate(`No MI` = Total - MI) |>
relocate(`No MI`, .after = MI)

totals =
oc_mi |>
summarize(across(c(MI, `No MI`, Total), sum)) |>
mutate(OC = "Total")

tbl_oc_mi = bind_rows(oc_mi, totals)

tbl_oc_mi
#> # A tibble: 3 x 4
#> OC MI `No MI` Total
#> <chr> <dbl> <dbl> <dbl>
#> 1 OC use 13 4987 5000
#> 2 No OC use 7 9993 10000
#> 3 Total 20 14980 15000
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3.2.0.1. Controls

Two meanings of “controls”

Depending on context, “controls” can mean either individuals who
don’t experience an exposure of interest, or individuals who don’t
experience an outcome of interest.

Definition 3.1 (cases and controls in retrospective studies). In retrospec-
tive studies, participants who experience the outcome of interest are called
cases, while participants who don’t experience that outcome are called
controls.

Definition 3.2 (treatment groups and control groups in prospective stud-
ies). In prospective studies, the group of participants who experience the
treatment or exposure of interest is called the treatment group, while the
participants who receive the baseline or comparison treatment (for exam-
ple, clinical trial participants who receive a placebo or a standard-of-care
treatment rather than an experimental treatment) are called controls.

3.3. Comparing probabilities

3.3.1. Risk differences

The simplest comparison of two probabilities, 𝜋1, and 𝜋2, is the difference
of their values:
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Definition 3.3 (Risk difference). The risk difference of two probabili-
ties, 𝜋1, and 𝜋2, is the difference of their values:

𝛿(𝜋1, 𝜋2) def= 𝜋1 − 𝜋2

Example 3.2 (Difference in MI risk). In Example 3.1, the maximum
likelihood estimate of the difference in MI risk between OC users and OC
non-users is:

̂𝛿(𝜋(𝑂𝐶), 𝜋(¬𝑂𝐶)) = 𝛿( ̂𝜋(𝑂𝐶), ̂𝜋(¬𝑂𝐶))
= ̂𝜋(𝑂𝐶) − ̂𝜋(¬𝑂𝐶)
= 0.0026 − 7 × 10−4

= 0.0019

3.3.2. Risk ratios

Definition 3.4 (Relative risk ratios).

The relative risk of probability 𝜋1 compared to another probability 𝜋2,
also called the risk ratio, relative risk ratio, probability ratio, or
rate ratio, is the ratio of those probabilities:

𝜌(𝜋1, 𝜋2) = 𝜋1
𝜋2
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Example 3.3.

Above, we estimated that:

p̂(𝑀𝐼|𝑂𝐶) = 0.0026

p̂(𝑀𝐼|¬𝑂𝐶) = 7 × 10−4

So we might estimate that the relative risk of MI for OC versus non-OC
is:

rr = (13/5000)/(7/10000)

̂𝜌(𝑂𝐶, ¬𝑂𝐶) = p̂(𝑀𝐼|𝑂𝐶)
p̂(𝑀𝐼|¬𝑂𝐶)

= 0.0026
7 × 10−4

= 3.7143

We might summarize this result by saying that “the estimated probability
of MI among OC users was 3.7143 as high as the estimated probability
among OC non-users.
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3.3.3. Relative risk difference

Definition 3.5 (Relative risk difference).

Sometimes, we divide the risk difference by the comparison probability, or
equivalently, subtract 1 from the risk ratio; the result is called the relative
risk difference:

𝜉(𝜋1, 𝜋2) def= 𝛿(𝜋1, 𝜋2)
𝜋2

= 𝜋1 − 𝜋2
𝜋2

= 𝜋1
𝜋2

− 1

= 𝜌(𝜋1, 𝜋2) − 1

3.3.3.1. Changing reference groups in risk comparisons

Risk differences, risk ratios, and relative risk differences are defined by
two probabilities, plus a choice of which probability is the baseline or
reference probability (i.e., which probability is the subtrahend of the
risk difference or the denominator of the risk ratio).

𝛿(𝜋2, 𝜋1) = −𝛿(𝜋1, 𝜋2)

𝜌(𝜋2, 𝜋1) = (𝜌(𝜋1, 𝜋2))−1

𝜉(𝜋2, 𝜋1) = (𝜉(𝜋2, 𝜋1) + 1)−1 − 1

Exercise 3.5. Prove the relationships above.
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Example 3.4 (Switching the reference group in a risk ratio). Above, we
estimated that the risk ratio of OC versus non-OC is:

𝜌(𝑂𝐶, ¬𝑂𝐶) = 3.7143

In comparison, the risk ratio for non-OC versus OC is:

𝜌(¬𝑂𝐶, 𝑂𝐶) = p̂(𝑀𝐼|¬𝑂𝐶)
p̂(𝑀𝐼|𝑂𝐶)

= 7 × 10−4

0.0026
= 0.2692

= 1
𝜌(𝑂𝐶, ¬𝑂𝐶)

3.3.4. Odds and probabilities

In logistic regression, we will make use of a transformation (rescaling) of
probability, called odds.

Definition 3.6 (Odds). The odds of an outcome 𝐴, denoted 𝜔(𝐴)
(“omega”), is the probability that the outcome occurs, divided by the
probability that it doesn’t occur:

𝜔(𝐴) def= Pr(𝐴)
Pr(¬𝐴)
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Theorem 3.1. If the probability of an outcome 𝐴 is Pr(𝐴) = 𝜋, then the
corresponding odds of 𝐴 is:

𝜔(𝜋) = 𝜋
1 − 𝜋 (3.1)

Proof.
Pr(¬𝐴) = 1 − Pr(𝐴)

= 1 − 𝜋

∴𝜔(𝐴) def= Pr(𝐴)
Pr(¬𝐴)

= 𝜋
1 − 𝜋

Function 3.1, which transforms probabilities into odds, can be called the
odds function. Figure 3.1 graphs the shape of this function.

odds = function(pi) pi / (1 - pi)
library(ggplot2)
ggplot() +
geom_function(fun = odds,

mapping = aes(col = "odds function")) +
xlim(0, .5) +
xlab("Probability") +
ylab("Odds") +
geom_abline(aes(intercept = 0, slope = 1, col = "y=x")) +
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theme_bw() +
labs(colour = "") +
theme(legend.position = "bottom")
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Figure 3.1.: Odds versus probability

Example 3.5 (Calculating odds). In Exercise 3.4, we estimated that the
probability of MI, given OC use, is 𝜋(𝑂𝐶) def= Pr(𝑀𝐼|𝑂𝐶) = 0.0026. If
this estimate is correct, then the odds of MI, given OC use, is:

139



3. Models for Binary Outcomes

𝜔(𝑂𝐶) def= Pr(𝑀𝐼|𝑂𝐶)
Pr(¬𝑀𝐼|𝑂𝐶)

= Pr(𝑀𝐼|𝑂𝐶)
1 − Pr(𝑀𝐼|𝑂𝐶)

= 𝜋(𝑂𝐶)
1 − 𝜋(𝑂𝐶)

= 0.0026
1 − 0.0026

≈ 0.002607

Exercise 3.6 (Calculating odds). Estimate the odds of MI, for non-OC
users.

Solution.
𝜔(¬𝑂𝐶) = 7.0049 × 10−4

Theorem 3.2 (One-sample MLE for odds). Let 𝑋1, ...𝑋𝑛 be a set of 𝑛
iid Bernoulli trials, and let 𝑋 = ∑𝑛

𝑖=1 𝑋𝑖 be their sum.

Then the maximum likelihood estimate of the odds of 𝑋 = 1, 𝜔, is:

𝜔̂ = 𝑥
𝑛 − 𝑥
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Proof.
1 − ̂𝜋 = 1 − 𝑥

𝑛
= 𝑛

𝑛 − 𝑥
𝑛

= 𝑛 − 𝑥
𝑛

Thus, the estimated odds is:

̂𝜋
1 − ̂𝜋 = ( 𝑥

𝑛)
(𝑛−𝑥

𝑛 )
= 𝑥

𝑛 − 𝑥
That is, odds can be calculated directly as “# events” divided by “#
nonevents” (without needing to calculate ̂𝜋 and 1 − ̂𝜋 first).

Example 3.6 (calculating odds using the shortcut). In Example 3.5, we
calculated

𝜔(𝑂𝐶) = 0.0026

Let’s recalculate this result using our shortcut.

Solution 3.1.
𝜔(𝑂𝐶) = 13

5000 − 13
= 0.0026

Same answer as in Example 3.5!
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3.3.4.1. Odds of rare events

For rare events (small 𝜋), odds and probabilities are nearly equal, because
1 − 𝜋 ≈ 1 (see Figure 3.1).

For example, in Example 3.5, the probability and odds differ by 6.7776 ×
10−6.

Exercise 3.7. What odds value corresponds to the probability 𝜋 = 0.2,
and what is the numerical difference between these two values?

Solution.
𝜔 = 𝜋

1 − 𝜋 = .2
.8 = .25

3.3.5. The inverse odds function

Definition 3.7 (inverse odds function). The inverse odds function,

𝜋(𝜔) def= 𝜔
1 + 𝜔

converts odds into their corresponding probabilities (Figure 3.2).
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The inverse-odds function takes an odds as input and produces a proba-
bility as output. Its domain of inputs is [0, ∞) and its range of outputs is
[0, 1].

odds_inv = function(omega) (1 + omega^-1)^-1
ggplot() +
geom_function(fun = odds_inv, aes(col = "inverse-odds")) +
xlab("Odds") +
ylab("Probability") +
xlim(0,5) +
ylim(0,1) +
geom_abline(aes(intercept = 0, slope = 1, col = "x=y"))
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Figure 3.2.: The inverse odds function, 𝜋(𝜔)
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Important

An equivalent expression for the inverse odds function is

𝜋(𝜔) = (1 + 𝜔−1)−1 (3.2)

Exercise 3.8. Prove that Equation 3.2 is equivalent to Definition 3.7.

Exercise 3.9. What probability corresponds to an odds of 𝜔 = 1, and
what is the numerical difference between these two values?

Solution.
𝜋(1) = 1

1 + 1 = 1
2 = .5

1 − 𝜋(1) = 1 − .5 = .5
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3.3.6. Odds ratios

Now that we have defined odds, we can introduce another way of compar-
ing event probabilities: odds ratios.

Definition 3.8 (Odds ratio). The odds ratio for two odds 𝜔1, 𝜔2 is their
ratio:

𝜃(𝜔1, 𝜔2) = 𝜔1
𝜔2

Example 3.7 (Calculating odds ratios). In Example 3.1, the odds ratio
for OC users versus OC-non-users is:

𝜃(𝜔(𝑂𝐶), 𝜔(¬𝑂𝐶)) = 𝜔(𝑂𝐶)
𝜔(¬𝑂𝐶)

= 0.0026
7 × 10−4

= 3.7143

When the outcome is rare (i.e., its probability is small) for both groups
being compared in an odds ratio, the odds of the outcome will be similar
to the probability of the outcome, and thus the risk ratio will be similar
to the odds ratio.

For example, in Example 3.1, the outcome is rare for both OC and non-OC
participants, so the odds for both groups are similar to the corresponding
probabilities, and the odds ratio is similar the risk ratio.
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3.3.6.1. A shortcut for calculating odds ratio estimates

The general form of a two-by-two table is shown in Table 3.2.

Table 3.2.: A generic 2x2 table
Event Non-Event Total

Exposed a b a+b
Non-exposed c d c+d
Total a+c b+d a+b+c+d

From this table, we have:

• ̂𝜋(𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑎/(𝑎 + 𝑏)
• ̂𝜋(¬𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑏/(𝑎 + 𝑏)

• 𝜔̂(𝐸𝑣𝑒𝑛𝑡|𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = ( 𝑎
𝑎+𝑏 )

( 𝑏
𝑎+𝑏 ) = 𝑎

𝑏

• 𝜔̂(𝐸𝑣𝑒𝑛𝑡|¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑐
𝑑 (see Exercise 3.10)

• 𝜃(𝐸𝑥𝑝𝑜𝑠𝑒𝑑, ¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) =
𝑎
𝑏𝑐
𝑑

= 𝑎𝑑
𝑏𝑐

Exercise 3.10. Given Table 3.2, show that 𝜔̂(𝐸𝑣𝑒𝑛𝑡|¬𝐸𝑥𝑝𝑜𝑠𝑒𝑑) = 𝑐
𝑑 .
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3.4. Properties of odds ratios

Odds ratios have a special property: we can swap a covariate with the
outcome, and the odds ratio remains the same.

Theorem 3.3 (Odds ratios are reversible). For any two events 𝐴, 𝐵:

𝜃(𝐴|𝐵) = 𝜃(𝐵|𝐴)

Proof.

147



3. Models for Binary Outcomes

𝜃(𝐴|𝐵) def= 𝜔(𝐴|𝐵)
𝜔(𝐴|¬𝐵)

=
( p(𝐴|𝐵)

p(¬𝐴|𝐵))
( p(𝐴|¬𝐵)

p(¬𝐴|¬𝐵))

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵)) ( p(𝐴|¬𝐵)

p(¬𝐴|¬𝐵))
−1

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵)) (p(¬𝐴|¬𝐵)

p(𝐴|¬𝐵) )

= ( p(𝐴|𝐵)
p(¬𝐴|𝐵) ⋅ p(𝐵)

p(𝐵)) (p(¬𝐴|¬𝐵)
p(𝐴|¬𝐵) ⋅ p(¬𝐵)

p(¬𝐵))

= ( p(𝐴, 𝐵)
p(¬𝐴, 𝐵)) (p(¬𝐴, ¬𝐵)

p(𝐴, ¬𝐵) )

= ( p(𝐵, 𝐴)
p(𝐵, ¬𝐴)) (p(¬𝐵, ¬𝐴)

p(¬𝐵, 𝐴) )

= ( p(𝐵, 𝐴)
p(¬𝐵, 𝐴)) (p(¬𝐵, ¬𝐴)

p(𝐵, ¬𝐴) )

= [reverse the preceding steps]
= 𝜃(𝐵|𝐴)

Conditional odds ratios have the same reversibility property:

Theorem 3.4 (Conditional odds ratios are reversible). For any three
events 𝐴, 𝐵, 𝐶:

𝜃(𝐴|𝐵, 𝐶) = 𝜃(𝐵|𝐴, 𝐶)
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Proof. Apply the same steps as for Theorem 3.3, inserting 𝐶 into the
conditions (RHS of |) of every expression.

Example 3.8. In Example 3.1, we have:

𝜃(𝑀𝐼; 𝑂𝐶) def= 𝜔(𝑀𝐼|𝑂𝐶)
𝜔(𝑀𝐼|¬𝑂𝐶)

def=
( Pr(𝑀𝐼|𝑂𝐶)

Pr(¬𝑀𝐼|𝑂𝐶))
( Pr(𝑀𝐼|¬𝑂𝐶)

Pr(¬𝑀𝐼|¬𝑂𝐶))

=
( Pr(𝑀𝐼,𝑂𝐶)

Pr(¬𝑀𝐼,𝑂𝐶))
( Pr(𝑀𝐼,¬𝑂𝐶)

Pr(¬𝑀𝐼,¬𝑂𝐶))

= ( Pr(𝑀𝐼, 𝑂𝐶)
Pr(¬𝑀𝐼, 𝑂𝐶)) (Pr(¬𝑀𝐼, ¬𝑂𝐶)

Pr(𝑀𝐼, ¬𝑂𝐶) )

= ( Pr(𝑀𝐼, 𝑂𝐶)
Pr(𝑀𝐼, ¬𝑂𝐶)) (Pr(¬𝑀𝐼, ¬𝑂𝐶)

Pr(¬𝑀𝐼, 𝑂𝐶) )

= ( Pr(𝑂𝐶, 𝑀𝐼)
Pr(¬𝑂𝐶, 𝑀𝐼)) (Pr(¬𝑂𝐶, ¬𝑀𝐼)

Pr(𝑂𝐶, ¬𝑀𝐼) )

= ( Pr(𝑂𝐶|𝑀𝐼)
Pr(¬𝑂𝐶|𝑀𝐼)) (Pr(¬𝑂𝐶|¬𝑀𝐼)

Pr(𝑂𝐶|¬𝑀𝐼) )

=
( Pr(𝑂𝐶|𝑀𝐼)

Pr(¬𝑂𝐶|𝑀𝐼))
( Pr(𝑂𝐶|¬𝑀𝐼)

Pr(¬𝑂𝐶|¬𝑀𝐼))
def= 𝜔(𝑂𝐶|𝑀𝐼)

𝜔(𝑂𝐶|¬𝑀𝐼)
def= 𝜃(𝑂𝐶; 𝑀𝐼)
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Exercise 3.11. For Table 3.2, show that ̂𝜃(𝐸𝑥𝑝𝑜𝑠𝑒𝑑, 𝑈𝑛𝑒𝑥𝑝𝑜𝑠𝑒𝑑) =
̂𝜃(𝐸𝑣𝑒𝑛𝑡, ¬𝐸𝑣𝑒𝑛𝑡).

3.4.1. Case-Control Studies

Table 3.1 simulates a follow-up study in which two populations were fol-
lowed and the number of MI’s was observed. The risks are 𝑃(𝑀𝐼|𝑂𝐶)
and 𝑃(𝑀𝐼|¬𝑂𝐶) and we can estimate these risks from the data.

But suppose we had a case-control study in which we had 100 women with
MI and selected a comparison group of 100 women without MI (matched
as groups on age, etc.). Then MI is not random, and we cannot compute
P(MI|OC) and we cannot compute the risk ratio. However, the odds ratio
however can be computed.

The disease odds ratio is the odds for the disease in the exposed group
divided by the odds for the disease in the unexposed group, and we cannot
validly compute and use these separate parts.

But we can validly compute and use the exposure odds ratio, which is the
odds for exposure in the disease group divided by the odds for exposure in
the non-diseased group (because exposure can be treated as random):

̂𝜃(𝑂𝐶|𝑀𝐼) = 𝜔̂(𝑂𝐶|𝑀𝐼)
𝜔̂(𝑂𝐶|¬𝑀𝐼)

And these two odds ratios, ̂𝜃(𝑀𝐼|𝑂𝐶) and ̂𝜃(𝑂𝐶|𝑀𝐼) are mathematically
equivalent, as we saw in Section 3.4:

̂𝜃(𝑀𝐼|𝑂𝐶) = ̂𝜃(𝑂𝐶|𝑀𝐼)
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Exercise 3.12. Calculate the odds ratio of MI with respect to OC use,
assuming that Table 3.1 comes from a case-control study. Confirm that
the result is the same as in Example 3.7.

Solution.

• 𝜔(𝑂𝐶|𝑀𝐼) = 𝑃(𝑂𝐶|𝑀𝐼)/(1–𝑃(𝑂𝐶|𝑀𝐼) = 13
7 = 1.8571

• 𝜔(𝑂𝐶|¬𝑀𝐼) = 𝑃(𝑂𝐶|¬𝑀𝐼)/(1–𝑃(𝑂𝐶|¬𝑀𝐼) = 4987
9993 = 0.499

• 𝜃(𝑂𝐶, 𝑀𝐼) = 𝜔(𝑂𝐶|𝑀𝐼)
𝜔(𝑂𝐶|¬𝑀𝐼) = 13/7

4987/9993 = 3.7214

This is the same estimate we calculated in Example 3.7.

3.4.2. Cross-Sectional Studies

• If a cross-sectional study is a probability sample of a population
(which it rarely is) then we can estimate risks.

• If it is a sample, but not an unbiased probability sample, then we
need to treat it in the same way as a case-control study.

• We can validly estimate odds ratios in either case.

• But we can usually not validly estimate risks and risk ratios.
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3.5. The logit and expit functions

Definition 3.9 (logit function). The logit function is

logit(𝜋) def= log { 𝜋
1 − 𝜋}

logit = function(p) log(odds(p))

logit_plot =
ggplot() +
geom_function(fun = logit) +
xlim(.01, .99) +
ylab("logit(p)") +
xlab("p") +
theme_bw()

print(logit_plot)
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Figure 3.3.: the logit function

Definition 3.10 (expit, logistic, inverse-logit). The expit function (Fig-
ure 3.4), also known as the inverse-logit or logistic function, is:

expit(𝜂) def= exp {𝜂}
1 + exp {𝜂}

= (1 + exp {−𝜂})−1

expit = function(eta) exp(eta)/(1+exp(eta))
library(ggplot2)
expit_plot =
ggplot() +
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geom_function(fun = expit) +
xlim(-5, 5) +
ylim(0,1) +
ylab(expression(expit(eta))) +
xlab(expression(eta)) +
theme_bw()

print(expit_plot)
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Figure 3.4.: The expit function

Theorem 3.5 (logit and expit are each others’ inverses).

logit {expit {𝜂}} = 𝜂

154



3. Models for Binary Outcomes

expit {logit {𝜋}} = 𝜋

Proof. Left to the reader.

3.5.1. Diagram of expit and logit

[𝜋 def= Pr(𝑌 = 1)]

logit(𝜋)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝜋

1−𝜋−−→←−−𝜔
1+𝜔

[𝜔 def= odds(𝑌 = 1)]
log{𝜔}
−−−−→←−−−−

exp{𝜂}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
expit(𝜂)

[𝜂 def= log-odds(𝑌 = 1)]

3.6. Introduction to logistic regression

• In Example 3.1, we estimated the risk and the odds of MI for two
discrete cases, as to whether of not the individual used oral contra-
ceptives.

• If the predictor is quantitative (dose) or there is more than one
predictor, the task becomes more difficult.

• In this case, we will use logistic regression, which is a generalization
of the linear regression models you have been using that can account
for a binary response instead of a continuous one.
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3.6.1. Binary outcomes models - one group, no covariates

𝑝(𝑌 = 1) = 𝜋
𝑝(𝑌 = 0) = 1 − 𝜋
𝑝(𝑌 = 𝑦) = 𝜋𝑦(1 − 𝜋)1−𝑦

y = (𝑦1, ..., 𝑦𝑛)
ℒ(𝜋; y) = 𝜋∑ 𝑦𝑖(1 − 𝜋)𝑛−∑ 𝑦𝑖

ℓ(𝜋, y) = (∑ 𝑦𝑖) log {𝜋} + (𝑛 − ∑ 𝑦𝑖) log {1 − 𝜋}
= (∑ 𝑦𝑖) (log {𝜋} − log {1 − 𝜋}) + 𝑛 ⋅ log {1 − 𝜋}
= (∑ 𝑦𝑖) log { 𝜋

1 − 𝜋} + 𝑛 ⋅ log {1 − 𝜋}

3.6.2. Binary outcomes - general

P(𝑌𝑖 = 1) = 𝜋𝑖
P(𝑌𝑖 = 0) = 1 − 𝜋𝑖
P(𝑌𝑖 = 𝑦) = (𝜋𝑖)𝑦(1 − 𝜋𝑖)1−𝑦

For iid data ̃𝑦 = (𝑦1, ..., 𝑦𝑛):

ℒ(𝜋; ̃𝑦) = P(𝑌1 = 𝑦1, … , 𝑌𝑛 = 𝑦𝑛)

=
𝑛

∏
𝑖=1

(𝜋𝑖)𝑦𝑖(1 − 𝜋𝑖)1−𝑦𝑖
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ℓ(𝜋, ̃𝑦) =
𝑛

∑
𝑖=1

𝑦𝑖log {𝜋𝑖} + (1 − 𝑦𝑖)log {1 − 𝜋𝑖}

=
𝑛

∑
𝑖=1

𝑦𝑖log {𝜋𝑖} + log {1 − 𝜋𝑖} − 𝑦𝑖 ⋅ log {1 − 𝜋𝑖}

=
𝑛

∑
𝑖=1

𝑦𝑖(log {𝜋𝑖} − log {1 − 𝜋𝑖}) + log {1 − 𝜋𝑖}

=
𝑛

∑
𝑖=1

𝑦𝑖(log { 𝜋𝑖
1 − 𝜋𝑖

}) + log {1 − 𝜋𝑖}

=
𝑛

∑
𝑖=1

𝑦𝑖(logit(𝜋𝑖)) + log {1 − 𝜋𝑖}

(3.3)

3.6.3. Modeling 𝜋𝑖 as a function of 𝑋𝑖

If there are only a few distinct 𝑋𝑖 values, we can model each one sepa-
rately.

Otherwise, we need regression.

𝜋(𝑥) ≡ E(𝑌 = 1|𝑋 = 𝑥)
= 𝑓(𝑥⊤𝛽)

Typically, we use the expit inverse-link:

𝜋( ̃𝑥) = expit( ̃𝑥′𝛽) (3.4)

3.6.4. Meet the beetles
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library(glmx)

data(BeetleMortality, package = "glmx")
beetles = BeetleMortality |>
mutate(

pct = died/n,
survived = n - died

)

plot1 =
beetles |>
ggplot(aes(x = dose, y = pct)) +
geom_point(aes(size = n)) +
xlab("Dose (log mg/L)") +
ylab("Mortality rate (%)") +
scale_y_continuous(labels = scales::percent) +
scale_size(range = c(1,2)) +
theme_bw(base_size = 18)

print(plot1)
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Figure 3.5.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

3.6.5. Why don’t we use linear regression?

beetles_long = beetles |>
reframe(
.by = everything(),
outcome = c(
rep(1, times = died),
rep(0, times = survived)))

lm1 = beetles_long |> lm(formula = outcome ~ dose)
f.linear = function(x) predict(lm1, newdata = data.frame(dose = x))
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range1 = range(beetles$dose) + c(-.2, .2)

plot2 =
plot1 +
geom_function(

fun = f.linear,
aes(col = "Straight line")) +

labs(colour="Model", size = "")

plot2 |> print()
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Figure 3.6.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)
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3.6.6. Zoom out

(plot2 + expand_limits(x = c(1.6, 2))) |> print()
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Figure 3.7.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

3.6.7. log transformation of dose?

lm2 = beetles_long |> lm(formula = outcome ~ log(dose))
f.linearlog = function(x) predict(lm2, newdata = data.frame(dose = x))

plot3 = plot2 +
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expand_limits(x = c(1.6, 2)) +
geom_function(fun = f.linearlog, aes(col = "Log-transform dose"))

(plot3 + expand_limits(x = c(1.6, 2))) |> print()
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Figure 3.8.: Mortality rates of adult flour beetles after five hours’ exposure
to gaseous carbon disulphide (Bliss 1935)

3.6.8. Logistic regression

#| label: fig-beetles_5
#| fig-cap: "Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)"

beetles_glm_grouped = beetles |>
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glm(formula = cbind(died, survived) ~ dose, family = "binomial")
f = function(x)
beetles_glm_grouped |>
predict(newdata = data.frame(dose = x), type = "response")

plot4 = plot3 + geom_function(fun = f, aes(col = "Logistic regression"))
plot4 |> print()
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3.6.9. Three parts to regression models

• What distribution does the outcome have for a specific subpopulation
defined by covariates? (outcome model)
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• How does the combination of covariates relate to the mean? (link
function)

• How do the covariates combine? (linear predictor, interactions)

3.6.10. Logistic regression in R

beetles_glm_grouped =
beetles |>
glm(

formula = cbind(died, survived) ~ dose,
family = "binomial")

library(parameters)
beetles_glm_grouped |>
parameters() |>
print_md()

Parameter Log-Odds SE 95% CI z p
(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

Fitted values:
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fitted.values(beetles_glm_grouped)
#> 1 2 3 4 5 6 7 8
#> 0.0586 0.1640 0.3621 0.6053 0.7952 0.9032 0.9552 0.9790
predict(beetles_glm_grouped, type = "response")
#> 1 2 3 4 5 6 7 8
#> 0.0586 0.1640 0.3621 0.6053 0.7952 0.9032 0.9552 0.9790
predict(beetles_glm_grouped, type = "link")
#> 1 2 3 4 5 6 7 8
#> -2.7766 -1.6286 -0.5662 0.4277 1.3564 2.2337 3.0596 3.8444

fit_y = beetles$n * fitted.values(beetles_glm_grouped)

3.6.11. Individual observations

beetles_glm_ungrouped =
beetles_long |>
glm(

formula = outcome ~ dose,
family = "binomial")

beetles_glm_ungrouped |> parameters() |> print_md()
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Table 3.4.: beetles data in long format

beetles_long
#> # A tibble: 481 x 6
#> dose died n pct survived outcome
#> <dbl> <int> <int> <dbl> <int> <dbl>
#> 1 1.69 6 59 0.102 53 1
#> 2 1.69 6 59 0.102 53 1
#> 3 1.69 6 59 0.102 53 1
#> 4 1.69 6 59 0.102 53 1
#> 5 1.69 6 59 0.102 53 1
#> 6 1.69 6 59 0.102 53 1
#> 7 1.69 6 59 0.102 53 0
#> 8 1.69 6 59 0.102 53 0
#> 9 1.69 6 59 0.102 53 0
#> 10 1.69 6 59 0.102 53 0
#> # i 471 more rows
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Table 3.5.: logistic regression model for beetles data with individual
Bernoulli data

Parameter Log-Odds SE 95% CI z p
(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

Here’s the previous version again:

beetles_glm_grouped |> parameters() |> print_md()

Table 3.6.: logistic regression model for beetles data with grouped (bino-
mial) data

Parameter Log-Odds SE 95% CI z p
(Intercept) -60.72 5.18 (-71.44, -51.08) -11.72 < .001
dose 34.27 2.91 (28.85, 40.30) 11.77 < .001

They seem the same! But not quite:

logLik(beetles_glm_grouped)
#> 'log Lik.' -18.72 (df=2)
logLik(beetles_glm_ungrouped)
#> 'log Lik.' -186.2 (df=2)

The difference is due to the binomial coefficient (𝑛
𝑥 ) which isn’t included

in the individual-observations (Bernoulli) version of the model.
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3.7. Multiple logistic regression

3.7.1. Coronary heart disease (WCGS) study data

Let’s use the data from the Western Collaborative Group Study (WCGS)
(Rosenman et al. (1975)) to explore multiple logistic regression:

From Vittinghoff et al. (2012):

“The Western Collaborative Group Study (WCGS) was a large
epidemiological study designed to investigate the association between
the”type A” behavior pattern and coronary heart disease (CHD)“.

From Wikipedia, “Type A and Type B personality theory”:

“The hypothesis describes Type A individuals as outgoing, ambitious,
rigidly organized, highly status-conscious, impatient, anxious, proactive,
and concerned with time management….

The hypothesis describes Type B individuals as a contrast to those of
Type A. Type B personalities, by definition, are noted to live at lower
stress levels. They typically work steadily and may enjoy achievement,
although they have a greater tendency to disregard physical or mental
stress when they do not achieve.”

3.7.1.1. Study design

from ?faraway::wcgs:

3154 healthy young men aged 39-59 from the San Francisco area were
assessed for their personality type. All were free from coronary heart
disease at the start of the research. Eight and a half years later change in
CHD status was recorded.
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Details (from faraway::wcgs)

The WCGS began in 1960 with 3,524 male volunteers who were employed
by 11 California companies. Subjects were 39 to 59 years old and free of
heart disease as determined by electrocardiogram. After the initial screen-
ing, the study population dropped to 3,154 and the number of companies
to 10 because of various exclusions. The cohort comprised both blue- and
white-collar employees.

3.7.2. Baseline data collection

socio-demographic characteristics:

• age
• education
• marital status
• income
• occupation
• physical and physiological including:
• height
• weight
• blood pressure
• electrocardiogram
• corneal arcus;

biochemical measurements: - cholesterol and lipoprotein fractions; - med-
ical and family history and use of medications;

169



3. Models for Binary Outcomes

behavioral data:

• Type A interview,
• smoking,
• exercise
• alcohol use.

Later surveys added data on:

• anthropometry
• triglycerides
• Jenkins Activity Survey
• caffeine use

Average follow-up continued for 8.5 years with repeat examinations.

3.7.3. Load the data

Here, I load the data:

### load the data directly from a UCSF website:
library(haven)
url = paste0(

# I'm breaking up the url into two chunks for readability
"https://regression.ucsf.edu/sites/g/files/",
"tkssra6706/f/wysiwyg/home/data/wcgs.dta")

wcgs = haven::read_dta(url)
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Table 3.7.: wcgs data

wcgs |> head()
#> # A tibble: 6 x 22
#> age arcus behpat bmi chd69 chol dbp dibpat height id lnsbp lnwght
#> <dbl> <lgl> <fct> <dbl> <fct> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 50 TRUE A1 31.3 No 249 90 Type A 67 2343 4.88 5.30
#> 2 51 FALSE A1 25.3 No 194 74 Type A 73 3656 4.79 5.26
#> 3 59 TRUE A1 28.7 No 258 94 Type A 70 3526 5.06 5.30
#> 4 51 TRUE A1 22.1 No 173 80 Type A 69 22057 4.84 5.01
#> 5 44 FALSE A1 22.3 No 214 80 Type A 71 12927 4.84 5.08
#> 6 47 FALSE A1 27.1 No 206 76 Type A 64 16029 4.75 5.06
#> # i 10 more variables: ncigs <dbl>, sbp <dbl>, smoke <fct>, t1 <dbl>,
#> # time169 <dbl>, typchd69 <fct>, uni <dbl>, weight <dbl>, wghtcat <fct>,
#> # agec <fct>

3.7.4. Data cleaning

Now let’s do some data cleaning

library(arsenal) # provides `set_labels()`
library(forcats) # provides `as_factor()`
library(haven)
library(plotly)
wcgs = wcgs |>
mutate(

age = age |>
arsenal::set_labels("Age (years)"),

arcus =
arcus |>
as.logical() |>
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arsenal::set_labels("Arcus Senilis"),

time169 =
time169 |>
as.numeric() |>
arsenal::set_labels("Observation (follow up) time (days)"),

dibpat =
dibpat |>
as_factor() |>
relevel(ref = "Type A") |>
arsenal::set_labels("Behavioral Pattern"),

typchd69 = typchd69 |>
labelled(

label = "Type of CHD Event",
labels =

c(
"None" = 0,
"infdeath" = 1,
"silent" = 2,
"angina" = 3)),

# turn stata-style labelled variables in to R-style factors:
across(
where(is.labelled),
haven::as_factor)

)

3.7.5. What’s in the data

Here’s a table of the data:
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wcgs |>
select(-c(id, uni, t1)) |>
tableby(chd69 ~ ., data = _) |>
summary(

pfootnote = TRUE,
title =
"Baseline characteristics by CHD status at end of follow-up")

Table 3.8.: Baseline characteristics by CHD status at end of follow-up
No

(N=2897)
Yes

(N=257)
Total

(N=3154)
p

value
Age (years) <

0.0011

Mean (SD) 46.082
(5.457)

48.490
(5.801)

46.279
(5.524)

Range 39.000 -
59.000

39.000 -
59.000

39.000 -
59.000

Arcus Senilis <
0.0012

N-Miss 0 2 2
FALSE 2058

(71.0%)
153

(60.0%)
2211

(70.1%)
TRUE 839

(29.0%)
102

(40.0%)
941

(29.9%)
Behavioral Pattern <

0.0012

A1 234 (8.1%) 30 (11.7%) 264 (8.4%)
A2 1177

(40.6%)
148

(57.6%)
1325

(42.0%)
B3 1155

(39.9%)
61 (23.7%) 1216

(38.6%)
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No
(N=2897)

Yes
(N=257)

Total
(N=3154)

p
value

B4 331
(11.4%)

18 (7.0%) 349
(11.1%)

Body Mass Index
(kg/m2)

<
0.0011

Mean (SD) 24.471
(2.561)

25.055
(2.579)

24.518
(2.567)

Range 11.191 -
37.653

19.225 -
38.947

11.191 -
38.947

Total Cholesterol <
0.0011

N-Miss 12 0 12
Mean (SD) 224.261

(42.217)
250.070
(49.396)

226.372
(43.420)

Range 103.000 -
400.000

155.000 -
645.000

103.000 -
645.000

Diastolic Blood
Pressure

<
0.0011

Mean (SD) 81.723
(9.621)

85.315
(10.311)

82.016
(9.727)

Range 58.000 -
150.000

64.000 -
122.000

58.000 -
150.000

Behavioral Pattern <
0.0012

Type A 1411
(48.7%)

178
(69.3%)

1589
(50.4%)

Type B 1486
(51.3%)

79 (30.7%) 1565
(49.6%)

Height (inches) 0.2901

Mean (SD) 69.764
(2.539)

69.938
(2.410)

69.778
(2.529)
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No
(N=2897)

Yes
(N=257)

Total
(N=3154)

p
value

Range 60.000 -
78.000

63.000 -
77.000

60.000 -
78.000

Ln of Systolic
Blood Pressure

<
0.0011

Mean (SD) 4.846
(0.110)

4.900
(0.125)

4.850
(0.112)

Range 4.585 -
5.438

4.605 -
5.298

4.585 -
5.438

Ln of Weight <
0.0011

Mean (SD) 5.126
(0.123)

5.155
(0.118)

5.128
(0.123)

Range 4.357 -
5.670

4.868 -
5.768

4.357 -
5.768

Cigarettes per day <
0.0011

Mean (SD) 11.151
(14.329)

16.665
(15.657)

11.601
(14.518)

Range 0.000 -
99.000

0.000 -
60.000

0.000 -
99.000

Systolic Blood
Pressure

<
0.0011

Mean (SD) 128.034
(14.746)

135.385
(17.473)

128.633
(15.118)

Range 98.000 -
230.000

100.000 -
200.000

98.000 -
230.000

Current smoking <
0.0012

No 1554
(53.6%)

98 (38.1%) 1652
(52.4%)
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No
(N=2897)

Yes
(N=257)

Total
(N=3154)

p
value

Yes 1343
(46.4%)

159
(61.9%)

1502
(47.6%)

Observation (follow
up) time (days)

<
0.0011

Mean (SD) 2775.158
(562.205)

1654.700
(859.297)

2683.859
(666.524)

Range 238.000 -
3430.000

18.000 -
3229.000

18.000 -
3430.000

Type of CHD
Event

None 0 (0.0%) 0 (0.0%) 0 (0.0%)
infdeath 2897

(100.0%)
0 (0.0%) 2897

(91.9%)
silent 0 (0.0%) 135

(52.5%)
135 (4.3%)

angina 0 (0.0%) 71 (27.6%) 71 (2.3%)
4 0 (0.0%) 51 (19.8%) 51 (1.6%)

Weight (lbs) <
0.0011

Mean (SD) 169.554
(21.010)

174.463
(21.573)

169.954
(21.096)

Range 78.000 -
290.000

130.000 -
320.000

78.000 -
320.000

Weight Category <
0.0012

< 140 217 (7.5%) 15 (5.8%) 232 (7.4%)
140-170 1440

(49.7%)
98 (38.1%) 1538

(48.8%)
170-200 1049

(36.2%)
122

(47.5%)
1171

(37.1%)
> 200 191 (6.6%) 22 (8.6%) 213 (6.8%)
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No
(N=2897)

Yes
(N=257)

Total
(N=3154)

p
value

RECODE of age
(Age)

<
0.0012

35-40 512
(17.7%)

31 (12.1%) 543
(17.2%)

41-45 1036
(35.8%)

55 (21.4%) 1091
(34.6%)

46-50 680
(23.5%)

70 (27.2%) 750
(23.8%)

51-55 463
(16.0%)

65 (25.3%) 528
(16.7%)

56-60 206 (7.1%) 36 (14.0%) 242 (7.7%)

1. Linear Model ANOVA
2. Pearson’s Chi-squared test

3.7.6. Data by age and personality type

For now, we will look at the interaction between age and personality type
(dibpat). To make it easier to visualize the data, we summarize the event
rates for each combination of age:

chd_grouped_data =
wcgs |>
summarize(

.by = c(age, dibpat),
n = n(),
`p(chd)` = mean(chd69 == "Yes") |>
labelled(label = "CHD Event by 1969"),

`odds(chd)` = `p(chd)`/(1-`p(chd)`),
`logit(chd)` = log(`odds(chd)`)
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)

chd_grouped_data
#> # A tibble: 42 x 6
#> age dibpat n `p(chd)` `odds(chd)` `logit(chd)`
#> <dbl> <fct> <int> <dbl+lbl> <dbl> <dbl>
#> 1 50 Type A 76 0.105 0.118 -2.14
#> 2 51 Type A 67 0.164 0.196 -1.63
#> 3 59 Type A 30 0.233 0.304 -1.19
#> 4 44 Type A 113 0.0796 0.0865 -2.45
#> 5 47 Type A 72 0.0972 0.108 -2.23
#> 6 40 Type A 133 0.0677 0.0726 -2.62
#> 7 41 Type A 108 0.0648 0.0693 -2.67
#> 8 43 Type A 97 0.0722 0.0778 -2.55
#> 9 54 Type A 53 0.132 0.152 -1.88
#> 10 48 Type A 80 0.15 0.176 -1.73
#> # i 32 more rows

3.7.7. Graphical exploration

library(ggplot2)
library(ggeasy)
library(scales)
chd_plot_probs =
chd_grouped_data |>
ggplot(

aes(
x = age,
y = `p(chd)`,
col = dibpat)

) +
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geom_point(aes(size = n), alpha = .7) +
scale_size(range = c(1,4)) +
geom_line() +
theme_bw() +
ylab("P(CHD Event by 1969)") +
scale_y_continuous(

labels = scales::label_percent(),
sec.axis = sec_axis(
~ odds(.),
name = "odds(CHD Event by 1969)")) +

ggeasy::easy_labs() +
theme(legend.position = "bottom")

print(chd_plot_probs)
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Figure 3.9.: CHD rates by age group, probability scale

3.7.7.1. Odds scale

trans_odds = trans_new(
name = "odds",
transform = odds,
inverse = odds_inv)

chd_plot_odds = chd_plot_probs +
scale_y_continuous(

trans = trans_odds, # this line changes the vertical spacing
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name = chd_plot_probs$labels$y,
sec.axis = sec_axis(
~ odds(.),
name = "odds(CHD Event by 1969)"))

print(chd_plot_odds)
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Figure 3.10.: CHD rates by age group, odds spacing

3.7.7.2. Log-odds (logit) scale
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chd_plot_logit =
chd_grouped_data |>
ggplot(

aes(
x = age,
y = `logit(chd)`,
col = dibpat)

) +
geom_point(aes(size = n), alpha = .7) +
scale_size(range = c(1,4)) +
geom_line() +
theme_bw() +
ylab("log{odds(CHD Event by 1969)}") +
ggeasy::easy_labs()

print(chd_plot_logit)
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Figure 3.11.: CHD data (logit-scale)

3.7.8. Logistic regression models for CHD data

Here, we fit stratified models for CHD by personality type.

chd_glm_strat = glm(
"formula" = chd69 == "Yes" ~ dibpat + dibpat:age - 1,
"data" = wcgs,
"family" = binomial(link = "logit")

)

chd_glm_strat |> parameters() |> print_md()
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Table 3.9.: CHD model, stratified parametrization

Parameter
Log-
Odds SE 95% CI z p

dibpat (Type A) -5.50 0.67 (-6.83, -4.19) -8.18 < .001
dibpat (Type B) -5.80 0.98 (-7.73, -3.90) -5.95 < .001
dibpat (Type A) ×
age

0.07 0.01 (0.05, 0.10) 5.24 < .001

dibpat (Type B) ×
age

0.06 0.02 (0.02, 0.10) 3.01 0.003

We can get the corresponding odds ratios (𝑒𝛽s) by passing exponentiate
= TRUE to parameters():

chd_glm_strat |>
parameters(exponentiate = TRUE) |>
print_md()

Table 3.10.: Odds ratio estimates for CHD model

Parameter
Odds
Ratio SE 95% CI z p

dibpat (Type A) 4.09e-03 2.75e-
03

(1.08e-03,
0.02)

-8.18 <
.001

dibpat (Type B) 3.02e-03 2.94e-
03

(4.40e-04,
0.02)

-5.95 <
.001

dibpat (Type A)
× age

1.07 0.01 (1.05, 1.10) 5.24 <
.001

dibpat (Type B)
× age

1.06 0.02 (1.02, 1.11) 3.01 0.003
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3.7.9. Models superimposed on data

We can graph our fitted models on each scale (probability, odds, log-
odds).

3.7.9.1. probability scale

curve_type_A = function(x)
{
chd_glm_strat |> predict(

type = "response",
newdata = tibble(age = x, dibpat = "Type A"))

}

curve_type_B = function(x)
{
chd_glm_strat |> predict(

type = "response",
newdata = tibble(age = x, dibpat = "Type B"))

}

chd_plot_probs_2 =
chd_plot_probs +
geom_function(

fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
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aes(col = "Type B")
)

print(chd_plot_probs_2)
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3.7.9.2. odds scale

curve_type_A = function(x)
{
chd_glm_strat |> predict(

type = "link",
newdata = tibble(age = x, dibpat = "Type A")) |> exp()
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}
curve_type_B = function(x)
{
chd_glm_strat |> predict(

type = "link",
newdata = tibble(age = x, dibpat = "Type B")) |> exp()

}

chd_plot_odds_2 =
chd_plot_odds +
geom_function(

fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
aes(col = "Type B")

)
print(chd_plot_odds_2)
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Figure 3.12.

3.7.9.3. log-odds (logit) scale

curve_type_A = function(x)
{
chd_glm_strat |> predict(

type = "link",
newdata = tibble(age = x, dibpat = "Type A"))

}
curve_type_B = function(x)
{
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chd_glm_strat |> predict(
type = "link",
newdata = tibble(age = x, dibpat = "Type B"))

}

chd_plot_logit_2 =
chd_plot_logit +
geom_function(

fun = curve_type_A,
aes(col = "Type A")

) +
geom_function(

fun = curve_type_B,
aes(col = "Type B")

)

print(chd_plot_logit_2)
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Figure 3.13.

3.7.10. reference-group and contrast parametrization

We can also use the corner-point parametrization (with reference groups
and contrasts):

chd_glm_contrasts =
wcgs |>
glm(

"data" = _,
"formula" = chd69 == "Yes" ~ dibpat*age,
"family" = binomial(link = "logit")

)
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chd_glm_contrasts |>
parameters() |>
print_md()

Table 3.11.: CHD model (corner-point parametrization)

Parameter
Log-
Odds SE 95% CI z p

(Intercept) -5.50 0.67 (-6.83, -4.19) -8.18 < .001
dibpat (Type B) -0.30 1.18 (-2.63, 2.02) -0.26 0.797
age 0.07 0.01 (0.05, 0.10) 5.24 < .001
dibpat (Type B) ×
age

-0.01 0.02 (-0.06, 0.04) -0.42 0.674

Compare with Table 3.10:

Exercise 3.13. If I give you model 1, how would you get the coefficients
of model 2?

3.8. Fitting logistic regression models

3.8.1. Maximum likelihood estimation for ciid data

Assume:

• 𝑌𝑖|𝑋̃𝑖 ∼iid Ber(𝜋(𝑋𝑖))
• logit {𝜋( ̃𝑥)} = ̃𝑥′𝛽
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Then the score function is:

ℓ′( ̃𝛽) = 𝜕
𝜕𝛽 ℓ( ̃𝛽)

= 𝜕
𝜕𝛽

𝑛
∑
𝑖=1

𝑦𝑖 (logit {𝜋𝑖}) + log {1 − 𝜋𝑖}

=
𝑛

∑
𝑖=1

𝜕
𝜕𝛽 {𝑦𝑖 ( ̃𝑥′𝛽) + log {1 − 𝜋𝑖}}

=
𝑛

∑
𝑖=1

{𝑦𝑖
𝜕

𝜕𝛽 ( ̃𝑥′𝛽) + 𝜕
𝜕𝛽 log {1 − 𝜋𝑖}}

In general, the estimating equation ℓ′(𝛽; x) = 0 cannot be solved analyti-
cally.

Instead, we have to use a variant of the Newton-Raphson method (c.f.,
Dobson and Barnett (2018), Chapter 4).

For now, all you need to know is that we make an iterative series of
guesses, and each guess helps us make the next guess better (higher log-
likelihood).

You can see some information about this process like so:

options(digits = 8)
temp =
wcgs |>
glm(

control = glm.control(trace = TRUE),
"data" = _,
"formula" = chd69 == "Yes" ~ dibpat*age,
"family" = binomial(link = "logit")
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)
#> Deviance = 1775.7899 Iterations - 1
#> Deviance = 1708.5396 Iterations - 2
#> Deviance = 1704.0434 Iterations - 3
#> Deviance = 1703.9833 Iterations - 4
#> Deviance = 1703.9832 Iterations - 5
#> Deviance = 1703.9832 Iterations - 6

After each iteration of the fitting procedure, the deviance (2(ℓfull − ℓ( ̂𝛽)) )
is printed. You can see that the algorithm took six iterations to converge
to a solution where the likelihood wasn’t changing much anymore.

3.9. Model comparisons for logistic models

3.9.1. Deviance test

We can compare the maximized log-likelihood of our model, ℓ( ̂𝛽; x), versus
the log-likelihood of the full model (aka saturated model aka maximal
model), ℓfull, which has one parameter per covariate pattern. With enough
data, 2(ℓfull − ℓ( ̂𝛽; x))∼̇𝜒2(𝑁 − 𝑝), where 𝑁 is the number of distinct
covariate patterns and 𝑝 is the number of 𝛽 parameters in our model. A
significant p-value for this deviance statistic indicates that there’s some
detectable pattern in the data that our model isn’t flexible enough to
catch.

Caution

The deviance statistic needs to have a large amount of data for each
covariate pattern for the 𝜒2 approximation to hold. A guideline
from Dobson is that if there are 𝑞 distinct covariate patterns 𝑥1..., 𝑥𝑞,
with 𝑛1, ..., 𝑛𝑞 observations per pattern, then the expected frequen-

193



3. Models for Binary Outcomes

cies 𝑛𝑘 ⋅ 𝜋(𝑥𝑘) should be at least 1 for every pattern 𝑘 ∈ 1 ∶ 𝑞.

If you have covariates measured on a continuous scale, you may not be
able to use the deviance tests to assess goodness of fit.

3.9.2. Hosmer-Lemeshow test

If our covariate patterns produce groups that are too small, a reasonable
solution is to make bigger groups by merging some of the covariate-pattern
groups together.

Hosmer and Lemeshow (1980) proposed that we group the patterns by
their predicted probabilities according to the model of interest. For exam-
ple, you could group all of the observations with predicted probabilities of
10% or less together, then group the observations with 11%-20% probabil-
ity together, and so on; 𝑔 = 10 categories in all.

Then we can construct a statistic

𝑋2 =
𝑔

∑
𝑐=1

(𝑜𝑐 − 𝑒𝑐)2

𝑒𝑐

where 𝑜𝑐 is the number of events observed in group 𝑐, and 𝑒𝑐 is the number
of events expected in group 𝑐 (based on the sum of the fitted values ̂𝜋𝑖 for
observations in group 𝑐).

If each group has enough observations in it, you can compare 𝑋2 to a 𝜒2

distribution; by simulation, the degrees of freedom has been found to be
approximately 𝑔 − 2.

For our CHD model, this procedure would be:
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wcgs =
wcgs |>
mutate(

pred_probs_glm1 = chd_glm_strat |> fitted(),
pred_prob_cats1 =
pred_probs_glm1 |>
cut(breaks = seq(0, 1, by = .1),

include.lowest = TRUE))

HL_table =
wcgs |>
summarize(

.by = pred_prob_cats1,
n = n(),
o = sum(chd69 == "Yes"),
e = sum(pred_probs_glm1)

)

HL_table |> pander()

pred_prob_cats1 n o e
(0.1,0.2] 785 116 108
(0.2,0.3] 64 12 13.77
[0,0.1] 2,305 129 135.2

X2 = HL_table |>
summarize(

`X^2` = sum((o-e)^2/e)
) |>
pull(`X^2`)

print(X2)
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#> [1] 1.1102871

pval1 = pchisq(X2, lower = FALSE, df = nrow(HL_table) - 2)

Our statistic is 𝑋2 = 1.11028711; 𝑝(𝜒2(1) > 1.11028711) = 0.29201955,
which is our p-value for detecting a lack of goodness of fit.

Unfortunately that grouping plan left us with just three categories with
any observations, so instead of grouping by 10% increments of predicted
probability, typically analysts use deciles of the predicted probabilities:

wcgs =
wcgs |>
mutate(

pred_probs_glm1 = chd_glm_strat |> fitted(),
pred_prob_cats1 =
pred_probs_glm1 |>
cut(breaks = quantile(pred_probs_glm1, seq(0, 1, by = .1)),

include.lowest = TRUE))

HL_table =
wcgs |>
summarize(

.by = pred_prob_cats1,
n = n(),
o = sum(chd69 == "Yes"),
e = sum(pred_probs_glm1)

)

HL_table |> pander()
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pred_prob_cats1 n o e
(0.114,0.147] 275 48 36.81
(0.147,0.222] 314 51 57.19

(0.0774,0.0942] 371 27 32.56
(0.0942,0.114] 282 30 29.89
(0.0633,0.069] 237 17 15.97
(0.069,0.0774] 306 20 22.95
(0.0487,0.0633] 413 27 24.1
(0.0409,0.0487] 310 14 14.15
[0.0322,0.0363] 407 16 13.91
(0.0363,0.0409] 239 7 9.48

X2 = HL_table |>
summarize(

`X^2` = sum((o-e)^2/e)
) |>
pull(`X^2`)

print(X2)
#> [1] 6.7811383

pval1 = pchisq(X2, lower = FALSE, df = nrow(HL_table) - 2)

Now we have more evenly split categories. The p-value is 0.56041994, still
not significant.

Graphically, we have compared:

HL_plot =
HL_table |>
ggplot(aes(x = pred_prob_cats1)) +
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geom_line(aes(y = e, x = pred_prob_cats1, group = "Expected", col = "Expected")) +
geom_point(aes(y = e, size = n, col = "Expected")) +
geom_point(aes(y = o, size = n, col = "Observed")) +
geom_line(aes(y = o, col = "Observed", group = "Observed")) +
scale_size(range = c(1,4)) +
theme_bw() +
ylab("number of CHD events") +
theme(axis.text.x = element_text(angle = 45))

print(HL_plot)
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3.9.3. Comparing models

• AIC = −2 ∗ ℓ( ̂𝜃) + 2 ∗ 𝑝 [lower is better]
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• BIC = −2 ∗ ℓ( ̂𝜃) + 𝑝 ∗ log(𝑛) [lower is better]
• likelihood ratio [higher is better]

3.10. Residual-based diagnostics

3.10.1. Logistic regression residuals only work for grouped data

Residuals only work if there is more than one observation for most covari-
ate patterns.

Here we will create the grouped-data version of our CHD model from the
WCGS study:

wcgs_grouped =
wcgs |>
summarize(

.by = c(dibpat, age),
n = n(),
chd = sum(chd69 == "Yes"),
`!chd` = sum(chd69 == "No")

)

chd_glm_strat_grouped = glm(
"formula" = cbind(chd, `!chd`) ~ dibpat + dibpat:age - 1,
"data" = wcgs_grouped,
"family" = binomial(link = "logit")

)

chd_glm_strat_grouped |> parameters() |> print_md()
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Parameter
Log-
Odds SE 95% CI z p

dibpat (Type A) -5.50 0.67 (-6.83, -4.19) -8.18 < .001
dibpat (Type B) -5.80 0.98 (-7.73, -3.90) -5.95 < .001
dibpat (Type A) ×
age

0.07 0.01 (0.05, 0.10) 5.24 < .001

dibpat (Type B) ×
age

0.06 0.02 (0.02, 0.10) 3.01 0.003

3.10.2. (Response) residuals

𝑒𝑘
def= ̄𝑦𝑘 − ̂𝜋(𝑥𝑘)

(𝑘 indexes the covariate patterns)

We can graph these residuals 𝑒𝑘 against the fitted values ̂𝜋(𝑥𝑘):

wcgs_grouped =
wcgs_grouped |>
mutate(

fitted = chd_glm_strat_grouped |> fitted(),
fitted_logit = fitted |> logit(),
response_resids =
chd_glm_strat_grouped |> resid(type = "response")

)

wcgs_response_resid_plot =
wcgs_grouped |>
ggplot(

mapping = aes(
x = fitted,
y = response_resids
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)
) +
geom_point(

aes(col = dibpat)
) +
geom_hline(yintercept = 0) +
geom_smooth( 1

se = TRUE,
method.args = list(
span=2/3,
degree=1,
family="symmetric",
iterations=3),

method = stats::loess)

1 Don’t worry about these options for now; I chose them to match
autoplot() as closely as I can. plot.glm and autoplot use
stats::lowess instead of stats::loess; stats::lowess is older,
hard to use with geom_smooth, and hard to match exactly with
stats::loess; see https://support.bioconductor.org/p/2323/.]

wcgs_response_resid_plot |> print()
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We can see a slight fan-shape here: observations on the right have larger
variance (as expected since 𝑣𝑎𝑟( ̄𝑦) = 𝜋(1 − 𝜋)/𝑛 is maximized when 𝜋 =
0.5).
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3.10.3. Pearson residuals

The fan-shape in the response residuals plot isn’t necessarily a concern
here, since we haven’t made an assumption of constant residual variance,
as we did for linear regression.

However, we might want to divide by the standard error in order to make
the graph easier to interpret. Here’s one way to do that:

The Pearson (chi-squared) residual for covariate pattern 𝑘 is:

𝑋𝑘 = ̄𝑦𝑘 − ̂𝜋𝑘
√ ̂𝜋𝑘(1 − ̂𝜋𝑘)/𝑛𝑘

where
̂𝜋𝑘

def= ̂𝜋(𝑥𝑘)
def= ̂𝑃 (𝑌 = 1|𝑋 = 𝑥𝑘)
def= expit(𝑥′

𝑖 ̂𝛽)
def= expit( ̂𝛽0 +

𝑝
∑
𝑗=1

̂𝛽𝑗𝑥𝑖𝑗)

Let’s take a look at the Pearson residuals for our CHD model from the
WCGS data (graphed against the fitted values on the logit scale):

library(ggfortify)

autoplot(chd_glm_strat_grouped, which = 1, ncol = 1) |> print()
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The fan-shape is gone, and these residuals don’t show any obvious signs
of model fit issues.
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3.10.3.1. Pearson residuals plot for beetles data

If we create the same plot for the beetles model, we see some strong
evidence of a lack of fit:

autoplot(beetles_glm_grouped, which = 1, ncol = 1) |> print()
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3.10.3.2. Pearson residuals with individual (ungrouped) data

What happens if we try to compute residuals without grouping the data
by covariate pattern?
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library(ggfortify)

autoplot(chd_glm_strat, which = 1, ncol = 1) |> print()
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Meaningless.

3.10.3.3. Residuals plot by hand (optional section)

If you want to check your understanding of what these residual plots are,
try building them yourself:

wcgs_grouped =
wcgs_grouped |>
mutate(

fitted = chd_glm_strat_grouped |> fitted(),
fitted_logit = fitted |> logit(),
resids = chd_glm_strat_grouped |> resid(type = "pearson")

)

wcgs_resid_plot1 =
wcgs_grouped |>
ggplot(

mapping = aes(
x = fitted_logit,
y = resids

)

) +
geom_point(

aes(col = dibpat)
) +
geom_hline(yintercept = 0) +
geom_smooth(se = FALSE,

method.args = list(
span=2/3,
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degree=1,
family="symmetric",
iterations=3,
surface="direct"
# span = 2/3,
# iterations = 3

),
method = stats::loess)

# plot.glm and autoplot use stats::lowess, which is hard to use with
# geom_smooth and hard to match exactly;
# see https://support.bioconductor.org/p/2323/

wcgs_resid_plot1 |> print()
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3.10.4. Pearson chi-squared goodness of fit test

The Pearson chi-squared goodness of fit statistic is:

𝑋2 =
𝑚

∑
𝑘=1

𝑋2
𝑘

Under the null hypothesis that the model in question is correct (i.e., suffi-
ciently complex), 𝑋2 ∼̇ 𝜒2(𝑁 − 𝑝).

X = chd_glm_strat_grouped |>
resid(type = "pearson")

chisq_stat = sum(X^2)

pval = pchisq(
chisq_stat,
lower = FALSE,
df = length(X) - length(coef(chd_glm_strat_grouped)))

For our CHD model, the p-value for this test is 0.26523556; no significant
evidence of a lack of fit at the 0.05 level.

3.10.4.1. Standardized Pearson residuals

Especially for small data sets, we might want to adjust our residuals for
leverage (since outliers in 𝑋 add extra variance to the residuals):

𝑟𝑃𝑘
= 𝑋𝑘

√1 − ℎ𝑘

where ℎ𝑘 is the leverage of 𝑋𝑘. The functions autoplot() and plot.lm()
use these for some of their graphs.
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3.10.5. Deviance residuals

For large sample sizes, the Pearson and deviance residuals will be approx-
imately the same. For small sample sizes, the deviance residuals from
covariate patterns with small sample sizes can be unreliable (high vari-
ance).

𝑑𝑘 = sign(𝑦𝑘 − 𝑛𝑘 ̂𝜋𝑘) {√2[ℓfull(𝑥𝑘) − ℓ( ̂𝛽; 𝑥𝑘)]}

3.10.5.1. Standardized deviance residuals

𝑟𝐷𝑘
= 𝑑𝑘

√1 − ℎ𝑘

3.10.6. Diagnostic plots

Let’s take a look at the full set of autoplot() diagnostics now for our CHD
model:

chd_glm_strat_grouped |> autoplot(which = 1:6) |> print()
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Things look pretty good here. The QQ plot is still usable; with large
samples; the residuals should be approximately Gaussian.
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3. Models for Binary Outcomes

3.10.6.1. Beetles

Let’s look at the beetles model diagnostic plots for comparison:

beetles_glm_grouped |> autoplot(which = 1:6) |> print()
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Hard to tell much from so little data, but there might be some issues
here.
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3. Models for Binary Outcomes

3.11. Odds Ratios vs Probability (Risk) Ratios

3.11.0.1. Case 1: rare events

For rare events, odds ratios and probability (a.k.a. risk, a.k.a. prevalence)
ratios will be close:

𝜋1 = .01 𝜋2 = .02

pi1 = .01
pi2 = .02
pi2/pi1
#> [1] 2
odds(pi2)/odds(pi1)
#> [1] 2.0204082

3.11.0.2. Case 2: frequent events

𝜋1 = .4 𝜋2 = .5
For more frequently-occurring outcomes, this won’t be the case:

pi1 = .4
pi2 = .5
pi2/pi1
#> [1] 1.25
odds(pi2)/odds(pi1)
#> [1] 1.5

If you want risk ratios, you can sometimes get them by changing the link
function:
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data(anthers, package = "dobson")
anthers.sum<-aggregate(
anthers[c("n","y")],
by=anthers[c("storage")],FUN=sum)

anthers_glm_log = glm(
formula = cbind(y,n-y)~storage,
data=anthers.sum,
family=binomial(link="log"))

anthers_glm_log |> parameters() |> print_md()

Parameter Log-Risk SE 95% CI z p
(Intercept) -0.80 0.12 (-1.04, -0.58) -6.81 < .001
storage 0.17 0.07 (0.02, 0.31) 2.31 0.021

Now exp {𝛽} gives us risk ratios instead of odds ratios:

anthers_glm_log |> parameters(exponentiate = TRUE) |> print_md()

Parameter Risk Ratio SE 95% CI z p
(Intercept) 0.45 0.05 (0.35, 0.56) -6.81 < .001
storage 1.18 0.09 (1.03, 1.36) 2.31 0.021

Let’s compare this model with a logistic model:

anthers_glm_logit = glm(
formula = cbind(y, n - y) ~ storage,
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data = anthers.sum,
family = binomial(link = "logit"))

anthers_glm_logit |> parameters(exponentiate = TRUE) |> print_md()

Parameter Odds Ratio SE 95% CI z p
(Intercept) 0.76 0.20 (0.45, 1.27) -1.05 0.296
storage 1.49 0.26 (1.06, 2.10) 2.29 0.022

[to add: fitted plots on each outcome scale]

When I try to use link ="log" in practice, I often get errors about not
finding good starting values for the estimation procedure. This is likely
because the model is producing fitted probabilities greater than 1.

When this happens, you can try to fit Poisson regression models instead
(we will see those soon!). But then the outcome distribution isn’t quite
right, and you won’t get warnings about fitted probabilities greater than
1. In my opinion, the Poisson model for binary outcomes is confusing and
not very appealing.
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Poisson regression and variations

Acknowledgements

This content is adapted from:

• Dobson and Barnett (2018), Chapter 9
• Vittinghoff et al. (2012), Chapter 8

Configuring R

Functions from these packages will be used throughout this document:
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library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
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ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9

4.1. Introduction

4.1.1. Examples of count outcomes

• Cyclones per season
• Seconds of tooth-brushing per session (if rounded)
• Infections per person-year
• Visits to ER per person-month
• Car accidents per 1000 miles driven

Note

In many count outcomes, there is some sense of “exposure magnitude”
or “duration of observation”: person-year, time at risk, session, miles
driven, etc.
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4.1.2. Poisson distribution

𝑃(𝑌 = 𝑦) = 𝜇𝑦𝑒−𝜇

𝑦!

4.1.2.1. Properties

• 𝔼[𝑌 ] = 𝜇
• Var[𝑌 ] = 𝜇

4.1.3. Accounting for exposure

If the exposures/observation durations, denoted 𝑇 = 𝑡, are not all equal,
we model

𝜇 = 𝜆𝑡

𝜆 is interpreted as the “expected event rate per unit of exposure”; that
is,

𝜆 = 𝔼[𝑌 |𝑇 = 𝑡]
𝑡

Important

The exposure magnitude, 𝑇 , is similar to a covariate in linear or lo-
gistic regression. However, there is an important difference: in count
regression, there is no intercept corresponding to 𝔼[𝑌 |𝑇 = 0].
In other words, this model assumes that if there is no exposure, there
can’t be any events.
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4.1.4. Adding covariates

With covariates, 𝜆 becomes a function of the covariates 𝑋̃ = (𝑋1, … , 𝑋𝑛),
with a log {} link function (and thus an exp {} inverse-link). That is:

𝔼[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡] = 𝜇( ̃𝑥, 𝑡)
𝜇( ̃𝑥, 𝑡) = 𝜆( ̃𝑥) ⋅ 𝑡

𝜆( ̃𝑥) = exp {𝜂( ̃𝑥)}
𝜂( ̃𝑥) = ̃𝑥′ ̃𝛽 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

Therefore,

log {{𝔼[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡]}} = log {{𝜇( ̃𝑥)}}
= log {{𝜆( ̃𝑥) ⋅ 𝑡}}
= log {𝜆( ̃𝑥)} + log {𝑡}
= log {exp {𝜂( ̃𝑥)}} + log {𝑡}
= 𝜂( ̃𝑥) + log {𝑡}
= ̃𝑥′ ̃𝛽 + log {𝑡}
= (𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝) + log {𝑡}

In contrast with the 𝑋s, 𝑇 enters this expression with a log {} transfor-
mation and without a corresponding 𝛽 coefficient.

Note

Terms that enter the linear component of a model without a coeffi-
cient, such as log {𝑡} here, are called offsets.
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4.1.5. Rate ratios

Differences on the log-rate scale become ratios on the rate scale.

Tip

exp {𝑎 − 𝑏} = exp {𝑎}
exp {𝑏}

Therefore, according to this model, differences of 𝛿 in covariate 𝑥𝑗
correspond to rate ratios of exp {𝛽𝑗 ⋅ 𝛿}.

That is, letting 𝑋̃−𝑗 denote vector 𝑋̃ with element 𝑗 removed:

{
log {𝔼[𝑌 |𝑋𝑗 = 𝑎, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]}

−log {𝔼[𝑌 |𝑋𝑗 = 𝑏, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]}
}

= { log {𝑡} + 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑗(𝑎) + ... + 𝛽𝑝𝑥𝑝
−log {𝑡} + 𝛽0 + 𝛽1𝑥1 + ... + 𝛽𝑗(𝑏) + ... + 𝛽𝑝𝑥𝑝

}

= 𝛽𝑗(𝑎 − 𝑏)

And accordingly,

𝔼[𝑌 |𝑋𝑗 = 𝑎, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]
𝔼[𝑌 |𝑋𝑗 = 𝑏, 𝑋̃−𝑗 = ̃𝑥−𝑗, 𝑇 = 𝑡]

= exp {𝛽𝑗(𝑎 − 𝑏)}
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4.2. Inference for count regression models

4.2.1. Confidence intervals for regression coefficients and rate
ratios

As usual:

𝛽 ∈ [ ̂𝛽±𝑧1− 𝛼
2

⋅ ̂se ( ̂𝛽)]

Rate ratios: exponentiate CI endpoints

exp {𝛽} ∈ [exp { ̂𝛽±𝑧1− 𝛼
2

⋅ ̂se ( ̂𝛽)}]

4.2.2. Hypothesis tests for regression coefficients

𝑡 =
̂𝛽 − 𝛽0
̂se ( ̂𝛽)

Compare 𝑡 or |𝑡| to the tails of the standard Gaussian distribution, accord-
ing to the null hypothesis.

4.2.3. Comparing nested models

log(likelihood ratio) tests, as usual.
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4.3. Prediction

̂𝑦 def= 𝔼̂[𝑌 |𝑋̃ = ̃𝑥, 𝑇 = 𝑡]
= ̂𝜇( ̃𝑥, 𝑡)
= 𝜆̂( ̃𝑥) ⋅ 𝑡
= exp { ̂𝜂( ̃𝑥)} ⋅ 𝑡
= exp { ̃𝑥′𝛽̂} ⋅ 𝑡

4.4. Diagnostics

4.4.1. Residuals

4.4.1.1. Observation residuals

𝑒 def= 𝑦 − ̂𝑦

4.4.1.2. Pearson residuals

𝑟 = 𝑒
̂se (𝑒) ≈ 𝑒

√ ̂𝑦

4.4.1.3. Standardized Pearson residuals

𝑟𝑝 = 𝑟√
1 − ℎ

where ℎ is the “leverage” (which we will continue to leave undefined).
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4.4.1.4. Deviance residuals

𝑑𝑘 = sign(𝑦 − ̂𝑦) {√2[ℓfull(𝑦) − ℓ( ̂𝛽; 𝑦)]}

Note

sign(𝑥) def= 𝑥
|𝑥|

In other words:

• sign(𝑥) = −1 if 𝑥 < 0
• sign(𝑥) = 0 if 𝑥 = 0
• sign(𝑥) = 1 if 𝑥 > 0

4.5. Zero-inflation

4.5.1. Models for zero-inflated counts

We assume a latent (unobserved) binary variable, 𝑍, which we model using
logistic regression:

𝑃 (𝑍 = 1|𝑋 = 𝑥) = 𝜋(𝑥) = expit(𝛾0 + 𝛾1𝑥1 + ...)

According to this model, if 𝑍 = 1, then 𝑌 will always be zero, regardless
of 𝑋 and 𝑇 :

𝑃(𝑌 = 0|𝑍 = 1, 𝑋 = 𝑥, 𝑇 = 𝑡) = 1

Otherwise (if 𝑍 = 0), 𝑌 will have a Poisson distribution, conditional on
𝑋 and 𝑇 , as above.
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Even though we never observe 𝑍, we can estimate the parameters 𝛾0-𝛾𝑝,
via maximum likelihood:

𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑇 = 𝑡) = 𝑃(𝑌 = 𝑦, 𝑍 = 1|...) + 𝑃(𝑌 = 𝑦, 𝑍 = 0|...)

(by the Law of Total Probability)

where

𝑃(𝑌 = 𝑦, 𝑍 = 𝑧|...) = 𝑃(𝑌 = 𝑦|𝑍 = 𝑧, ...)𝑃 (𝑍 = 𝑧|...)

Exercise 4.1. Expand 𝑃(𝑌 = 0|𝑋 = 𝑥, 𝑇 = 𝑡), 𝑃(𝑌 = 1|𝑋 = 𝑥, 𝑇 = 𝑡)
and 𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑇 = 𝑡) into expressions involving 𝑃(𝑍 = 1|𝑋 =
𝑥, 𝑇 = 𝑡) and 𝑃(𝑌 = 𝑦|𝑍 = 0, 𝑋 = 𝑥, 𝑇 = 𝑡).

Exercise 4.2. Derive the expected value and variance of 𝑌 , conditional
on 𝑋 and 𝑇 , as functions of 𝑃(𝑍 = 1|𝑋 = 𝑥, 𝑇 = 𝑡) and 𝔼[𝑌 |𝑍 = 0, 𝑋 =
𝑥, 𝑇 = 𝑡].

4.6. Over-dispersion

4.6.1. Negative binomial models

The Poisson distribution model forces the variance to equal the mean. In
practice, many count distributions will have a variance substantially larger
than the mean (or occasionally smaller).
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When we encounter this, we can try to reduce the residual variance by
adding more covariates. However, there are also alternatives to the Poisson
model.

Most notably, the negative binomial model:

𝑃(𝑌 = 𝑦) = 𝜇𝑦

𝑦! ⋅ Γ(𝜌 + 𝑦)
Γ(𝜌) ⋅ (𝜌 + 𝜇)𝑦 ⋅ (1 + 𝜇

𝜌 )
−𝜌

where 𝜌 is an overdispersion parameter and Γ(𝑥) = (𝑥 − 1)! for integers
𝑥.

You don’t need to memorize or understand this expression, but as 𝜌 → ∞,
the second term converges to 1 and the third term converges to exp {−𝜇},
which brings us back to the Poisson distribution.

For this distribution, 𝔼[𝑌 ] = 𝜇 and Var(𝑌 ) = 𝜇 + 𝜇2

𝜌 > 𝜇.

We can still model 𝜇 as a function of 𝑋 and 𝑇 as before, and we can
combine this model with zero-inflation by using it in place of the Poisson
distribution for 𝑃(𝑌 = 𝑦|𝑍 = 0, 𝑋 = 𝑥, 𝑇 = 𝑡).

4.6.2. Quasipoisson

An alternative to Negative binomial is the “quasipoisson” distribution.
I’ve never used it, but it seems to be a method-of-moments type approach
rather than maximum likelihood. It models the variance as Var(𝑌 ) = 𝜇𝜃,
and estimates 𝜃 accordingly.

See ?quasipoisson in R for more.
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Time to Event Models
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In many health sciences applications, binary outcomes are incompletely
observed. For example, if we are studying whether cancer patients experi-
ence a relapse after a initial remission, we may may not be able to follow
patients to the end of their lives; instead, we may only know whether each
patient has relapsed before the end of the study. If a patient has not re-
lapsed by that point, we might not know if they will relapse at some other
date or if they will stay cancer-free for the rest of their lives. 1 Their
recurrence status at end-of-life is missing data. If some study participants
withdraw from a study before the end date in the study design, there will
be even more missing data. All of this missing data will make logistic
regression difficult for this type of data.

However, these outcome observations are not entirely missing. We know
that those patients stayed relapse free at least until the time point when we
last saw them. If we also know the time-to-event for the participants who
did experience events while under study, we can analyze time-to-event-
or-study-exit, combined with the indicator of which of these two cases
occurred, using survival analysis. The survival analysis framework is the
subject of the rest of these course notes.

1Binary outcomes are typically defined for a specific time-point. It is important to
clearly define whether we are interested in outcome status at end of study, at end of
life, or at some other time.
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5. Introduction to Survival Analysis

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
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library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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5.1. Overview

5.1.1. Time-to-event outcomes

Survival analysis is a framework for modeling time-to-event outcomes.
It is used in:

• clinical trials, where the event is often death or recurrence of disease.
• engineering reliability analysis, where the event is failure of a device

or system.
• insurance, particularly life insurance, where the event is death.

Note

The term Survival analysis is a bit misleading. Survival outcomes can
sometimes be analyzed using binomial models (logistic regression).
Time-to-event models might be a better name.

5.2. Time-to-event outcome distributions

5.2.1. Distributions of Time-to-Event Data

• The distribution of event times is asymmetric and can be long-tailed,
and starts at 0 (that is, 𝑃(𝑇 < 0) = 0).

• The base distribution is not normal, but exponential.
• There are usually censored observations, which are ones in which

the failure time is not observed.
• Often, these are right-censored, meaning that we know that the

event occurred after some known time 𝑡, but we don’t know the
actual event time, as when a patient is still alive at the end of the
study.
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• Observations can also be left-censored, meaning we know the event
has already happened at time 𝑡, or interval-censored, meaning that
we only know that the event happened between times 𝑡1 and 𝑡2.

• Analysis is difficult if censoring is associated with treatment.

5.2.2. Right Censoring

• Patients are in a clinical trial for cancer, some on a new treatment
and some on standard of care.

• Some patients in each group have died by the end of the study.
We know the survival time (measured for example from time of
diagnosis—each person on their own clock).

• Patients still alive at the end of the study are right censored.
• Patients who are lost to follow-up or withdraw from the study may

be right-censored.

5.2.3. Left and Interval Censoring

• An individual tests positive for HIV.
• If the event is infection with HIV, then we only know that it has

occurred before the testing time 𝑡, so this is left censored.
• If an individual has a negative HIV test at time 𝑡1 and a positive

HIV test at time 𝑡2, then the infection event is interval censored.

5.3. Distribution functions for time-to-event
variables

5.3.1. The Probability Density Function (PDF)

For a time-to-event variable 𝑇 with a continuous distribution, the prob-
ability density function is defined as usual:

235



5. Introduction to Survival Analysis

𝑓(𝑡) def= 𝑝(𝑡) def= 𝑝(𝑇 = 𝑡)

Typically, this density is assumed to be 0 for all 𝑡 < 0; that is, 𝑓(𝑡) =
0, ∀𝑡 < 0. In other words, the range of 𝑇 is typically [0, ∞).

Example 5.1 (exponential distribution). Recall from Epi 202: the pdf of
the exponential distribution family of models is:

𝑝(𝑇 = 𝑡) = 𝟙𝑡≥0 ⋅ 𝜆e−𝜆𝑡

where 𝜆 > 0.

Here are some examples of exponential pdfs:
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5.3.2. The Cumulative Distribution Function (CDF)

The cumulative distribution function is defined as:

𝐹(𝑡) def= Pr(𝑇 ≤ 𝑡)

= ∫
𝑡

𝑢=0
𝑓(𝑢)𝑑𝑢

Example 5.2 (exponential distribution). Recall from Epi 202: the cdf of
the exponential distribution family of models is:

𝑃(𝑇 ≤ 𝑡) = 𝟙𝑡≥0 ⋅ (1 − e−𝜆𝑡)
where 𝜆 > 0.

Here are some examples of exponential cdfs:
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5.3.3. The Survival Function

For survival data, a more important quantity is the survival function:

𝑆(𝑡) def= Pr(𝑇 > 𝑡)

= ∫
∞

𝑢=𝑡
𝑝(𝑢)𝑑𝑢

= 1 − 𝐹(𝑡)

The survival function 𝑆(𝑡) is the probability that the event time is later
than 𝑡. If the event in a clinical trial is death, then 𝑆(𝑡) is the expected
fraction of the original population at time 0 who have survived up to time
𝑡 and are still alive at time 𝑡; that is, if 𝑋𝑡 represents survival status at
time 𝑡, with 𝑋𝑡 = 1 denoting alive at time 𝑡 and 𝑋𝑡 = 0 denoting deceased
at time 𝑡, then:

𝑆(𝑡) = 𝔼 [𝑋𝑡]

Example 5.3 (exponential distribution). Since 𝑆(𝑡) = 1 − 𝐹(𝑡), the sur-
vival function of the exponential distribution family of models is:

𝑃(𝑇 > 𝑡) = {e−𝜆𝑡, 𝑡 ≥ 0
1, 𝑡 ≤ 0

where 𝜆 > 0.

Here are some examples of exponential pdfs:
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5.3.4. The Hazard Function

Another important quantity is the hazard function:

Definition 5.1 (Hazard function). The hazard function for a random
variable 𝑇 at value 𝑡 is the conditional density of 𝑇 at 𝑡, given 𝑇 ≥ 𝑡; that
is:

ℎ(𝑡) def= 𝑝(𝑇 = 𝑡|𝑇 ≥ 𝑡)

If 𝑇 represents the time at which an event occurs, then ℎ(𝑡) is the proba-
bility that the event occurs at time 𝑡, given that it has not occurred prior
to time 𝑡.
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The hazard function has an important relationship to the density and
survival functions, which we can use to derive the hazard function for a
given probability distribution.

Theorem 5.1.
ℎ(𝑡) = 𝑓(𝑡)

𝑆(𝑡)

Proof.

Lemma 5.1 (Joint probability of a variable with itself).

𝑝(𝑇 = 𝑡, 𝑇 ≥ 𝑡) = 𝑝(𝑇 = 𝑡)

Proof. Recall from Epi 202: if 𝐴 and 𝐵 are statistical events and 𝐴 ⊆ 𝐵,
then 𝑝(𝐴, 𝐵) = 𝑝(𝐴). In particular, {𝑇 = 𝑡} ⊆ {𝑇 ≥ 𝑡}, so 𝑝(𝑇 = 𝑡, 𝑇 ≥
𝑡) = 𝑝(𝑇 = 𝑡).

Hence:

ℎ(𝑡) = 𝑝(𝑇 = 𝑡|𝑇 ≥ 𝑡)

= 𝑝(𝑇 = 𝑡, 𝑇 ≥ 𝑡)
𝑝(𝑇 ≥ 𝑡)

= 𝑝(𝑇 = 𝑡)
𝑝(𝑇 ≥ 𝑡)

= 𝑓(𝑡)
𝑆(𝑡)
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Example 5.4 (exponential distribution). The hazard function of the ex-
ponential distribution family of models is:

𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡) = 𝑓(𝑡)
𝑆(𝑡)

= 𝟙𝑡≥0 ⋅ 𝜆e−𝜆𝑡

e−𝜆𝑡

= 𝟙𝑡≥0 ⋅ 𝜆

Figure 5.1 shows some examples of exponential hazard functions:
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Figure 5.1.: Examples of hazard functions for exponential distributions

We can also view the hazard function as the derivative of the negative of
the logarithm of the survival function:
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Theorem 5.2.
ℎ(𝑡) = 𝜕

𝜕𝑡 {−log {𝑆(𝑡)}}

Proof.
ℎ(𝑡) = 𝑓(𝑡)

𝑆(𝑡)

= −𝑆′(𝑡)
𝑆(𝑡)

= −𝑆′(𝑡)
𝑆(𝑡)

= − 𝜕
𝜕𝑡 log {𝑆(𝑡)}

= 𝜕
𝜕𝑡 {−log {𝑆(𝑡)}}

5.3.5. The Cumulative Hazard Function

Since ℎ(𝑡) = 𝜕
𝜕𝑡 {−log {𝑆(𝑡)}} (see Theorem 5.2), we also have:

Corollary 5.1.

𝑆(𝑡) = exp {− ∫
𝑡

𝑢=0
ℎ(𝑢)𝑑𝑢} (5.1)

The integral in Equation 5.1 is important enough to have its own name:
cumulative hazard.

Definition 5.2 (cumulative hazard). The cumulative hazard function
𝐻(𝑡) is defined as:

𝐻(𝑡) def= ∫
𝑡

𝑢=0
ℎ(𝑢)𝑑𝑢
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As we will see below, 𝐻(𝑡) is tractable to estimate, and we can then derive
an estimate of the hazard function using an approximate derivative of the
estimated cumulative hazard.

Example 5.5. The cumulative hazard function of the exponential distri-
bution family of models is:

𝐻(𝑡) = 𝟙𝑡≥0 ⋅ 𝜆𝑡

Here are some examples of exponential cumulative hazard functions:
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5.3.6. Some Key Mathematical Relationships among Survival
Concepts

Diagram:
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ℎ(𝑡)
∫𝑡
𝑢=0 ℎ(𝑢)𝑑𝑢

−−−−−−−→ 𝐻(𝑡)
exp{−𝐻(𝑡)}
−−−−−−−→ 𝑆(𝑡)

1−𝑆(𝑡)
−−−−→ 𝐹(𝑡)

ℎ(𝑡) ←−−−−
𝜕

𝜕𝑡 𝐻(𝑡)
𝐻(𝑡) ←−−−−−−

−log{𝑆(𝑡)}
𝑆(𝑡) ←−−−−

1−𝐹(𝑡)
𝐹(𝑡)

Identities:

𝑆(𝑡) = 1 − 𝐹(𝑡)
= exp {−𝐻(𝑡)}

𝑆′(𝑡) = −𝑓(𝑡)
𝐻(𝑡) = −log {𝑆(𝑡)}

𝐻′(𝑡) = ℎ(𝑡)

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡)

= − 𝜕
𝜕𝑡 log {𝑆(𝑡)}

𝑓(𝑡) = ℎ(𝑡) ⋅ 𝑆(𝑡)

Some proofs (others left as exercises):

𝑆′(𝑡) = 𝜕
𝜕𝑡(1 − 𝐹(𝑡))

= −𝐹 ′(𝑡)
= −𝑓(𝑡)

𝜕
𝜕𝑡 log {𝑆(𝑡)} = 𝑆′(𝑡)

𝑆(𝑡)

= − 𝑓(𝑡)
𝑆(𝑡)

= −ℎ(𝑡)
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𝐻(𝑡) def= ∫
𝑡

𝑢=0
ℎ(𝑢)𝑑𝑢

= ∫
𝑡

0
− 𝜕

𝜕𝑢 log {𝑆(𝑢)} 𝑑𝑢

= [−log {𝑆(𝑢)}]𝑢=𝑡
𝑢=0

= [log {𝑆(𝑢)}]𝑢=0
𝑢=𝑡

= log {𝑆(0)} − log {𝑆(𝑡)}
= log {1} − log {𝑆(𝑡)}
= 0 − log {𝑆(𝑡)}
= −log {𝑆(𝑡)}

Equivalently:

𝑆(𝑡) = exp {−𝐻(𝑡)}

5.3.6.1. Example: Time to death the US in 2004

Daily hazard rates for US Females in 2004

The first day is the most dangerous:
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Figure 5.2.: Daily Hazard Rates in 2004 for US Females

Daily hazard rates for US Males and Females in 2004
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Exercise: hypothesize why these curves differ where they do?

0 10 20 30 40

1e
−

06
4e

−
06

Age

D
ai

ly
 H

az
ar

d 
R

at
e

Males
Females

Figure 5.3.: Daily Hazard Rates in 2004 for US Males and Females 1-40

Survival curve for US females

Exercise: compare and contrast this curve with the corresponding hazard
curve.
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Figure 5.4.: Survival Curve in 2004 for US Females

5.3.6.2. Likelihood with censoring *

Note

This subsection was not presented in class in 2023; it is not necessary
to understand for the qualifying exam.

If an event time 𝑇 is observed exactly as 𝑇 = 𝑡, then the likelihood of that
observation is just its probability density function:
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ℒ(𝑡) = 𝑝(𝑇 = 𝑡)
def= 𝑓𝑇 (𝑡)
= ℎ𝑇 (𝑡)𝑆𝑇 (𝑡)

ℓ(𝑡) def= log {ℒ(𝑡)}
= log {ℎ𝑇 (𝑡)𝑆𝑇 (𝑡)}
= log {ℎ𝑇 (𝑡)} + log {𝑆𝑇 (𝑡)}
= log {ℎ𝑇 (𝑡)} − 𝐻𝑇 (𝑡)

If instead the event time 𝑇 is censored and only known to be after time
𝑦, then the likelihood of that censored observation is instead the survival
function evaluated at the censoring time:

ℒ(𝑦) = 𝑝𝑇 (𝑇 > 𝑦)
def= 𝑆𝑇 (𝑦)

ℓ(𝑦) def= log {ℒ(𝑦)}
= log {𝑆(𝑦)}
= −𝐻(𝑦)

What’s written above is incomplete. We also observed whether or not
the observation was censored. Let 𝐶 denote the time when censoring
would occur (if the event did not occur first); let 𝑓𝐶(𝑦) and 𝑆𝐶(𝑦) be the
corresponding density and survival functions for the censoring event.

Let 𝑌 denote the time when observation ended (either by censoring or
by the event of interest occurring), and let 𝐷 be an indicator variable
for the event occurring at 𝑌 (so 𝐷 = 0 represents a censored observation
and 𝐷 = 1 represents an uncensored observation). In other words, let
𝑌 def= min(𝑇 , 𝐶) and 𝐷 def= 𝟙{𝑇 <= 𝐶}.

Then the complete likelihood of the observed data (𝑌 , 𝐷) is:
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ℒ(𝑦, 𝑑) = 𝑝(𝑌 = 𝑦, 𝐷 = 𝑑)
= [𝑝(𝑇 = 𝑦, 𝐶 > 𝑦)]𝑑 ⋅ [𝑝(𝑇 > 𝑦, 𝐶 = 𝑦)]1−𝑑

Typically, survival analyses assume that 𝐶 and 𝑇 are mutually indepen-
dent; this assumption is called “non-informative” censoring.

Then the joint likelihood 𝑝(𝑌 , 𝐷) factors into the product 𝑝(𝑌 ), 𝑝(𝐷), and
the likelihood reduces to:

ℒ(𝑦, 𝑑) = [𝑝(𝑇 = 𝑦, 𝐶 > 𝑦)]𝑑 ⋅ [𝑝(𝑇 > 𝑦, 𝐶 = 𝑦)]1−𝑑

= [𝑝(𝑇 = 𝑦)𝑝(𝐶 > 𝑦)]𝑑 ⋅ [𝑝(𝑇 > 𝑦)𝑝(𝐶 = 𝑦)]1−𝑑

= [𝑓𝑇 (𝑦)𝑆𝐶(𝑦)]𝑑 ⋅ [𝑆(𝑦)𝑓𝐶(𝑦)]1−𝑑

= [𝑓𝑇 (𝑦)𝑑𝑆𝐶(𝑦)𝑑] ⋅ [𝑆𝑇 (𝑦)1−𝑑𝑓𝐶(𝑦)1−𝑑]
= (𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑) ⋅ (𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑)

The corresponding log-likelihood is:

ℓ(𝑦, 𝑑) = log {ℒ(𝑦, 𝑑)}
= log {(𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑) ⋅ (𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑)}
= log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑} + log {𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑}

Let

• 𝜃𝑇 represent the parameters of 𝑝𝑇 (𝑡),
• 𝜃𝐶 represent the parameters of 𝑝𝐶(𝑐),
• 𝜃 = (𝜃𝑇 , 𝜃𝐶) be the combined vector of all parameters.

Then corresponding score function is:
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ℓ′(𝑦, 𝑑) = 𝜕
𝜕𝜃 [log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑} + log {𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑}]

= ( 𝜕
𝜕𝜃 log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑}) + ( 𝜕

𝜕𝜃 log {𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑})

As long as 𝜃𝐶 and 𝜃𝑇 don’t share any parameters, then if censoring is
non-informative, the partial derivative with respect to 𝜃𝑇 is:

ℓ′
𝜃𝑇

(𝑦, 𝑑) def= 𝜕
𝜕𝜃𝑇

ℓ(𝑦, 𝑑)

= ( 𝜕
𝜕𝜃𝑇

log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑}) + ( 𝜕
𝜕𝜃𝑇

log {𝑓𝐶(𝑦)1−𝑑 ⋅ 𝑆𝐶(𝑦)𝑑})

= ( 𝜕
𝜕𝜃𝑇

log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑}) + 0

= 𝜕
𝜕𝜃𝑇

log {𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑}

Thus, the MLE for 𝜃𝑇 won’t depend on 𝜃𝐶, and we can ignore the distri-
bution of 𝐶 when estimating the parameters of 𝑓𝑇 (𝑡) = 𝑝(𝑇 = 𝑡).
Then:

ℒ(𝑦, 𝑑) = 𝑓𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑

= (ℎ𝑇 (𝑦)𝑑𝑆𝑇 (𝑦)𝑑) ⋅ 𝑆𝑇 (𝑦)1−𝑑

= ℎ𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)1−𝑑

= ℎ𝑇 (𝑦)𝑑 ⋅ 𝑆𝑇 (𝑦)
= 𝑆𝑇 (𝑦) ⋅ ℎ𝑇 (𝑦)𝑑

That is, if the event occurred at time 𝑦 (i.e., if 𝑑 = 1), then the likelihood
of (𝑌 , 𝐷) = (𝑦, 𝑑) is equal to the hazard function at 𝑦 times the survival
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function at 𝑦. Otherwise, the likelihood is equal to just the survival func-
tion at 𝑦.

The corresponding log-likelihood is:

ℓ(𝑦, 𝑑) = log {ℒ(𝑦, 𝑑)}
= log {𝑆𝑇 (𝑦) ⋅ ℎ𝑇 (𝑦)𝑑}
= log {𝑆𝑇 (𝑦)} + log {ℎ𝑇 (𝑦)𝑑}
= log {𝑆𝑇 (𝑦)} + 𝑑 ⋅ log {ℎ𝑇 (𝑦)}
= −𝐻𝑇 (𝑦) + 𝑑 ⋅ log {ℎ𝑇 (𝑦)}

In other words, the log-likelihood contribution from a single observation
(𝑌 , 𝐷) = (𝑦, 𝑑) is equal to the negative cumulative hazard at 𝑦, plus the
log of the hazard at 𝑦 if the event occurred at time 𝑦.

Note

End of extra section.

5.4. Parametric Models for Time-to-Event Outcomes

5.4.1. Exponential Distribution

• The exponential distribution is the base distribution for survival anal-
ysis.

• The distribution has a constant hazard 𝜆
• The mean survival time is 𝜆−1
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5.4.1.1. Mathematical details of exponential distribution

𝑓(𝑡) = 𝜆e−𝜆𝑡

𝐸(𝑡) = 𝜆−1

𝑉 𝑎𝑟(𝑡) = 𝜆−2

𝐹(𝑡) = 1 − e−𝜆𝑥

𝑆(𝑡) = e−𝜆𝑥

ln(𝑆(𝑡)) = −𝜆𝑥

ℎ(𝑡) = − 𝑓(𝑡)
𝑆(𝑡) = −𝜆e−𝜆𝑡

e−𝜆𝑡 = 𝜆

5.4.1.2. Estimation of 𝜆

• Suppose we have 𝑚 exponential survival times of 𝑡1, 𝑡2, … , 𝑡𝑚 and 𝑘
right-censored values at 𝑢1, 𝑢2, … , 𝑢𝑘.

• A survival time of 𝑡𝑖 = 10 means that subject 𝑖 died at time 10. A
right-censored time 𝑢𝑖 = 10 means that at time 10, subject 𝑖 was
still alive and that we have no further follow-up.

• For the moment we will assume that the survival distribution is
exponential and that all the subjects have the same parameter 𝜆.

We have 𝑚 exponential survival times of 𝑡1, 𝑡2, … , 𝑡𝑚 and 𝑘 right-censored
values at 𝑢1, 𝑢2, … , 𝑢𝑘. The log-likelihood of an observed survival time 𝑡𝑖
is

log {𝜆e−𝜆𝑡𝑖} = log {𝜆} − 𝜆𝑡𝑖

and the likelihood of a censored value is the probability of that outcome
(survival greater than 𝑢𝑗) so the log-likelihood is

log {𝜆e𝑢𝑗} = −𝜆𝑢𝑗.

253



5. Introduction to Survival Analysis

Let 𝑇 = ∑ 𝑡𝑖 and 𝑈 = ∑ 𝑢𝑗. Then:

ℓ(𝜆) =
𝑚

∑
𝑖=1

(ln 𝜆 − 𝜆𝑡𝑖) +
𝑘

∑
𝑗=1

(−𝜆𝑢𝑗)

= 𝑚 ln 𝜆 − (𝑇 + 𝑈)𝜆
ℓ′(𝜆) = 𝑚𝜆−1 − (𝑇 + 𝑈)

𝜆̂ = 𝑚
𝑇 + 𝑈

ℓ″ = −𝑚/𝜆2

< 0
̂𝐸[𝑇 ] = 𝜆̂−1

= 𝑇 + 𝑈
𝑚

5.4.1.3. Fisher Information and Standard Error

𝐸[−ℓ″] = 𝑚/𝜆2

Var (𝜆̂) ≈ (𝐸[−ℓ″])−1

= 𝜆2/𝑚

SE (𝜆̂) = √Var (𝜆̂)
≈ 𝜆/√𝑚

𝜆̂ depends on the censoring times of the censored observations, but Var (𝜆̂)
only depends on the number of uncensored observations, 𝑚, and not on
the number of censored observations (𝑘).
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5.4.1.4. Other Parametric Survival Distributions

• Any density on [0, ∞) can be a survival distribution, but the most
useful ones are all skew right.

• The commonest generalization of the exponential is the Weibull.
• Other common choices are the gamma, log-normal, log-logistic, Gom-

pertz, inverse Gaussian, and Pareto.
• Most of what we do going forward is non-parametric or semi-

parametric, but sometimes these parametric distributions provide a
useful approach.

5.4.2. Weibull Distribution

𝑝(𝑡) = 𝛼𝜆𝑥𝛼−1e−𝜆𝑥𝛼

ℎ(𝑡) = 𝛼𝜆𝑥𝛼−1

𝑆(𝑡) = e−𝜆𝑥𝛼

𝐸(𝑇 ) = Γ(1 + 1/𝛼) ⋅ 𝜆−1/𝛼

When 𝛼 = 1 this is the exponential. When 𝛼 > 1 the hazard is increasing
and when 𝛼 < 1 the hazard is decreasing. This provides more flexibility
than the exponential.

We will see more of this distribution later.

5.5. Nonparametric Survival Analysis

5.5.1. Basic ideas

• Mostly, we work without a parametric model.

• The first task is to estimate a survival function from data listing
survival times, and censoring times for censored data.
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• For example one patient may have relapsed at 10 months. Another
might have been followed for 32 months without a relapse having
occurred (censored).

• The minimum information we need for each patient is a time and a
censoring variable which is 1 if the event occurred at the indicated
time and 0 if this is a censoring time.

5.6. Example: clinical trial for pediatric acute
leukemia

5.6.1. Overview of study

This is from a clinical trial in 1963 for 6-MP treatment vs. placebo for
Acute Leukemia in 42 children.

• Pairs of children:

– matched by remission status at the time of treatment (remstat:
1 = partial, 2 = complete)

– randomized to 6-MP (exit times in t2) or placebo (exit times
in t1)

• Followed until relapse or end of study.

• All of the placebo group relapsed, but some of the 6-MP group were
censored (which means they were still in remission); indicated by
relapse variable (0 = censored, 1 = relapse).

• 6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer (“antineo-
plastic” or “cytotoxic”) chemotherapy drug used currently for Acute
lymphoblastic leukemia (ALL). It is classified as an antimetabolite.
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5.6.2. Study design

Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute Leukemia
in 42 children. Pairs of children matched by remission status at the time
of treatment (1 = partial or 2 = complete) and randomized to 6-MP or
placebo. Followed until relapse or end of study. All of the placebo group
relapsed, but some of the 6-MP group were censored.

library(KMsurv)
data(drug6mp)
drug6mp |> tibble() |> print()
#> # A tibble: 21 x 5
#> pair remstat t1 t2 relapse
#> <int> <int> <int> <int> <int>
#> 1 1 1 1 10 1
#> 2 2 2 22 7 1
#> 3 3 2 3 32 0
#> 4 4 2 12 23 1
#> 5 5 2 8 22 1
#> 6 6 1 17 6 1
#> 7 7 2 2 16 1
#> 8 8 2 11 34 0
#> 9 9 2 8 32 0
#> 10 10 2 12 25 0
#> # i 11 more rows

5.6.3. Data documentation for drug6mp

library(printr) # inserts help-file output into markdown output
library(KMsurv)
?drug6mp
#> data from Section 1.2
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#>
#> Description:
#>
#> The 'drug6mp' data frame has 21 rows and 5 columns.
#>
#> Format:
#>
#> This data frame contains the following columns:
#>
#> pair pair number
#>
#> remstat Remission status at randomization (1=partial, 2=complete)
#>
#> t1 Time to relapse for placebo patients, months
#>
#> t2 Time to relapse for 6-MP patients, months
#>
#> relapse Relapse indicator (0=censored, 1=relapse) for 6-MP
#> patients

5.6.4. Descriptive Statistics

• The average time in each group is not useful. Some of the 6-MP
patients have not relapsed at the time recorded, while all of the
placebo patients have relapsed.

• The median time is not really useful either because so many of the
6-MP patients have not relapsed (12/21).

• Both are biased down in the 6-MP group. Remember that lower
times are worse since they indicate sooner recurrence.

• We can compute the average hazard rate, which is the estimate of
the exponential parameter: number of relapses divided by the sum
of the times.
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• For the placebo, that is just the reciprocal of the mean time =
1/8.667 = 0.115.

• For the 6-MP group this is 9/359 = 0.025
• The estimated average hazard in the placebo group is 4.6 times as

large (if the hazard is constant over time).

5.7. The Kaplan-Meier Product Limit Estimator

• The estimated survival function for the placebo patients is easy to
compute. For any time 𝑡 in months, 𝑆(𝑡) is the fraction of patients
with times greater than 𝑡.

• For the 6-MP patients, we cannot ignore the censored data because
we know that the time to relapse is greater than the censoring time.

• For any time 𝑡 in months, we know that 6-MP patients with times
greater than 𝑡 have not relapsed, and those with relapse time less
than 𝑡 have relapsed, but we don’t know if patients with censored
time less than 𝑡 have relapsed or not.

• The procedure we usually use is the Kaplan-Meier product-limit es-
timator of the survival function.

• The Kaplan-Meier estimator is a step function (like the empirical
cdf), which changes value only at the event times, not at the censor-
ing times.

• At each event time 𝑡, we compute the at-risk group size 𝑌 , which is
all those observations whose event time or censoring time is at least
𝑡.

• If 𝑑 of the observations have an event time (not a censoring time) of 𝑡,
then the group of survivors immediately following time 𝑡 is reduced
by the fraction

𝑌 − 𝑑
𝑌 = 1 − 𝑑

𝑌
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If the event times are 𝑡𝑖 with events per time of 𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑘), then

̂𝑆(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖/𝑌𝑖]

where 𝑌𝑖 is the set of observations whose time (event or censored) is ≥ 𝑡𝑖,
the group at risk at time 𝑡𝑖.

If there are no censored data, and there are 𝑛 data points, then just after
(say) the third event time

̂𝑆(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖/𝑌𝑖]

= [𝑛 − 𝑑1
𝑛 ][𝑛 − 𝑑1 − 𝑑2

𝑛 − 𝑑1
][𝑛 − 𝑑1 − 𝑑2 − 𝑑3

𝑛 − 𝑑1 − 𝑑2
]

= 𝑛 − 𝑑1 − 𝑑2 − 𝑑3
𝑛

= 1 − 𝑑1 + 𝑑2 + 𝑑3
𝑛

= 1 − ̂𝐹 (𝑡)

where ̂𝐹 (𝑡) is the usual empirical CDF estimate.

5.7.1. Kaplan-Meier curve for drug6mp data

Here is the Kaplan-Meier estimated survival curve for the patients who
received 6-MP in the drug6mp dataset (we will see code to produce figures
like this one shortly):
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Figure 5.5.: Kaplan-Meier Survival Curve for 6-MP Patients

5.7.2. Kaplan-Meier calculations

Let’s compute these estimates and build the chart by hand:

library(KMsurv)
library(dplyr)
data(drug6mp)

drug6mp.v2 =
drug6mp |>
as_tibble() |>
mutate(

remstat = remstat |>
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case_match(
1 ~ "partial",
2 ~ "complete"

),
# renaming to "outcome" while relabeling is just a style choice:
outcome = relapse |>
case_match(

0 ~ "censored",
1 ~ "relapsed"

)
)

km.6mp =
drug6mp.v2 |>
summarize(

.by = t2,
Relapses = sum(outcome == "relapsed"),
Censored = sum(outcome == "censored")) |>

# here we add a start time row, so the graph starts at time 0:
bind_rows(

tibble(
t2 = 0,
Relapses = 0,
Censored = 0)

) |>
# sort in time order:
arrange(t2) |>
mutate(

Exiting = Relapses + Censored,
`Study Size` = sum(Exiting),
Exited = cumsum(Exiting) |> dplyr::lag(default = 0),
`At Risk` = `Study Size` - Exited,
Hazard = Relapses / `At Risk`,
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`KM Factor` = 1 - Hazard,
`Cumulative Hazard` = cumsum(`Hazard`),
`KM Survival Curve` = cumprod(`KM Factor`)

)

library(pander)
pander(km.6mp)

t2 RelapsesCensoredExiting
Study
Size Exited

At
Risk Hazard

KM
Fac-
tor

Cumulative
Hazard

KM
Sur-
vival
Curve

0 0 0 0 21 0 21 0 1 0 1
6 3 1 4 21 0 21 0.14290.8571 0.1429 0.8571
7 1 0 1 21 4 17 0.058820.9412 0.2017 0.8067
9 0 1 1 21 5 16 0 1 0.2017 0.8067
10 1 1 2 21 6 15 0.066670.9333 0.2683 0.7529
11 0 1 1 21 8 13 0 1 0.2683 0.7529
13 1 0 1 21 9 12 0.083330.9167 0.3517 0.6902
16 1 0 1 21 10 11 0.090910.9091 0.4426 0.6275
17 0 1 1 21 11 10 0 1 0.4426 0.6275
19 0 1 1 21 12 9 0 1 0.4426 0.6275
20 0 1 1 21 13 8 0 1 0.4426 0.6275
22 1 0 1 21 14 7 0.14290.8571 0.5854 0.5378
23 1 0 1 21 15 6 0.16670.8333 0.7521 0.4482
25 0 1 1 21 16 5 0 1 0.7521 0.4482
32 0 2 2 21 17 4 0 1 0.7521 0.4482
34 0 1 1 21 19 2 0 1 0.7521 0.4482
35 0 1 1 21 20 1 0 1 0.7521 0.4482
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5.7.2.1. Summary

For the 6-MP patients at time 6 months, there are 21 patients at risk. At
𝑡 = 6 there are 3 relapses and 1 censored observations.

The Kaplan-Meier factor is (21 − 3)/21 = 0.857. The number at risk for
the next time (𝑡 = 7) is 21 − 3 − 1 = 17.

At time 7 months, there are 17 patients at risk. At 𝑡 = 7 there is 1 relapse
and 0 censored observations. The Kaplan-Meier factor is (17 − 1)/17 =
0.941. The Kaplan Meier estimate is 0.857 × 0.941 = 0.807. The number
at risk for the next time (𝑡 = 9) is 17 − 1 = 16.

Now, let’s graph this estimated survival curve using ggplot():

library(ggplot2)
conflicts_prefer(dplyr::filter)
km.6mp |>
ggplot(aes(x = t2, y = `KM Survival Curve`)) +
geom_step() +
geom_point(data = km.6mp |> filter(Censored > 0), shape = 3) +
expand_limits(y = c(0,1), x = 0) +
xlab('Time since diagnosis (months)') +
ylab("KM Survival Curve") +
scale_y_continuous(labels = scales::percent)
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5.8. Using the survival package in R

We don’t have to do these calculations by hand every time; the survival
package and several others have functions available to automate many
of these tasks (full list: https://cran.r-project.org/web/views/Survival.
html).

5.8.1. The Surv function

To use the survival package, the first step is telling R how to combine the
exit time and exit reason (censoring versus event) columns. The Surv()
function accomplishes this task.
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5.8.1.1. Example: Surv() with drug6mp data

1 library(survival)
2 drug6mp.v3 =
3 drug6mp.v2 |>
4 mutate(
5 surv2 = Surv(
6 time = t2,
7 event = (outcome == "relapsed")))
8

9 print(drug6mp.v3)
10 #> # A tibble: 21 x 7
11 #> pair remstat t1 t2 relapse outcome surv2
12 #> <int> <chr> <int> <int> <int> <chr> <Surv>
13 #> 1 1 partial 1 10 1 relapsed 10
14 #> 2 2 complete 22 7 1 relapsed 7
15 #> 3 3 complete 3 32 0 censored 32+
16 #> 4 4 complete 12 23 1 relapsed 23
17 #> 5 5 complete 8 22 1 relapsed 22
18 #> 6 6 partial 17 6 1 relapsed 6
19 #> 7 7 complete 2 16 1 relapsed 16
20 #> 8 8 complete 11 34 0 censored 34+
21 #> 9 9 complete 8 32 0 censored 32+
22 #> 10 10 complete 12 25 0 censored 25+
23 #> # i 11 more rows

The output of Surv() is a vector of objects with class Surv. When we
print this vector:

• observations where the event was observed are printed as the event
time (for example, surv2 = 10 on line 1)
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• observations where the event was right-censored are printed as the
censoring time with a plus sign (+; for example, surv2 = 32+ on line
3).

5.8.2. The survfit function

Once we have constructed our Surv variable, we can calculate the Kaplan-
Meier estimate of the survival curve using the survfit() function.

Note

The documentation for ?survfit isn’t too helpful; the
survfit.formula documentation is better.

5.8.2.1. Example: survfit() with drug6mp data

Here we use survfit() to create a survfit object, which contains the
Kaplan-Meier estimate:

drug6mp.km_model = survfit(
formula = surv2 ~ 1,
data = drug6mp.v3)

print.survfit() just gives some summary statistics:

print(drug6mp.km_model)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> n events median 0.95LCL 0.95UCL
#> [1,] 21 9 23 16 NA

summary.survfit() shows us the underlying Kaplan-Meier table:
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summary(drug6mp.km_model)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 7 17 1 0.807 0.0869 0.653 0.996
#> 10 15 1 0.753 0.0963 0.586 0.968
#> 13 12 1 0.690 0.1068 0.510 0.935
#> 16 11 1 0.627 0.1141 0.439 0.896
#> 22 7 1 0.538 0.1282 0.337 0.858
#> 23 6 1 0.448 0.1346 0.249 0.807

summary.survfit() shows us the underlying Kaplan-Meier table:

summary(drug6mp.km_model)
#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 7 17 1 0.807 0.0869 0.653 0.996
#> 10 15 1 0.753 0.0963 0.586 0.968
#> 13 12 1 0.690 0.1068 0.510 0.935
#> 16 11 1 0.627 0.1141 0.439 0.896
#> 22 7 1 0.538 0.1282 0.337 0.858
#> 23 6 1 0.448 0.1346 0.249 0.807

We can specify which time points we want using the times argument:

summary(
drug6mp.km_model,
times = c(0, drug6mp.v3$t2))

#> Call: survfit(formula = surv2 ~ 1, data = drug6mp.v3)
#>
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#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 0 21 0 1.000 0.0000 1.000 1.000
#> 6 21 3 0.857 0.0764 0.720 1.000
#> 6 21 0 0.857 0.0764 0.720 1.000
#> 6 21 0 0.857 0.0764 0.720 1.000
#> 6 21 0 0.857 0.0764 0.720 1.000
#> 7 17 1 0.807 0.0869 0.653 0.996
#> 9 16 0 0.807 0.0869 0.653 0.996
#> 10 15 1 0.753 0.0963 0.586 0.968
#> 10 15 0 0.753 0.0963 0.586 0.968
#> 11 13 0 0.753 0.0963 0.586 0.968
#> 13 12 1 0.690 0.1068 0.510 0.935
#> 16 11 1 0.627 0.1141 0.439 0.896
#> 17 10 0 0.627 0.1141 0.439 0.896
#> 19 9 0 0.627 0.1141 0.439 0.896
#> 20 8 0 0.627 0.1141 0.439 0.896
#> 22 7 1 0.538 0.1282 0.337 0.858
#> 23 6 1 0.448 0.1346 0.249 0.807
#> 25 5 0 0.448 0.1346 0.249 0.807
#> 32 4 0 0.448 0.1346 0.249 0.807
#> 32 4 0 0.448 0.1346 0.249 0.807
#> 34 2 0 0.448 0.1346 0.249 0.807
#> 35 1 0 0.448 0.1346 0.249 0.807

?summary.survfit
#> Summary of a Survival Curve
#>
#> Description:
#>
#> Returns a list containing the survival curve, confidence limits
#> for the curve, and other information.
#>
#> Usage:
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#>
#> ## S3 method for class 'survfit'
#> summary(object, times, censored=FALSE, scale=1,
#> extend=FALSE, rmean=getOption('survfit.rmean'), ...)
#>
#> Arguments:
#>
#> object: the result of a call to the 'survfit' function.
#>
#> times: vector of times; the returned matrix will contain 1 row for
#> each time. The vector will be sorted into increasing order;
#> missing values are not allowed. If 'censored=T', the default
#> 'times' vector contains all the unique times in 'fit',
#> otherwise the default 'times' vector uses only the event
#> (death) times.
#>
#> censored: logical value: should the censoring times be included in the
#> output? This is ignored if the 'times' argument is present.
#>
#> scale: numeric value to rescale the survival time, e.g., if the
#> input data to 'survfit' were in days, 'scale = 365.25' would
#> scale the output to years.
#>
#> extend: logical value: if TRUE, prints information for all specified
#> 'times', even if there are no subjects left at the end of the
#> specified 'times'. This is only used if the 'times' argument
#> is present.
#>
#> rmean: Show restricted mean: see 'print.survfit' for details
#>
#> ...: for future methods
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5.8.3. Plotting estimated survival functions

We can plot survfit objects with plot(), autoplot(), or ggsurvplot():

library(ggfortify)
autoplot(drug6mp.km_model)
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Figure 5.6.: Kaplan-Meier Survival Curve for 6-MP Patients

# not shown:
# plot(drug6mp.km_model)

# library(survminer)
# ggsurvplot(drug6mp.km_model)
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5.8.3.1. quantiles of survival curve

We can extract quantiles with quantile():

1 drug6mp.km_model |>
2 quantile(p = c(.25, .5)) |>
3 as_tibble() |>
4 mutate(p = c(.25, .5)) |>
5 relocate(p, .before = everything())

p quantile lower upper
0.25 13 6 NA
0.50 23 16 NA

5.8.4. Two-sample tests

5.8.4.1. The survdiff function

?survdiff
#> Test Survival Curve Differences
#>
#> Description:
#>
#> Tests if there is a difference between two or more survival curves
#> using the G-rho family of tests, or for a single curve against a
#> known alternative.
#>
#> Usage:
#>
#> survdiff(formula, data, subset, na.action, rho=0, timefix=TRUE)
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5.8.4.2. Example: survdiff() with drug6mp data

Now we are going to compare the placebo and 6-MP data. We need to re-
shape the data to make it usable with the standard survival workflow:

library(survival)

drug6mp.v4 =
drug6mp.v3 |>
select(pair, remstat, t1, t2, outcome) |>
# here we are going to change the data from a wide format to long:
pivot_longer(

cols = c(t1, t2),
names_to = "treatment",
values_to = "exit_time") |>

mutate(
treatment = treatment |>
case_match(

"t1" ~ "placebo",
"t2" ~ "6-MP"

),
outcome = if_else(
treatment == "placebo",
"relapsed",
outcome

),
surv = Surv(
time = exit_time,
event = (outcome == "relapsed"))

)

Using this long data format, we can fit a Kaplan-Meier curve for each
treatment group simultaneously:
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drug6mp.km_model2 =
survfit(

formula = surv ~ treatment,
data = drug6mp.v4)

We can plot the curves in the same graph:

drug6mp.km_model2 |> autoplot()
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We can also perform something like a t-test, where the null hypothesis is
that the curves are the same:

survdiff(
formula = surv ~ treatment,
data = drug6mp.v4)
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#> Call:
#> survdiff(formula = surv ~ treatment, data = drug6mp.v4)
#>
#> N Observed Expected (O-E)^2/E (O-E)^2/V
#> treatment=6-MP 21 9 19.3 5.46 16.8
#> treatment=placebo 21 21 10.7 9.77 16.8
#>
#> Chisq= 16.8 on 1 degrees of freedom, p= 4e-05

By default, survdiff() ignores any pairing, but we can use strata() to
perform something similar to a paired t-test:

survdiff(
formula = surv ~ treatment + strata(pair),
data = drug6mp.v4)

#> Call:
#> survdiff(formula = surv ~ treatment + strata(pair), data = drug6mp.v4)
#>
#> N Observed Expected (O-E)^2/E (O-E)^2/V
#> treatment=6-MP 21 9 16.5 3.41 10.7
#> treatment=placebo 21 21 13.5 4.17 10.7
#>
#> Chisq= 10.7 on 1 degrees of freedom, p= 0.001

Interestingly, accounting for pairing reduces the significant of the differ-
ence.

5.9. Example: Bone Marrow Transplant Data

(Copelan et al., 1991)
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* Treatment

• allogeneic (from a donor) bone marrow transplant therapy

* Inclusion criteria

• acute myeloid leukemia (AML)
• acute lymphoblastic leukemia (ALL).

* Possible intermediate events

• graft vs. host disease (GVHD): an immunological rejection re-
sponse to the transplant

• platelet recovery: a return of platelet count to normal levels.

One or the other, both in either order, or neither may occur.

End point events

• relapse of the disease
• death

Any or all of these events may be censored.

5.9.1. KMsurv::bmt data in R

library(KMsurv)
?bmt
#> data from Section 1.3
#>
#> Description:
#>
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#> The 'bmt' data frame has 137 rows and 22 columns.
#>
#> Format:
#>
#> This data frame contains the following columns:
#>
#> group Disease Group 1-ALL, 2-AML Low Risk, 3-AML High Risk
#>
#> t1 Time To Death Or On Study Time
#>
#> t2 Disease Free Survival Time (Time To Relapse, Death Or End Of
#> Study)
#>
#> d1 Death Indicator 1-Dead 0-Alive
#>
#> d2 Relapse Indicator 1-Relapsed, 0-Disease Free
#>
#> d3 Disease Free Survival Indicator 1-Dead Or Relapsed, 0-Alive
#> Disease Free)
#>
#> ta Time To Acute Graft-Versus-Host Disease
#>
#> da Acute GVHD Indicator 1-Developed Acute GVHD 0-Never Developed
#> Acute GVHD)
#>
#> tc Time To Chronic Graft-Versus-Host Disease
#>
#> dc Chronic GVHD Indicator 1-Developed Chronic GVHD 0-Never
#> Developed Chronic GVHD
#>
#> tp Time To Chronic Graft-Versus-Host Disease
#>
#> dp Platelet Recovery Indicator 1-Platelets Returned To Normal,
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#> 0-Platelets Never Returned to Normal
#>
#> z1 Patient Age In Years
#>
#> z2 Donor Age In Years
#>
#> z3 Patient Sex: 1-Male, 0-Female
#>
#> z4 Donor Sex: 1-Male, 0-Female
#>
#> z5 Patient CMV Status: 1-CMV Positive, 0-CMV Negative
#>
#> z6 Donor CMV Status: 1-CMV Positive, 0-CMV Negative
#>
#> z7 Waiting Time to Transplant In Days
#>
#> z8 FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise
#>
#> z9 Hospital: 1-The Ohio State University, 2-Alferd , 3-St.
#> Vincent, 4-Hahnemann
#>
#> z10 MTX Used as a Graft-Versus-Host- Prophylactic: 1-Yes 0-No
#>
#> Source:
#>
#> Klein and Moeschberger (1997) _Survival Analysis Techniques for
#> Censored and truncated data_, Springer.
#>
#> Examples:
#>
#> data(bmt)
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5. Introduction to Survival Analysis

5.9.2. Analysis plan

• We concentrate for now on disease-free survival (t2 and d3) for the
three risk groups, ALL, AML Low Risk, and AML High Risk.

• We will construct the Kaplan-Meier survival curves, compare them,
and test for differences.

• We will construct the cumulative hazard curves and compare them.
• We will estimate the hazard functions, interpret, and compare them.

5.9.3. Survival Function Estimate and Variance

̂𝑆(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]

where 𝑌𝑖 is the group at risk at time 𝑡𝑖.

The estimated variance of ̂𝑆(𝑡) is (Greenwood’s formula)

̂Var ( ̂𝑆(𝑡)) = ̂𝑆(𝑡)2 ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

which we can use for confidence intervals for a survival function or a dif-
ference of survival functions.

Kaplan-Meier survival curves

library(KMsurv)
library(survival)
data(bmt)

bmt =
bmt |>
as_tibble() |>
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mutate(
group =
group |>
factor(

labels = c("ALL","Low Risk AML","High Risk AML")),
surv = Surv(t2,d3))

km_model1 = survfit(
formula = surv ~ group,
data = bmt)

library(ggfortify)
autoplot(
km_model1,
conf.int = TRUE,
ylab = "Pr(disease-free survival)",
xlab = "Time since transplant (days)") +
theme_bw() +
theme(legend.position="bottom")
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Figure 5.7.: Disease-Free Survival by Disease Group

5.9.3.1. Understanding Greenwood’s formula (optional)

To see where Greenwood’s formula comes from, let 𝑥𝑖 = 𝑌𝑖 − 𝑑𝑖. We
approximate the solution treating each time as independent, with 𝑌𝑖 fixed
and ignore randomness in times of failure and we treat 𝑥𝑖 as independent
binomials Bin(𝑌𝑖, 𝑝𝑖). Letting 𝑆(𝑡) be the “true” survival function

̂𝑆(𝑡) = ∏
𝑡𝑖<𝑡

𝑥𝑖/𝑌𝑖

𝑆(𝑡) = ∏
𝑡𝑖<𝑡

𝑝𝑖
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̂𝑆(𝑡)
𝑆(𝑡) = ∏

𝑡𝑖<𝑡

𝑥𝑖
𝑝𝑖𝑌𝑖

= ∏
𝑡𝑖<𝑡

̂𝑝𝑖
𝑝𝑖

= ∏
𝑡𝑖<𝑡

(1 + ̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖

)

≈ 1 + ∑
𝑡𝑖<𝑡

̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖

Var (
̂𝑆(𝑡)

𝑆(𝑡)) ≈ Var (1 + ∑
𝑡𝑖<𝑡

̂𝑝𝑖 − 𝑝𝑖
𝑝𝑖

)

= ∑
𝑡𝑖<𝑡

1
𝑝2

𝑖

𝑝𝑖(1 − 𝑝𝑖)
𝑌𝑖

= ∑
𝑡𝑖<𝑡

(1 − 𝑝𝑖)
𝑝𝑖𝑌𝑖

≈ ∑
𝑡𝑖<𝑡

(1 − 𝑥𝑖/𝑌𝑖)
𝑥𝑖

= ∑
𝑡𝑖<𝑡

𝑌𝑖 − 𝑥𝑖
𝑥𝑖𝑌𝑖

= ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

Var ( ̂𝑆(𝑡)) ≈ ̂𝑆(𝑡)2 ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

5.9.4. Test for differences among the disease groups

Here we compute a chi-square test for assocation between disease group
(group) and disease-free survival:

survdiff(surv ~ group, data = bmt)
#> Call:
#> survdiff(formula = surv ~ group, data = bmt)
#>
#> N Observed Expected (O-E)^2/E (O-E)^2/V
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#> group=ALL 38 24 21.9 0.211 0.289
#> group=Low Risk AML 54 25 40.0 5.604 11.012
#> group=High Risk AML 45 34 21.2 7.756 10.529
#>
#> Chisq= 13.8 on 2 degrees of freedom, p= 0.001

5.9.5. Cumulative Hazard

ℎ(𝑡) def= 𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡)

= 𝑝(𝑇 = 𝑡)
𝑃(𝑇 ≥ 𝑡)

= − 𝜕
𝜕𝑡 log {𝑆(𝑡)}

The cumulative hazard (or integrated hazard) function is

𝐻(𝑡) def= ∫
𝑡

0
ℎ(𝑡)𝑑𝑡

Since ℎ(𝑡) = − 𝜕
𝜕𝑡 log {𝑆(𝑡)} as shown above, we have:

𝐻(𝑡) = −log {𝑆} (𝑡)

So we can estimate 𝐻(𝑡) as:

𝐻̂(𝑡) = −log { ̂𝑆(𝑡)}

= −log {∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]}

= − ∑
𝑡𝑖<𝑡

log {1 − 𝑑𝑖
𝑌𝑖

}
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This is the Kaplan-Meier (product-limit) estimate of cumulative
hazard.

5.9.5.1. Example: Cumulative Hazard Curves for Bone-Marrow
Transplant (bmt) data

autoplot(
fun = "cumhaz",
km_model1,
conf.int = FALSE,
ylab = "Cumulative hazard (disease-free survival)",
xlab = "Time since transplant (days)") +
theme_bw() +
theme(legend.position="bottom")

284



5. Introduction to Survival Analysis

+

+

+ + +++ ++ +++ + +

+++ ++ +
+ +++ ++ ++++ ++ ++++++

++ + + +

+ + + + + + ++ + + +

0.0

0.5

1.0

0 1000 2000
Time since transplant (days)

C
um

ul
at

iv
e 

ha
za

rd
 (

di
se

as
e−

fr
ee

 s
ur

vi
va

l)

strata ALL Low Risk AML High Risk AML

Figure 5.8.: Disease-Free Cumulative Hazard by Disease Group

5.10. Nelson-Aalen Estimates of Cumulative Hazard
and Survival

The point hazard at time 𝑡𝑖 can be estimated by 𝑑𝑖/𝑌𝑖, which leads to the
Nelson-Aalen estimator of the cumulative hazard:

𝐻̂𝑁𝐴(𝑡) def= ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖

The variance of this estimator is approximately:
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̂Var (𝐻̂𝑁𝐴(𝑡)) = ∑
𝑡𝑖<𝑡

(𝑑𝑖/𝑌𝑖)(1 − 𝑑𝑖/𝑌𝑖)
𝑌𝑖

≈ ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌 2

𝑖

Since 𝑆(𝑡) = exp {−𝐻(𝑡)}, the Nelson-Aalen cumulative hazard estimate
can be converted into an alternate estimate of the survival function:

̂𝑆𝑁𝐴(𝑡) = exp {−𝐻̂𝑁𝐴(𝑡)}

= exp {− ∑
𝑡𝑖<𝑡

𝑑𝑖
𝑌𝑖

}

= ∏
𝑡𝑖<𝑡

exp {− 𝑑𝑖
𝑌𝑖

}

Compare these with the corresponding Kaplan-Meier estimates:

𝐻̂𝐾𝑀(𝑡) = − ∑
𝑡𝑖<𝑡

log {1 − 𝑑𝑖
𝑌𝑖

}

̂𝑆𝐾𝑀(𝑡) = ∏
𝑡𝑖<𝑡

[1 − 𝑑𝑖
𝑌𝑖

]

The product limit estimate and the Nelson-Aalen estimate often do
not differ by much. The latter is considered more accurate in small
samples and also directly estimates the cumulative hazard. The
"fleming-harrington" method for survfit() reduces to Nelson-Aalen
when the data are unweighted. We can also estimate the cumulative
hazard as the negative log of the KM survival function estimate.
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5.10.1. Application to bmt dataset

na_fit = survfit(
formula = surv ~ group,
type = "fleming-harrington",
data = bmt)

km_fit = survfit(
formula = surv ~ group,
type = "kaplan-meier",
data = bmt)

km_and_na =
bind_rows(

.id = "model",
"Kaplan-Meier" = km_fit |> fortify(surv.connect = TRUE),
"Nelson-Aalen" = na_fit |> fortify(surv.connect = TRUE)

) |>
as_tibble()

km_and_na |>
ggplot(aes(x = time, y = surv, col = model)) +
geom_step() +
facet_grid(. ~ strata) +
theme_bw() +
ylab("S(t) = P(T>=t)") +
xlab("Survival time (t, days)") +
theme(legend.position = "bottom")
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Figure 5.9.: Kaplan-Meier and Nelson-Aalen Survival Function Estimates,
stratified by disease group

The Kaplan-Meier and Nelson-Aalen survival estimates are very similar
for this dataset.
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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6. Proportional Hazards Models

6.1. The proportional hazards model

6.1.1. Background on the Proportional Hazards Model

The exponential distribution has constant hazard:

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡

𝑆(𝑡) = 𝑒−𝜆𝑡

ℎ(𝑡) = 𝜆

Let’s make two generalizations. First, we let the hazard depend on some
covariates 𝑥1, 𝑥2, … , 𝑥𝑝; we will indicate this dependence by extending our
notation for hazard:

ℎ(𝑡|𝑥) def= 𝑝(𝑇 = 𝑡|𝑇 ≥ 𝑡, 𝑋 = 𝑥)

Second, we let the base hazard depend on 𝑡, but not on the covariates
(for now). We can do this using either parametric or semi-parametric
approaches.

6.1.2. Cox’s Proportional Hazards Model

The generalization is that the hazard function is

ℎ(𝑡|𝑥) = ℎ0(𝑡)𝜃(𝑥)
𝜃(𝑥) = exp {𝜂(𝑥)}
𝜂(𝑥) = 𝑥′𝛽

def= 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝
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The relationship between ℎ(𝑡|𝑥) and 𝜂(𝑥) has a log link (that is,
log {ℎ(𝑡|𝑥)} = log {ℎ0(𝑡)} + 𝜂(𝑥)), as in a generalized linear model.

This model is semi-parametric, because the linear predictor depends on
estimated parameters but the base hazard function is unspecified. There
is no constant term in 𝜂(𝑥), because it is absorbed in the base hazard.

Alternatively, we could define 𝛽0(𝑡) = log {ℎ0(𝑡)}, and then 𝜂(𝑥, 𝑡) =
𝛽0(𝑡) + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝.

For two different individuals with covariate patterns 𝑥1 and 𝑥2, the ratio
of the hazard functions (a.k.a. hazard ratio, a.k.a. relative hazard)
is:

ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2) = ℎ0(𝑡)𝜃(𝑥1)

ℎ0(𝑡)𝜃(𝑥2)

= 𝜃(𝑥1)
𝜃(𝑥2)

Under the proportional hazards model, this ratio (a.k.a. proportion) does
not depend on 𝑡. This property is a structural limitation of the model; it
is called the proportional hazards assumption.

Definition 6.1 (proportional hazards). A conditional probability distribu-
tion 𝑝(𝑇 |𝑋) has proportional hazards if the hazard ratio ℎ(𝑡|𝑥1)/ℎ(𝑡|𝑥2)
does not depend on 𝑡. Mathematically, it can be written as:

ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2) = 𝜃(𝑥1, 𝑥2)

As we saw above, Cox’s proportional hazards model has this property, with
𝜃(𝑥1, 𝑥2) = 𝜃(𝑥1)

𝜃(𝑥2) .
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Note

We are using two similar notations, 𝜃(𝑥1, 𝑥2) and 𝜃(𝑥). We can link
these notations if we define 𝜃(𝑥) def= 𝜃(𝑥, 0) and 𝜃(0) = 1.

It also has additional notable properties:

ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2) = 𝜃(𝑥1)

𝜃(𝑥2)

= exp {𝜂(𝑥1)}
exp {𝜂(𝑥2)}

= exp {𝜂(𝑥1) − 𝜂(𝑥2)}
= exp {𝑥′

1𝛽 − 𝑥′
2𝛽}

= exp {(𝑥1 − 𝑥2)′𝛽}

Hence on the log scale, we have:

log {ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2)} = 𝜂(𝑥1) − 𝜂(𝑥2)

= 𝑥′
1𝛽 − 𝑥′

2𝛽
= (𝑥1 − 𝑥2)′𝛽

If only one covariate 𝑥𝑗 is changing, then:

log {ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2)} = (𝑥1𝑗 − 𝑥2𝑗) ⋅ 𝛽𝑗

∝ (𝑥1𝑗 − 𝑥2𝑗)

That is, under Cox’s model ℎ(𝑡|𝑥) = ℎ0(𝑡)exp {𝑥′𝛽}, the log of the haz-
ard ratio is proportional to the difference in 𝑥𝑗, with the proportionality
coefficient equal to 𝛽𝑗.
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Further,

log {ℎ(𝑡|𝑥)} = log {ℎ0(𝑡)} + 𝑥′𝛽

That is, the covariate effects are additive on the log-hazard scale.

See also:

https://en.wikipedia.org/wiki/Proportional_hazards_model#Why_it_
is_called_%22proportional%22

6.1.3. Additional properties of the proportional hazards model

If ℎ(𝑡|𝑥) = ℎ0(𝑡)𝜃(𝑥), then:

6.1.3.1. Cumulative hazards are also proportional to 𝐻0(𝑡)

𝐻(𝑡|𝑥) def= ∫
𝑡

𝑢=0
ℎ(𝑢)𝑑𝑢

= ∫
𝑡

𝑢=0
ℎ0(𝑢)𝜃(𝑥)𝑑𝑢

= 𝜃(𝑥) ∫
𝑡

𝑢=0
ℎ0(𝑢)𝑑𝑢

= 𝜃(𝑥)𝐻0(𝑡)

where 𝐻0(𝑡) def= 𝐻(𝑡|0) = ∫𝑡
𝑢=0 ℎ0(𝑢)𝑑𝑢.
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6.1.3.2. Survival functions are exponential multiples of 𝑆0(𝑡)

𝑆(𝑡|𝑥) = exp {−𝐻(𝑡|𝑥)}
= exp {−𝜃(𝑥) ⋅ 𝐻0(𝑡)}
= (exp {−𝐻0(𝑡)})𝜃(𝑥)

= (𝑆0(𝑡))𝜃(𝑥)

where 𝑆0(𝑡) def= 𝑃(𝑇 ≥ 𝑡|𝑋 = 0) is the survival function for an individual
whose covariates are all equal to their default values.

6.1.4. Testing the proportional hazards assumption

The Nelson-Aalen estimate of the cumulative hazard is usually used for
estimates of the hazard and often the cumulative hazard.

If the hazards of the three groups are proportional, that means that the
ratio of the hazards is constant over 𝑡. We can test this using the ratios of
the estimated cumulative hazards, which also would be proportional, as
shown above.

library(KMsurv)
library(survival)
data(bmt)

bmt =
bmt |>
as_tibble() |>
mutate(

group =
group |>
factor(
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labels = c("ALL","Low Risk AML","High Risk AML")))

nafit = survfit(
formula = Surv(t2,d3) ~ group,
type = "fleming-harrington",
data = bmt)

bmt_curves = tibble(timevec = 1:1000)
sf1 <- with(nafit[1], stepfun(time,c(1,surv)))
sf2 <- with(nafit[2], stepfun(time,c(1,surv)))
sf3 <- with(nafit[3], stepfun(time,c(1,surv)))

bmt_curves =
bmt_curves |>
mutate(

cumhaz1 = -log(sf1(timevec)),
cumhaz2 = -log(sf2(timevec)),
cumhaz3 = -log(sf3(timevec)))

library(ggplot2)
bmt_rel_hazard_plot =
bmt_curves |>
ggplot(

aes(
x = timevec,
y = cumhaz1/cumhaz2)

) +
geom_line(aes(col = "ALL/Low Risk AML")) +
ylab("Hazard Ratio") +
xlab("Time") +
ylim(0,6) +
geom_line(aes(y = cumhaz3/cumhaz1, col = "High Risk AML/ALL")) +
geom_line(aes(y = cumhaz3/cumhaz2, col = "High Risk AML/Low Risk AML")) +
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theme_bw() +
labs(colour = "Comparison") +
theme(legend.position="bottom")

print(bmt_rel_hazard_plot)
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Figure 6.1.: Hazard Ratios by Disease Group

We can zoom in on 30-300 days to take a closer look:

bmt_rel_hazard_plot + xlim(c(30,300))
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Figure 6.2.: Hazard Ratios by Disease Group (30-300 Days)

6.1.5. Smoothed hazard functions

The Nelson-Aalen estimate of the cumulative hazard is usually used for
estimates of the hazard. Since the hazard is the derivative of the cumula-
tive hazard, we need a smooth estimate of the cumulative hazard, which
is provided by smoothing the step-function cumulative hazard.

The R package muhaz handles this for us. What we are looking for is
whether the hazard function is more or less the same shape, increasing,
decreasing, constant, etc. Are the hazards “proportional”?

plot(
survfit(Surv(t2,d3)~group,data=bmt),
col=1:3,
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lwd=2,
fun="cumhaz",
mark.time = TRUE)

legend("bottomright",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)
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Figure 6.3.: Disease-Free Cumulative Hazard by Disease Group

library(muhaz)

muhaz(bmt$t2,bmt$d3,bmt$group=="High Risk AML") |> plot(lwd=2,col=3)
muhaz(bmt$t2,bmt$d3,bmt$group=="ALL") |> lines(lwd=2,col=1)
muhaz(bmt$t2,bmt$d3,bmt$group=="Low Risk AML") |> lines(lwd=2,col=2)
legend("topright",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)
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Figure 6.4.: Smoothed Hazard Rate Estimates by Disease Group

Group 3 was plotted first because it has the highest hazard.

We will see that except for an initial blip in the high risk AML group, the
hazards look roughly proportional . They are all strongly decreasing.

6.1.6. Fitting the Proportional Hazards Model

How do we fit a proportional hazards regression model? We need to esti-
mate the coefficients of the covariates, and we need to estimate the base
hazard ℎ0(𝑡). For the covariates, supposing for simplicity that there are no
tied event times, let the event times for the whole data set be 𝑡1, 𝑡2, … , 𝑡𝐷.
Let the risk set at time 𝑡𝑖 be 𝑅(𝑡𝑖) and
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𝜂(𝑥) = 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝
𝜃(𝑥) = 𝑒𝜂(𝑥)

ℎ(𝑡|𝑋 = 𝑥) = ℎ0(𝑡)𝑒𝜂(𝑥) = 𝜃(𝑥)ℎ0(𝑡)

Conditional on a single failure at time 𝑡, the probability that the event is
due to subject 𝑓 ∈ 𝑅(𝑡) is approximately

Pr(𝑓 fails|1 failure at 𝑡) = ℎ0(𝑡)𝑒𝜂(𝑥𝑓)

∑𝑘∈𝑅(𝑡) ℎ0(𝑡)𝑒𝜂(𝑥𝑓)

= 𝜃(𝑥𝑓)
∑𝑘∈𝑅(𝑡) 𝜃(𝑥𝑘)

The logic behind this has several steps. We first fix (ex post) the failure
times and note that in this discrete context, the probability 𝑝𝑗 that a
subject 𝑗 in the risk set fails at time 𝑡 is just the hazard of that subject at
that time.

If all of the 𝑝𝑗 are small, the chance that exactly one subject fails is

∑
𝑘∈𝑅(𝑡)

𝑝𝑘 ⎡⎢
⎣

∏
𝑚∈𝑅(𝑡),𝑚≠𝑘

(1 − 𝑝𝑚)⎤⎥
⎦

≈ ∑
𝑘∈𝑅(𝑡)

𝑝𝑘

If subject 𝑖 is the one who experiences the event of interest at time 𝑡𝑖, then
the partial likelihood is

ℒ∗(𝛽|𝑇 ) = ∏
𝑖

𝜃(𝑥𝑖)
∑𝑘∈𝑅(𝑡𝑖) 𝜃(𝑥𝑘)

and we can numerically maximize this with respect to the coefficients 𝛽
that specify 𝜂(𝑥) = 𝑥′𝛽. When there are tied event times adjustments
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need to be made, but the likelihood is still similar. Note that we don’t
need to know the base hazard to solve for the coefficients.

Once we have coefficient estimates 𝛽̂ = ( ̂𝛽1, … , ̂𝛽𝑝), this also defines ̂𝜂(𝑥)
and ̂𝜃(𝑥) and then the estimated base cumulative hazard function is

𝐻̂(𝑡) = ∑
𝑡𝑖<𝑡

𝑑𝑖
∑𝑘∈𝑅(𝑡𝑖) 𝜃(𝑥𝑘)

which reduces to the Nelson-Aalen estimate when there are no covariates.
There are numerous other estimates that have been proposed as well.

6.2. Cox Model for the bmt data

6.2.1. Fit the model

bmt.cox <- coxph(Surv(t2, d3) ~ group, data = bmt)
summary(bmt.cox)
#> Call:
#> coxph(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> n= 137, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -0.574 0.563 0.287 -2.00 0.046 *
#> groupHigh Risk AML 0.383 1.467 0.267 1.43 0.152
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.563 1.776 0.321 0.989
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#> groupHigh Risk AML 1.467 0.682 0.869 2.478
#>
#> Concordance= 0.625 (se = 0.03 )
#> Likelihood ratio test= 13.4 on 2 df, p=0.001
#> Wald test = 13 on 2 df, p=0.001
#> Score (logrank) test = 13.8 on 2 df, p=0.001

The table provides hypothesis tests comparing groups 2 and 3 to group 1.
Group 3 has the highest hazard, so the most significant comparison is not
directly shown.

The coefficient 0.3834 is on the log-hazard-ratio scale, as in log-risk-ratio.
The next column gives the hazard ratio 1.4673, and a hypothesis (Wald)
test.

The (not shown) group 3 vs. group 2 log hazard ratio is 0.3834 + 0.5742
= 0.9576. The hazard ratio is then exp(0.9576) or 2.605.

Inference on all coefficients and combinations can be constructed using
coef(bmt.cox) and vcov(bmt.cox) as with logistic and poisson regres-
sion.

Concordance is agreement of first failure between pairs of subjects and
higher predicted risk between those subjects, omitting non-informative
pairs.

The Rsquare value is Cox and Snell’s pseudo R-squared and is not very
useful.

summary() prints three tests for whether the model with the group covari-
ate is better than the one without

• Likelihood ratio test (chi-squared)
• Wald test (also chi-squared), obtained by adding the squares of the

z-scores
• Score = log-rank test, as with comparison of survival functions.
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The likelihood ratio test is probably best in smaller samples, followed by
the Wald test.

6.2.2. Survival Curves from the Cox Model

We can take a look at the resulting group-specific curves:

#| fig-cap: "Survival Functions for Three Groups by KM and Cox Model"

km_fit = survfit(Surv(t2, d3) ~ group, data = as.data.frame(bmt))

cox_fit = survfit(
bmt.cox,
newdata =

data.frame(
group = unique(bmt$group),
row.names = unique(bmt$group)))

library(survminer)

list(KM = km_fit, Cox = cox_fit) |>
survminer::ggsurvplot(

# facet.by = "group",
legend = "bottom",
legend.title = "",
combine = TRUE,
fun = 'pct',
size = .5,
ggtheme = theme_bw(),
conf.int = FALSE,
censor = FALSE) |>

suppressWarnings() # ggsurvplot() throws some warnings that aren't too worrying
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When we use survfit() with a Cox model, we have to specify the covari-
ate levels we are interested in; the argument newdata should include a
data.frame with the same named columns as the predictors in the Cox
model and one or more levels of each.

Otherwise (that is, if the newdata argument is missing), a curve is pro-
duced for a single “pseudo” subject with covariate values equal to the
means component of the fit.

The resulting curve(s) almost never make sense, but the default remains
due to an unwarranted attachment to the option shown by some users and
by other packages.

Two particularly egregious examples are factor variables and interactions.
Suppose one were studying interspecies transmission of a virus, and the
data set has a factor variable with levels (“pig”, “chicken”) and about
equal numbers of observations for each. The “mean” covariate level will
be 0.5 – is this a flying pig?
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6.2.3. Examining survfit

survfit(Surv(t2, d3)~group,data=bmt)
#> Call: survfit(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> n events median 0.95LCL 0.95UCL
#> group=ALL 38 24 418 194 NA
#> group=Low Risk AML 54 25 2204 704 NA
#> group=High Risk AML 45 34 183 115 456

survfit(Surv(t2, d3)~group,data=bmt) |> summary()
#> Call: survfit(formula = Surv(t2, d3) ~ group, data = bmt)
#>
#> group=ALL
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 1 38 1 0.974 0.0260 0.924 1.000
#> 55 37 1 0.947 0.0362 0.879 1.000
#> 74 36 1 0.921 0.0437 0.839 1.000
#> 86 35 1 0.895 0.0498 0.802 0.998
#> 104 34 1 0.868 0.0548 0.767 0.983
#> 107 33 1 0.842 0.0592 0.734 0.966
#> 109 32 1 0.816 0.0629 0.701 0.949
#> 110 31 1 0.789 0.0661 0.670 0.930
#> 122 30 2 0.737 0.0714 0.609 0.891
#> 129 28 1 0.711 0.0736 0.580 0.870
#> 172 27 1 0.684 0.0754 0.551 0.849
#> 192 26 1 0.658 0.0770 0.523 0.827
#> 194 25 1 0.632 0.0783 0.495 0.805
#> 230 23 1 0.604 0.0795 0.467 0.782
#> 276 22 1 0.577 0.0805 0.439 0.758
#> 332 21 1 0.549 0.0812 0.411 0.734
#> 383 20 1 0.522 0.0817 0.384 0.709
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#> 418 19 1 0.494 0.0819 0.357 0.684
#> 466 18 1 0.467 0.0818 0.331 0.658
#> 487 17 1 0.439 0.0815 0.305 0.632
#> 526 16 1 0.412 0.0809 0.280 0.605
#> 609 14 1 0.382 0.0803 0.254 0.577
#> 662 13 1 0.353 0.0793 0.227 0.548
#>
#> group=Low Risk AML
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 10 54 1 0.981 0.0183 0.946 1.000
#> 35 53 1 0.963 0.0257 0.914 1.000
#> 48 52 1 0.944 0.0312 0.885 1.000
#> 53 51 1 0.926 0.0356 0.859 0.998
#> 79 50 1 0.907 0.0394 0.833 0.988
#> 80 49 1 0.889 0.0428 0.809 0.977
#> 105 48 1 0.870 0.0457 0.785 0.965
#> 211 47 1 0.852 0.0483 0.762 0.952
#> 219 46 1 0.833 0.0507 0.740 0.939
#> 248 45 1 0.815 0.0529 0.718 0.925
#> 272 44 1 0.796 0.0548 0.696 0.911
#> 288 43 1 0.778 0.0566 0.674 0.897
#> 381 42 1 0.759 0.0582 0.653 0.882
#> 390 41 1 0.741 0.0596 0.633 0.867
#> 414 40 1 0.722 0.0610 0.612 0.852
#> 421 39 1 0.704 0.0621 0.592 0.837
#> 481 38 1 0.685 0.0632 0.572 0.821
#> 486 37 1 0.667 0.0642 0.552 0.805
#> 606 36 1 0.648 0.0650 0.533 0.789
#> 641 35 1 0.630 0.0657 0.513 0.773
#> 704 34 1 0.611 0.0663 0.494 0.756
#> 748 33 1 0.593 0.0669 0.475 0.739
#> 1063 26 1 0.570 0.0681 0.451 0.720
#> 1074 25 1 0.547 0.0691 0.427 0.701
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#> 2204 6 1 0.456 0.1012 0.295 0.704
#>
#> group=High Risk AML
#> time n.risk n.event survival std.err lower 95% CI upper 95% CI
#> 2 45 1 0.978 0.0220 0.936 1.000
#> 16 44 1 0.956 0.0307 0.897 1.000
#> 32 43 1 0.933 0.0372 0.863 1.000
#> 47 42 2 0.889 0.0468 0.802 0.986
#> 48 40 1 0.867 0.0507 0.773 0.972
#> 63 39 1 0.844 0.0540 0.745 0.957
#> 64 38 1 0.822 0.0570 0.718 0.942
#> 74 37 1 0.800 0.0596 0.691 0.926
#> 76 36 1 0.778 0.0620 0.665 0.909
#> 80 35 1 0.756 0.0641 0.640 0.892
#> 84 34 1 0.733 0.0659 0.615 0.875
#> 93 33 1 0.711 0.0676 0.590 0.857
#> 100 32 1 0.689 0.0690 0.566 0.838
#> 105 31 1 0.667 0.0703 0.542 0.820
#> 113 30 1 0.644 0.0714 0.519 0.801
#> 115 29 1 0.622 0.0723 0.496 0.781
#> 120 28 1 0.600 0.0730 0.473 0.762
#> 157 27 1 0.578 0.0736 0.450 0.742
#> 162 26 1 0.556 0.0741 0.428 0.721
#> 164 25 1 0.533 0.0744 0.406 0.701
#> 168 24 1 0.511 0.0745 0.384 0.680
#> 183 23 1 0.489 0.0745 0.363 0.659
#> 242 22 1 0.467 0.0744 0.341 0.638
#> 268 21 1 0.444 0.0741 0.321 0.616
#> 273 20 1 0.422 0.0736 0.300 0.594
#> 318 19 1 0.400 0.0730 0.280 0.572
#> 363 18 1 0.378 0.0723 0.260 0.550
#> 390 17 1 0.356 0.0714 0.240 0.527
#> 422 16 1 0.333 0.0703 0.221 0.504
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#> 456 15 1 0.311 0.0690 0.201 0.481
#> 467 14 1 0.289 0.0676 0.183 0.457
#> 625 13 1 0.267 0.0659 0.164 0.433
#> 677 12 1 0.244 0.0641 0.146 0.409

survfit(bmt.cox)
#> Call: survfit(formula = bmt.cox)
#>
#> n events median 0.95LCL 0.95UCL
#> [1,] 137 83 422 268 NA
survfit(bmt.cox, newdata = tibble(group = unique(bmt$group)))
#> Call: survfit(formula = bmt.cox, newdata = tibble(group = unique(bmt$group)))
#>
#> n events median 0.95LCL 0.95UCL
#> 1 137 83 422 268 NA
#> 2 137 83 NA 625 NA
#> 3 137 83 268 162 467

bmt.cox |>
survfit(newdata = tibble(group = unique(bmt$group))) |>
summary()

#> Call: survfit(formula = bmt.cox, newdata = tibble(group = unique(bmt$group)))
#>
#> time n.risk n.event survival1 survival2 survival3
#> 1 137 1 0.993 0.996 0.989
#> 2 136 1 0.985 0.992 0.978
#> 10 135 1 0.978 0.987 0.968
#> 16 134 1 0.970 0.983 0.957
#> 32 133 1 0.963 0.979 0.946
#> 35 132 1 0.955 0.975 0.935
#> 47 131 2 0.941 0.966 0.914
#> 48 129 2 0.926 0.957 0.893
#> 53 127 1 0.918 0.953 0.882
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#> 55 126 1 0.911 0.949 0.872
#> 63 125 1 0.903 0.944 0.861
#> 64 124 1 0.896 0.940 0.851
#> 74 123 2 0.881 0.931 0.830
#> 76 121 1 0.873 0.926 0.819
#> 79 120 1 0.865 0.922 0.809
#> 80 119 2 0.850 0.913 0.788
#> 84 117 1 0.843 0.908 0.778
#> 86 116 1 0.835 0.903 0.768
#> 93 115 1 0.827 0.899 0.757
#> 100 114 1 0.820 0.894 0.747
#> 104 113 1 0.812 0.889 0.737
#> 105 112 2 0.797 0.880 0.717
#> 107 110 1 0.789 0.875 0.707
#> 109 109 1 0.782 0.870 0.697
#> 110 108 1 0.774 0.866 0.687
#> 113 107 1 0.766 0.861 0.677
#> 115 106 1 0.759 0.856 0.667
#> 120 105 1 0.751 0.851 0.657
#> 122 104 2 0.735 0.841 0.637
#> 129 102 1 0.727 0.836 0.627
#> 157 101 1 0.720 0.831 0.617
#> 162 100 1 0.712 0.826 0.607
#> 164 99 1 0.704 0.821 0.598
#> 168 98 1 0.696 0.815 0.588
#> 172 97 1 0.688 0.810 0.578
#> 183 96 1 0.680 0.805 0.568
#> 192 95 1 0.672 0.800 0.558
#> 194 94 1 0.664 0.794 0.549
#> 211 93 1 0.656 0.789 0.539
#> 219 92 1 0.648 0.783 0.530
#> 230 90 1 0.640 0.778 0.520
#> 242 89 1 0.632 0.773 0.511
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#> 248 88 1 0.624 0.767 0.501
#> 268 87 1 0.616 0.761 0.492
#> 272 86 1 0.608 0.756 0.482
#> 273 85 1 0.600 0.750 0.473
#> 276 84 1 0.592 0.745 0.464
#> 288 83 1 0.584 0.739 0.454
#> 318 82 1 0.576 0.733 0.445
#> 332 81 1 0.568 0.727 0.436
#> 363 80 1 0.560 0.722 0.427
#> 381 79 1 0.552 0.716 0.418
#> 383 78 1 0.544 0.710 0.409
#> 390 77 2 0.528 0.698 0.392
#> 414 75 1 0.520 0.692 0.383
#> 418 74 1 0.512 0.686 0.374
#> 421 73 1 0.504 0.680 0.366
#> 422 72 1 0.496 0.674 0.357
#> 456 71 1 0.488 0.667 0.349
#> 466 70 1 0.480 0.661 0.340
#> 467 69 1 0.472 0.655 0.332
#> 481 68 1 0.464 0.649 0.324
#> 486 67 1 0.455 0.642 0.315
#> 487 66 1 0.447 0.636 0.307
#> 526 65 1 0.439 0.629 0.299
#> 606 63 1 0.431 0.623 0.291
#> 609 62 1 0.423 0.616 0.283
#> 625 61 1 0.415 0.609 0.275
#> 641 60 1 0.407 0.603 0.267
#> 662 59 1 0.399 0.596 0.260
#> 677 58 1 0.391 0.589 0.252
#> 704 57 1 0.383 0.582 0.244
#> 748 56 1 0.374 0.575 0.237
#> 1063 47 1 0.365 0.567 0.228
#> 1074 46 1 0.356 0.559 0.220
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#> 2204 9 1 0.313 0.520 0.182

6.3. Adjustment for Ties (optional)

6.3.1.

At each time 𝑡𝑖 at which more than one of the subjects has an event, let 𝑑𝑖
be the number of events at that time, 𝐷𝑖 the set of subjects with events at
that time, and let 𝑠𝑖 be a covariate vector for an artificial subject obtained
by adding up the covariate values for the subjects with an event at time
𝑡𝑖. Let

̄𝜂𝑖 = 𝛽1𝑠𝑖1 + ⋯ + 𝛽𝑝𝑠𝑖𝑝

and ̄𝜃𝑖 = exp { ̄𝜂𝑖}.

Let 𝑠𝑖 be a covariate vector for an artificial subject obtained by adding up
the covariate values for the subjects with an event at time 𝑡𝑖. Note that

̄𝜂𝑖 = ∑
𝑗∈𝐷𝑖

𝛽1𝑥𝑗1 + ⋯ + 𝛽𝑝𝑥𝑗𝑝

= 𝛽1𝑠𝑖1 + ⋯ + 𝛽𝑝𝑠𝑖𝑝
̄𝜃𝑖 = exp { ̄𝜂𝑖}
= ∏

𝑗∈𝐷𝑖

𝜃𝑖

6.3.1.1. Breslow’s method for ties

Breslow’s method estimates the partial likelihood as
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𝐿(𝛽|𝑇 ) = ∏
𝑖

̄𝜃𝑖
[∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘]𝑑𝑖

= ∏
𝑖

∏
𝑗∈𝐷𝑖

𝜃𝑗
∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘

This method is equivalent to treating each event as distinct and using the
non-ties formula. It works best when the number of ties is small. It is the
default in many statistical packages, including PROC PHREG in SAS.

6.3.1.2. Efron’s method for ties

The other common method is Efron’s, which is the default in R.

𝐿(𝛽|𝑇 ) = ∏
𝑖

̄𝜃𝑖
∏𝑑𝑖

𝑗=1[∑𝑘∈𝑅(𝑡𝑖) 𝜃𝑘 − 𝑗−1
𝑑𝑖

∑𝑘∈𝐷𝑖
𝜃𝑘]

This is closer to the exact discrete partial likelihood when there are many
ties.

The third option in R (and an option also in SAS as discrete) is the “ex-
act” method, which is the same one used for matched logistic regression.

6.3.1.3. Example: Breslow’s method

Suppose as an example we have a time 𝑡 where there are 20 individuals
at risk and three failures. Let the three individuals have risk parameters
𝜃1, 𝜃2, 𝜃3 and let the sum of the risk parameters of the remaining 17 indi-
viduals be 𝜃𝑅. Then the factor in the partial likelihood at time 𝑡 using
Breslow’s method is
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( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

) ( 𝜃2
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

) ( 𝜃3
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

)

If on the other hand, they had died in the order 1,2, 3, then the contribu-
tion to the partial likelihood would be:

( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

) ( 𝜃2
𝜃𝑅 + 𝜃2 + 𝜃3

) ( 𝜃3
𝜃𝑅 + 𝜃3

)

as the risk set got smaller with each failure. The exact method roughly
averages the results for the six possible orderings of the failures.

6.3.1.4. Example: Efron’s method

But we don’t know the order they failed in, so instead of reducing the
denominator by one risk coefficient each time, we reduce it by the same
fraction. This is Efron’s method.

( 𝜃1
𝜃𝑅 + 𝜃1 + 𝜃2 + 𝜃3

) ( 𝜃2
𝜃𝑅 + 2(𝜃1 + 𝜃2 + 𝜃3)/3) ( 𝜃3

𝜃𝑅 + (𝜃1 + 𝜃2 + 𝜃3)/3)
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Hazards models

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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7.1. Building Cox Proportional Hazards models

7.1.1. hodg Lymphoma Data Set from KMsurv

7.1.1.1. Participants

43 bone marrow transplant patients at Ohio State University (Avalos
1993)

7.1.1.2. Variables

• dtype: Disease type (Hodgkin’s or non-Hodgkins lymphoma)
• gtype: Bone marrow graft type:
• allogeneic: from HLA-matched sibling
• autologous: from self (prior to chemo)
• time: time to study exit
• delta: study exit reason (death/relapse vs censored)
• wtime: waiting time to transplant (in months)
• score: Karnofsky score:
• 80–100: Able to carry on normal activity and to work; no special

care needed.
• 50–70: Unable to work; able to live at home and care for most

personal needs; varying amount of assistance needed.
• 10–60: Unable to care for self; requires equivalent of institutional or

hospital care; disease may be progressing rapidly.

7.1.1.3. Data

data(hodg, package = "KMsurv")
hodg2 = hodg |>
as_tibble() |>
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mutate(
# We add factor labels to the categorical variables:
gtype = gtype |>
case_match(

1 ~ "Allogenic",
2 ~ "Autologous"),

dtype = dtype |>
case_match(

1 ~ "Non-Hodgkins",
2 ~ "Hodgkins") |>

factor() |>
relevel(ref = "Non-Hodgkins"),

delta = delta |>
case_match(

1 ~ "dead",
0 ~ "alive"),

surv = Surv(
time = time,
event = delta == "dead")

)
hodg2 |> print()
#> # A tibble: 43 x 7
#> gtype dtype time delta score wtime surv
#> <chr> <fct> <int> <chr> <int> <int> <Surv>
#> 1 Allogenic Non-Hodgkins 28 dead 90 24 28
#> 2 Allogenic Non-Hodgkins 32 dead 30 7 32
#> 3 Allogenic Non-Hodgkins 49 dead 40 8 49
#> 4 Allogenic Non-Hodgkins 84 dead 60 10 84
#> 5 Allogenic Non-Hodgkins 357 dead 70 42 357
#> 6 Allogenic Non-Hodgkins 933 alive 90 9 933+
#> 7 Allogenic Non-Hodgkins 1078 alive 100 16 1078+
#> 8 Allogenic Non-Hodgkins 1183 alive 90 16 1183+
#> 9 Allogenic Non-Hodgkins 1560 alive 80 20 1560+
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#> 10 Allogenic Non-Hodgkins 2114 alive 80 27 2114+
#> # i 33 more rows

7.1.2. Proportional hazards model

hodg.cox1 = coxph(
formula = surv ~ gtype * dtype + score + wtime,
data = hodg2)

summary(hodg.cox1)
#> Call:
#> coxph(formula = surv ~ gtype * dtype + score + wtime, data = hodg2)
#>
#> n= 43, number of events= 26
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> gtypeAutologous 0.6394 1.8953 0.5937 1.08 0.2815
#> dtypeHodgkins 2.7603 15.8050 0.9474 2.91 0.0036 **
#> score -0.0495 0.9517 0.0124 -3.98 6.8e-05 ***
#> wtime -0.0166 0.9836 0.0102 -1.62 0.1046
#> gtypeAutologous:dtypeHodgkins -2.3709 0.0934 1.0355 -2.29 0.0220 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> gtypeAutologous 1.8953 0.5276 0.5920 6.068
#> dtypeHodgkins 15.8050 0.0633 2.4682 101.207
#> score 0.9517 1.0507 0.9288 0.975
#> wtime 0.9836 1.0167 0.9641 1.003
#> gtypeAutologous:dtypeHodgkins 0.0934 10.7074 0.0123 0.711
#>
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#> Concordance= 0.776 (se = 0.059 )
#> Likelihood ratio test= 32.1 on 5 df, p=6e-06
#> Wald test = 27.2 on 5 df, p=5e-05
#> Score (logrank) test = 37.7 on 5 df, p=4e-07

7.2. Diagnostic graphs for proportional hazards
assumption

7.2.1. Analysis plan

• survival function for the four combinations of disease type and
graft type.

• observed (nonparametric) vs. expected (semiparametric)
survival functions.

• complementary log-log survival for the four groups.

7.2.2. Kaplan-Meier survival functions

km_model = survfit(
formula = surv ~ dtype + gtype,
data = hodg2)

km_model |>
autoplot(conf.int = FALSE) +
theme_bw() +
theme(

legend.position="bottom",
legend.title = element_blank(),
legend.text = element_text(size = legend_text_size)
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) +
guides(col=guide_legend(ncol=2)) +
ylab('Survival probability, S(t)') +
xlab("Time since transplant (days)")
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Figure 7.1.: Kaplan-Meier Survival Curves for HOD/NHL and Allo/Auto
Grafts

7.2.3. Observed and expected survival curves

# we need to create a tibble of covariate patterns;
# we will set score and wtime to mean values for disease and graft types:
means = hodg2 |>
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summarize(
.by = c(dtype, gtype),
score = mean(score),
wtime = mean(wtime)) |>

arrange(dtype, gtype) |>
mutate(strata = paste(dtype, gtype, sep = ",")) |>
as.data.frame()

# survfit.coxph() will use the rownames of its `newdata`
# argument to label its output:
rownames(means) = means$strata

cox_model =
hodg.cox1 |>
survfit(

data = hodg2, # ggsurvplot() will need this
newdata = means)

# I couldn't find a good function to reformat `cox_model` for ggplot,
# so I made my own:
stack_surv_ph = function(cox_model)
{
cox_model$surv |>

as_tibble() |>
mutate(time = cox_model$time) |>
pivot_longer(
cols = -time,
names_to = "strata",
values_to = "surv") |>

mutate(
cumhaz = -log(surv),
model = "Cox PH")

}
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km_and_cph =
km_model |>
fortify(surv.connect = TRUE) |>
mutate(

strata = trimws(strata),
model = "Kaplan-Meier",
cumhaz = -log(surv)) |>

bind_rows(stack_surv_ph(cox_model))

km_and_cph |>
ggplot(aes(x = time, y = surv, col = model)) +
geom_step() +
facet_wrap(~strata) +
theme_bw() +
ylab("S(t) = P(T>=t)") +
xlab("Survival time (t, days)") +
theme(legend.position = "bottom")
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Figure 7.2.: Observed and expected survival curves for bmt data

7.2.4. Cumulative hazard (log-scale) curves

Also known as “complementary log-log (clog-log) survival curves”.

na_model = survfit(
formula = surv ~ dtype + gtype,
data = hodg2,
type = "fleming")

na_model |>
survminer::ggsurvplot(
legend = "bottom",
legend.title = "",
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ylab = "log(Cumulative Hazard)",
xlab = "Time since transplant (days, log-scale)",
fun = 'cloglog',
size = .5,
ggtheme = theme_bw(),
conf.int = FALSE,
censor = TRUE) |>
magrittr::extract2("plot") +
guides(

col =
guide_legend(

ncol = 2,
label.theme =

element_text(
size = legend_text_size)))
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Figure 7.3.: Complementary log-log survival curves - Nelson-Aalen esti-
mates

Let’s compare these empirical (i.e., non-parametric) curves with the fitted
curves from our coxph() model:

cox_model |>
survminer::ggsurvplot(

facet_by = "",
legend = "bottom",
legend.title = "",
ylab = "log(Cumulative Hazard)",
xlab = "Time since transplant (days, log-scale)",
fun = 'cloglog',
size = .5,
ggtheme = theme_bw(),
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censor = FALSE, # doesn't make sense for cox model
conf.int = FALSE) |>

magrittr::extract2("plot") +
guides(

col =
guide_legend(

ncol = 2,
label.theme =

element_text(
size = legend_text_size)))
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Figure 7.4.: Complementary log-log survival curves - PH estimates

Now let’s overlay these cumulative hazard curves:
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na_and_cph =
na_model |>
fortify(fun = "cumhaz") |>
# `fortify.survfit()` doesn't name cumhaz correctly:
rename(cumhaz = surv) |>
mutate(

surv = exp(-cumhaz),
strata = trimws(strata)) |>

mutate(model = "Nelson-Aalen") |>
bind_rows(stack_surv_ph(cox_model))

na_and_cph |>
ggplot(

aes(
x = time,
y = cumhaz,
col = model)) +

geom_step() +
facet_wrap(~strata) +
theme_bw() +
scale_y_continuous(

trans = "log10",
name = "Cumulative hazard H(t) (log-scale)") +

scale_x_continuous(
trans = "log10",
name = "Survival time (t, days, log-scale)") +

theme(legend.position = "bottom")
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Figure 7.5.: Observed and expected cumulative hazard curves for bmt data
(cloglog format)

7.3. Predictions and Residuals

7.3.1. Review: Predictions in Linear Regression

• In linear regression, we have a linear predictor for each data point 𝑖

𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖

̂𝑦𝑖 = ̂𝜂𝑖 = ̂𝛽0 + ̂𝛽1𝑥1𝑖 + ⋯ + ̂𝛽𝑝𝑥𝑝𝑖
𝑦𝑖 ∼ 𝑁(𝜂𝑖, 𝜎2)
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• ̂𝑦𝑖 estimates the conditional mean of 𝑦𝑖 given the covariate values ̃𝑥𝑖.
This together with the prediction error says that we are predicting
the distribution of values of 𝑦.

7.3.2. Review: Residuals in Linear Regression

• The usual residual is 𝑟𝑖 = 𝑦𝑖 − ̂𝑦𝑖, the difference between the actual
value of 𝑦 and a prediction of its mean.

• The residuals are also the quantities the sum of whose squares is
being minimized by the least squares/MLE estimation.

7.3.3. Predictions and Residuals in survival models

• In survival analysis, the equivalent of 𝑦𝑖 is the event time 𝑡𝑖, which
is unknown for the censored observations.

• The expected event time can be tricky to calculate:

Ê[𝑇 |𝑋 = 𝑥] = ∫
∞

𝑡=0
̂𝑆(𝑡)𝑑𝑡

7.3.4. Wide prediction intervals

The nature of time-to-event data results in very wide prediction inter-
vals:

• Suppose a cancer patient is predicted to have a mean lifetime of 5
years after diagnosis and suppose the distribution is exponential.

• If we want a 95% interval for survival, the lower end is at the 0.025
percentage point of the exponential which is qexp(.025, rate =
1/5) = 0.1266 years, or 1/40 of the mean lifetime.
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• The upper end is at the 0.975 point which is qexp(.975, rate =
1/5) = 18.4444 years, or 3.7 times the mean lifetime.

• Saying that the survival time is somewhere between 6 weeks and 18
years does not seem very useful, but it may be the best we can do.

• For survival analysis, something is like a residual if it is small when
the model is accurate or if the accumulation of them is in some
way minimized by the estimation algorithm, but there is no exact
equivalence to linear regression residuals.

• And if there is, they are mostly quite large!

7.3.5. Types of Residuals in Time-to-Event Models

• It is often hard to make a decision from graph appearances, though
the process can reveal much.

• Some diagnostic tests are based on residuals as with other regression
methods:

• Schoenfeld residuals (via cox.zph) for proportionality.
• Cox-Snell residuals for goodness of fit.
• martingale residuals for non-linearity.
• dfbeta for influence.

7.3.6. Schoenfeld residuals

• There is a Schoenfeld residual for each subject 𝑖 with an event (not
censored) and for each predictor 𝑥𝑘.

• At the event time 𝑡 for that subject, there is a risk set 𝑅, and each
subject 𝑗 in the risk set has a risk coefficient 𝜃𝑗 and also a value 𝑥𝑗𝑘
of the predictor.

• The Schoenfeld residual is the difference between 𝑥𝑖𝑘 and the risk-
weighted average of all the 𝑥𝑗𝑘 over the risk set.
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𝑟𝑆
𝑖𝑘 = 𝑥𝑖𝑘 −

∑𝑘∈𝑅 𝑥𝑗𝑘𝜃𝑘
∑𝑘∈𝑅 𝜃𝑘

This residual measures how typical the individual subject is with respect
to the covariate at the time of the event. Since subjects should fail more
or less uniformly according to risk, the Schoenfeld residuals should be
approximately level over time, not increasing or decreasing.

We can test this with the correlation with time on some scale, which could
be the time itself, the log time, or the rank in the set of failure times.

The default is to use the KM curve as a transform, which is similar to the
rank but deals better with censoring.

The cox.zph() function implements a score test proposed in Grambsch
and Therneau (1994).

hodg.zph = cox.zph(hodg.cox1)
print(hodg.zph)
#> chisq df p
#> gtype 0.5400 1 0.462
#> dtype 1.8012 1 0.180
#> score 3.8805 1 0.049
#> wtime 0.0173 1 0.895
#> gtype:dtype 4.0474 1 0.044
#> GLOBAL 13.7573 5 0.017

7.3.6.1. gtype

ggcoxzph(hodg.zph, var = "gtype")
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Schoenfeld Individual Test p: 0.4624

Global Schoenfeld Test p: 0.01723

7.3.6.2. dtype

ggcoxzph(hodg.zph, var = "dtype")
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Schoenfeld Individual Test p: 0.1796
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7.3.6.3. score

ggcoxzph(hodg.zph, var = "score")
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7.3.6.4. wtime

ggcoxzph(hodg.zph, var = "wtime")
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7.3.6.5. gtype:dtype

ggcoxzph(hodg.zph, var = "gtype:dtype")
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Global Schoenfeld Test p: 0.01723

7.3.6.6. Conclusions

• From the correlation test, the Karnofsky score and the interaction
with graft type disease type induce modest but statistically signifi-
cant non-proportionality.

• The sample size here is relatively small (26 events in 43 subjects). If
the sample size is large, very small amounts of non-proportionality
can induce a significant result.

• As time goes on, autologous grafts are over-represented at their own
event times, but those from HOD patients become less represented.

• Both the statistical tests and the plots are useful.
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7.4. Goodness of Fit using the Cox-Snell Residuals

(references: Klein & Moeschberger textbook, §11.2, and Dobson & Barnett
textbook, §10.6)

Suppose that an individual has a survival time 𝑇 which has survival func-
tion 𝑆(𝑡), meaning that Pr(𝑇 > 𝑡) = 𝑆(𝑡). Then 𝑆(𝑇 ) has a uniform
distribution on (0, 1).

Pr(𝑆(𝑇𝑖) ≤ 𝑢) = Pr(𝑇𝑖 > 𝑆−1
𝑖 (𝑢))

= 𝑆𝑖(𝑆−1
𝑖 (𝑢))

= 𝑢

Also, if 𝑈 has a uniform distribution on (0, 1), then what is the distribution
of − ln(𝑈)?

Pr(− ln(𝑈) < 𝑥) = Pr(𝑈 > exp {−𝑥})
= 1 − 𝑒−𝑥

which is the CDF of an exponential distribution with parameter 𝜆 = 1.

So,

𝑟𝐶𝑆
𝑖

def= − ln[ ̂𝑆(𝑡𝑖|𝑥𝑖)] = 𝐻̂(𝑡𝑖| ̃𝑥𝑖)

should have an exponential distribution with constant hazard 𝜆 = 1 if the
estimate ̂𝑆𝑖 is accurate, which means that these values should look like
a censored sample from this exponential distribution. These values are
called generalized residuals or Cox-Snell residuals.
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hodg2 = hodg2 |>
mutate(cs = predict(hodg.cox1, type = "expected"))

surv.csr = survfit(
data = hodg2,
formula = Surv(time = cs, event = delta == "dead") ~ 1,
type = "fleming-harrington")

autoplot(surv.csr, fun = "cumhaz") +
geom_abline(aes(intercept = 0, slope = 1), col = "red") +
theme_bw()
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Figure 7.6.: Cumulative Hazard of Cox-Snell Residuals

The line with slope 1 and intercept 0 fits the curve relatively well, so we
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don’t see lack of fit using this procedure.

7.5. Martingale Residuals

The martingale residuals are a slight modification of the Cox-Snell resid-
uals. If the censoring indicator is 𝛿𝑖, then

𝑟𝑀
𝑖 = 𝛿𝑖 − 𝑟𝐶𝑆

𝑖

These residuals can be interpreted as an estimate of the excess number of
events seen in the data but not predicted by the model. We will use these
to examine the functional forms of continuous covariates.

7.5.1. Using Martingale Residuals

Martingale residuals can be used to examine the functional form of a
numeric variable.

• We fit the model without that variable and compute the martingale
residuals.

• We then plot these martingale residuals against the values of the
variable.

• We can see curvature, or a possible suggestion that the variable can
be discretized.

Let’s use this to examine the score and wtime variables in the wtime data
set.

Karnofsky score
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hodg2 = hodg2 |>
mutate(

mres =
hodg.cox1 |>
update(. ~ . - score) |>
residuals(type="martingale"))

hodg2 |>
ggplot(aes(x = score, y = mres)) +
geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Karnofsky Score") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.7.: Martingale Residuals vs. Karnofsky Score

The line is almost straight. It could be some modest transformation of the
Karnofsky score would help, but it might not make much difference.

Waiting time

hodg2$mres =
hodg.cox1 |>
update(. ~ . - wtime) |>
residuals(type="martingale")

hodg2 |>
ggplot(aes(x = wtime, y = mres)) +
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geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Waiting Time") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.8.: Martingale Residuals vs. Waiting Time

The line could suggest a step function. To see where the drop is, we can
look at the largest waiting times and the associated martingale residual.

The martingale residuals are all negative for wtime >83 and positive for
the next smallest value. A reasonable cut-point is 80 days.
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Updating the model

Let’s reformulate the model with dichotomized wtime.

hodg2 =
hodg2 |>
mutate(

wt2 = cut(
wtime,c(0, 80, 200),
labels=c("short","long")))

hodg.cox2 =
coxph(

formula =
Surv(time, event = delta == "dead") ~
gtype*dtype + score + wt2,

data = hodg2)

hodg.cox1 |> drop1(test="Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 152. NA NA
#> 2 1 168. 17.2 0.0000330
#> 3 1 154. 3.28 0.0702
#> 4 1 156. 5.44 0.0197

hodg.cox2 |> drop1(test="Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 149. NA NA
#> 2 1 169. 21.6 0.00000335
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#> 3 1 154. 6.61 0.0102
#> 4 1 152. 4.97 0.0258

The new model has better (lower) AIC.

7.6. Checking for Outliers and Influential
Observations

We will check for outliers using the deviance residuals. The martingale
residuals show excess events or the opposite, but highly skewed, with the
maximum possible value being 1, but the smallest value can be very large
negative. Martingale residuals can detect unexpectedly long-lived patients,
but patients who die unexpectedly early show up only in the deviance
residual. Influence will be examined using dfbeta in a similar way to
linear regression, logistic regression, or Poisson regression.

7.6.1. Deviance Residuals

𝑟𝐷
𝑖 = sign(𝑟𝑀

𝑖 )√−2 [𝑟𝑀
𝑖 + 𝛿𝑖 ln(𝛿𝑖 − 𝑟𝑀

𝑖 )]

𝑟𝐷
𝑖 = sign(𝑟𝑀

𝑖 )√−2 [𝑟𝑀
𝑖 + 𝛿𝑖 ln(𝑟𝐶𝑆

𝑖 )]

Roughly centered on 0 with approximate standard deviation 1.

7.6.2.
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hodg.mart = residuals(hodg.cox2,type="martingale")
hodg.dev = residuals(hodg.cox2,type="deviance")
hodg.dfb = residuals(hodg.cox2,type="dfbeta")
hodg.preds = predict(hodg.cox2) #linear predictor

plot(hodg.preds,
hodg.mart,
xlab="Linear Predictor",
ylab="Martingale Residual")
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Figure 7.9.: Martingale Residuals vs. Linear Predictor

The smallest three martingale residuals in order are observations 1, 29,
and 18.
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plot(hodg.preds,hodg.dev,xlab="Linear Predictor",ylab="Deviance Residual")
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Figure 7.10.: Deviance Residuals vs. Linear Predictor

The two largest deviance residuals are observations 1 and 29. Worth ex-
amining.

7.6.3. dfbeta

• dfbeta is the approximate change in the coefficient vector if that
observation were dropped

• dfbetas is the approximate change in the coefficients, scaled by the
standard error for the coefficients.
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7.6.3.1. Graft type

plot(hodg.dfb[,1],xlab="Observation Order",ylab="dfbeta for Graft Type")
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Figure 7.11.: dfbeta Values by Observation Order for Graft Type

The smallest dfbeta for graft type is observation 1.

7.6.3.2. Disease type

plot(hodg.dfb[,2],
xlab="Observation Order",
ylab="dfbeta for Disease Type")
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Figure 7.12.: dfbeta Values by Observation Order for Disease Type

The smallest two dfbeta values for disease type are observations 1 and
16.

7.6.3.3. Karnofsky score

plot(hodg.dfb[,3],
xlab="Observation Order",
ylab="dfbeta for Karnofsky Score")
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Figure 7.13.: dfbeta Values by Observation Order for Karnofsky Score

The two highest dfbeta values for score are observations 1 and 18. The next
three are observations 17, 29, and 19. The smallest value is observation
2.

7.6.3.4. Waiting time (dichotomized)

plot(
hodg.dfb[,4],
xlab="Observation Order",
ylab="dfbeta for `Waiting Time < 80`")
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Figure 7.14.: dfbeta Values by Observation Order for Waiting Time (di-
chotomized)

The two large values of dfbeta for dichotomized waiting time are observa-
tions 15 and 16. This may have to do with the discretization of waiting
time.

7.6.3.5. Interaction: graft type and disease type

plot(hodg.dfb[,5],
xlab="Observation Order",
ylab="dfbeta for dtype:gtype")
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Figure 7.15.: dfbeta Values by Observation Order for dtype:gtype

The two largest values are observations 1 and 16. The smallest value is
observation 35.

Table 7.1.: Observations to Examine by Residuals and Influence
Diagnostic Observations to Examine
Martingale Residuals 1, 29, 18
Deviance Residuals 1, 29
Graft Type Influence 1
Disease Type Influence 1, 16
Karnofsky Score Influence 1, 18 (17, 29, 19)
Waiting Time Influence 15, 16
Graft by Disease Influence 1, 16, 35
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The most important observations to examine seem to be 1, 15, 16, 18, and
29.

7.6.4.

with(hodg,summary(time[delta==1]))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 2.0 41.2 62.5 97.6 83.2 524.0

with(hodg,summary(wtime))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 5.0 16.0 24.0 37.7 55.5 171.0

with(hodg,summary(score))
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 20.0 60.0 80.0 76.3 90.0 100.0

hodg.cox2
#> Call:
#> coxph(formula = Surv(time, event = delta == "dead") ~ gtype *
#> dtype + score + wt2, data = hodg2)
#>
#> coef exp(coef) se(coef) z p
#> gtypeAutologous 0.67 1.94 0.59 1 0.263
#> dtypeHodgkins 2.33 10.25 0.73 3 0.002
#> score -0.06 0.95 0.01 -4 8e-06
#> wt2long -2.06 0.13 1.05 -2 0.050
#> gtypeAutologous:dtypeHodgkins -2.07 0.13 0.93 -2 0.026
#>
#> Likelihood ratio test=35 on 5 df, p=1e-06
#> n= 43, number of events= 26
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hodg2[c(1,15,16,18,29),] |>
select(gtype, dtype, time, delta, score, wtime) |>
mutate(

comment =
c(

"early death, good score, low risk",
"high risk grp, long wait, poor score",
"high risk grp, short wait, poor score",
"early death, good score, med risk grp",
"early death, good score, med risk grp"

))
#> # A tibble: 5 x 7
#> gtype dtype time delta score wtime comment
#> <chr> <fct> <int> <chr> <int> <int> <chr>
#> 1 Allogenic Non-Hodgkins 28 dead 90 24 early death, good score, low ~
#> 2 Allogenic Hodgkins 77 dead 60 102 high risk grp, long wait, poo~
#> 3 Allogenic Hodgkins 79 dead 70 71 high risk grp, short wait, po~
#> 4 Autologous Non-Hodgkins 53 dead 90 17 early death, good score, med ~
#> 5 Autologous Hodgkins 30 dead 90 73 early death, good score, med ~

7.6.5. Action Items

• Unusual points may need checking, particularly if the data are not
completely cleaned. In this case, observations 15 and 16 may show
some trouble with the dichotomization of waiting time, but it still
may be useful.

• The two largest residuals seem to be due to unexpectedly early
deaths, but unfortunately this can occur.

• If hazards don’t look proportional, then we may need to use strata,
between which the base hazards are permitted to be different. For
this problem, the natural strata are the two diseases, because they
could need to be managed differently anyway.
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• A main point that we want to be sure of is the relative risk difference
by disease type and graft type.

hodg.cox2 |>
predict(

reference = "zero",
newdata = means |>
mutate(

wt2 = "short",
score = 0),

type = "lp") |>
data.frame('linear predictor' = _) |>
pander()

Table 7.2.: Linear Risk Predictors for Lymphoma
linear.predictor

Non-Hodgkins,Allogenic 0
Non-

Hodgkins,Autologous
0.6651

Hodgkins,Allogenic 2.327
Hodgkins,Autologous 0.9256

For Non-Hodgkin’s, the allogenic graft is better. For Hodgkin’s, the autol-
ogous graft is much better.

7.7. Stratified survival models

7.7.1. Revisiting the leukemia dataset (anderson)

We will analyze remission survival times on 42 leukemia patients, half on
new treatment, half on standard treatment.
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This is the same data as the drug6mp data from KMsurv, but with two
other variables and without the pairing. This version comes from the
Kleinbaum and Klein survival textbook (e.g., p281):

anderson =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets/",
"surv2datasets/anderson.dta") |>

haven::read_dta() |>
mutate(

status = status |>
case_match(

1 ~ "relapse",
0 ~ "censored"

),

sex = sex |>
case_match(

0 ~ "female",
1 ~ "male"

) |>
factor() |>
relevel(ref = "female"),

rx = rx |>
case_match(

0 ~ "new",
1 ~ "standard"

) |>
factor() |> relevel(ref = "standard"),

surv = Surv(
time = survt,
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event = (status == "relapse"))
)

print(anderson)

7.7.2. Cox semi-parametric proportional hazards model

anderson.cox1 = coxph(
formula = surv ~ rx + sex + logwbc,
data = anderson)

summary(anderson.cox1)
#> Call:
#> coxph(formula = surv ~ rx + sex + logwbc, data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -1.504 0.222 0.462 -3.26 0.0011 **
#> sexmale 0.315 1.370 0.455 0.69 0.4887
#> logwbc 1.682 5.376 0.337 5.00 5.8e-07 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.222 4.498 0.090 0.549
#> sexmale 1.370 0.730 0.562 3.338
#> logwbc 5.376 0.186 2.779 10.398
#>
#> Concordance= 0.851 (se = 0.041 )
#> Likelihood ratio test= 47.2 on 3 df, p=3e-10
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#> Wald test = 33.5 on 3 df, p=2e-07
#> Score (logrank) test = 48 on 3 df, p=2e-10

7.7.2.1. Test the proportional hazards assumption

cox.zph(anderson.cox1)
#> chisq df p
#> rx 0.036 1 0.85
#> sex 5.420 1 0.02
#> logwbc 0.142 1 0.71
#> GLOBAL 5.879 3 0.12

7.7.2.2. Graph the K-M survival curves

anderson_km_model = survfit(
formula = surv ~ sex,
data = anderson)

anderson_km_model |>
autoplot(conf.int = FALSE) +
theme_bw() +
theme(legend.position="bottom")
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The survival curves cross, which indicates a problem in the proportionality
assumption by sex.

7.7.3. Graph the Nelson-Aalen cumulative hazard

We can also look at the log-hazard (“cloglog survival”) plots:

anderson_na_model = survfit(
formula = surv ~ sex,
data = anderson,
type = "fleming")

anderson_na_model |>
autoplot(

fun = "cumhaz",
conf.int = FALSE) +
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theme_classic() +
theme(legend.position="bottom") +
ylab("log(Cumulative Hazard)") +
scale_y_continuous(

trans = "log10",
name = "Cumulative hazard (H(t), log scale)") +

scale_x_continuous(
breaks = c(1,2,5,10,20,50),
trans = "log"

)
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Figure 7.16.: Cumulative hazard (cloglog scale) for anderson data

This can be fixed by using strata or possibly by other model alterations.
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7.7.4. The Stratified Cox Model

• In a stratified Cox model, each stratum, defined by one or more
factors, has its own base survival function ℎ0(𝑡).

• But the coefficients for each variable not used in the strata definitions
are assumed to be the same across strata.

• To check if this assumption is reasonable one can include interac-
tions with strata and see if they are significant (this may generate a
warning and NA lines but these can be ignored).

• Since the sex variable shows possible non-proportionality, we try
stratifying on sex.

anderson.coxph.strat =
coxph(

formula =
surv ~ rx + logwbc + strata(sex),

data = anderson)

summary(anderson.coxph.strat)
#> Call:
#> coxph(formula = surv ~ rx + logwbc + strata(sex), data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.998 0.369 0.474 -2.11 0.035 *
#> logwbc 1.454 4.279 0.344 4.22 2.4e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.369 2.713 0.146 0.932
#> logwbc 4.279 0.234 2.180 8.398
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#>
#> Concordance= 0.812 (se = 0.059 )
#> Likelihood ratio test= 32.1 on 2 df, p=1e-07
#> Wald test = 22.8 on 2 df, p=1e-05
#> Score (logrank) test = 30.8 on 2 df, p=2e-07

Let’s compare this to a model fit only on the subset of males:

anderson.coxph.male =
coxph(

formula = surv ~ rx + logwbc,
subset = sex == "male",
data = anderson)

summary(anderson.coxph.male)
#> Call:
#> coxph(formula = surv ~ rx + logwbc, data = anderson, subset = sex ==
#> "male")
#>
#> n= 20, number of events= 14
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -1.978 0.138 0.739 -2.68 0.0075 **
#> logwbc 1.743 5.713 0.536 3.25 0.0011 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.138 7.227 0.0325 0.589
#> logwbc 5.713 0.175 1.9991 16.328
#>
#> Concordance= 0.905 (se = 0.043 )
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#> Likelihood ratio test= 29.2 on 2 df, p=5e-07
#> Wald test = 15.3 on 2 df, p=5e-04
#> Score (logrank) test = 26.4 on 2 df, p=2e-06

anderson.coxph.female =
coxph(

formula =
surv ~ rx + logwbc,

subset = sex == "female",
data = anderson)

summary(anderson.coxph.female)
#> Call:
#> coxph(formula = surv ~ rx + logwbc, data = anderson, subset = sex ==
#> "female")
#>
#> n= 22, number of events= 16
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.311 0.733 0.564 -0.55 0.581
#> logwbc 1.206 3.341 0.503 2.40 0.017 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.733 1.365 0.243 2.21
#> logwbc 3.341 0.299 1.245 8.96
#>
#> Concordance= 0.692 (se = 0.085 )
#> Likelihood ratio test= 6.65 on 2 df, p=0.04
#> Wald test = 6.36 on 2 df, p=0.04
#> Score (logrank) test = 6.74 on 2 df, p=0.03
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The coefficients of treatment look different. Are they statistically differ-
ent?

anderson.coxph.strat.intxn =
coxph(

formula = surv ~ strata(sex) * (rx + logwbc),
data = anderson)

anderson.coxph.strat.intxn |> summary()
#> Call:
#> coxph(formula = surv ~ strata(sex) * (rx + logwbc), data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.311 0.733 0.564 -0.55 0.581
#> logwbc 1.206 3.341 0.503 2.40 0.017 *
#> strata(sex)male:rxnew -1.667 0.189 0.930 -1.79 0.073 .
#> strata(sex)male:logwbc 0.537 1.710 0.735 0.73 0.465
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.733 1.365 0.2427 2.21
#> logwbc 3.341 0.299 1.2452 8.96
#> strata(sex)male:rxnew 0.189 5.294 0.0305 1.17
#> strata(sex)male:logwbc 1.710 0.585 0.4048 7.23
#>
#> Concordance= 0.797 (se = 0.058 )
#> Likelihood ratio test= 35.8 on 4 df, p=3e-07
#> Wald test = 21.7 on 4 df, p=2e-04
#> Score (logrank) test = 33.1 on 4 df, p=1e-06
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anova(
anderson.coxph.strat.intxn,
anderson.coxph.strat)

#> # A tibble: 2 x 4
#> loglik Chisq Df `Pr(>|Chi|)`
#> <dbl> <dbl> <int> <dbl>
#> 1 -53.9 NA NA NA
#> 2 -55.7 3.77 2 0.152

We don’t have enough evidence to tell the difference between these two
models.

7.7.5. Conclusions

• We chose to use a stratified model because of the apparent non-
proportionality of the hazard for the sex variable.

• When we fit interactions with the strata variable, we did not get an
improved model (via the likelihood ratio test).

• So we use the stratifed model with coefficients that are the same
across strata.

7.7.6. Another Modeling Approach

• We used an additive model without interactions and saw that we
might need to stratify by sex.

• Instead, we could try to improve the model’s functional form - maybe
the interaction of treatment and sex is real, and after fitting that we
might not need separate hazard functions.

• Either approach may work.
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anderson.coxph.intxn =
coxph(

formula = surv ~ (rx + logwbc) * sex,
data = anderson)

anderson.coxph.intxn |> summary()
#> Call:
#> coxph(formula = surv ~ (rx + logwbc) * sex, data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> rxnew -0.3748 0.6874 0.5545 -0.68 0.499
#> logwbc 1.0637 2.8971 0.4726 2.25 0.024 *
#> sexmale -2.8052 0.0605 2.0323 -1.38 0.167
#> rxnew:sexmale -2.1782 0.1132 0.9109 -2.39 0.017 *
#> logwbc:sexmale 1.2303 3.4223 0.6301 1.95 0.051 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxnew 0.6874 1.455 0.23185 2.038
#> logwbc 2.8971 0.345 1.14730 7.315
#> sexmale 0.0605 16.531 0.00113 3.248
#> rxnew:sexmale 0.1132 8.830 0.01899 0.675
#> logwbc:sexmale 3.4223 0.292 0.99539 11.766
#>
#> Concordance= 0.861 (se = 0.036 )
#> Likelihood ratio test= 57 on 5 df, p=5e-11
#> Wald test = 35.6 on 5 df, p=1e-06
#> Score (logrank) test = 57.1 on 5 df, p=5e-11
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cox.zph(anderson.coxph.intxn)
#> chisq df p
#> rx 0.136 1 0.71
#> logwbc 1.652 1 0.20
#> sex 1.266 1 0.26
#> rx:sex 0.149 1 0.70
#> logwbc:sex 0.102 1 0.75
#> GLOBAL 3.747 5 0.59

7.8. Time-varying covariates

(adapted from Klein, Moeschberger, et al. (2003), §9.2)

7.8.1. Motivating example: back to the leukemia dataset

# load the data:
data(bmt, package = 'KMsurv')
bmt |> as_tibble() |> print(n = 5)
#> # A tibble: 137 x 22
#> group t1 t2 d1 d2 d3 ta da tc dc tp dp z1
#> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 1 2081 2081 0 0 0 67 1 121 1 13 1 26
#> 2 1 1602 1602 0 0 0 1602 0 139 1 18 1 21
#> 3 1 1496 1496 0 0 0 1496 0 307 1 12 1 26
#> 4 1 1462 1462 0 0 0 70 1 95 1 13 1 17
#> 5 1 1433 1433 0 0 0 1433 0 236 1 12 1 32
#> # i 132 more rows
#> # i 9 more variables: z2 <int>, z3 <int>, z4 <int>, z5 <int>, z6 <int>,
#> # z7 <int>, z8 <int>, z9 <int>, z10 <int>
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This dataset comes from the Copelan et al. (1991) study of allogenic bone
marrow transplant therapy for acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL).

Outcomes (endpoints)

• The main endpoint is disease-free survival (t2 and d3) for the three
risk groups, “ALL”, “AML Low Risk”, and “AML High Risk”.

Possible intermediate events

• graft vs. host disease (GVHD), an immunological rejection response
to the transplant (bad)

• acute (AGVHD)
• chronic (CGVHD)
• platelet recovery, a return of platelet count to normal levels (good)

One or the other, both in either order, or neither may occur.

Covariates

• We are interested in possibly using the covariates z1-z10 to adjust
for other factors.

• In addition, the time-varying covariates for acute GVHD, chronic
GVHD, and platelet recovery may be useful.

7.8.1.1. Preprocessing

We reformat the data before analysis:
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# reformat the data:
bmt1 =
bmt |>
as_tibble() |>
mutate(

id = 1:n(), # will be used to connect multiple records for the same individual

group = group |>
case_match(

1 ~ "ALL",
2 ~ "Low Risk AML",
3 ~ "High Risk AML") |>

factor(levels = c("ALL", "Low Risk AML", "High Risk AML")),

`patient age` = z1,

`donor age` = z2,

`patient sex` = z3 |>
case_match(

0 ~ "Female",
1 ~ "Male"),

`donor sex` = z4 |>
case_match(

0 ~ "Female",
1 ~ "Male"),

`Patient CMV Status` = z5 |>
case_match(

0 ~ "CMV Negative",
1 ~ "CMV Positive"),
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`Donor CMV Status` = z6 |>
case_match(

0 ~ "CMV Negative",
1 ~ "CMV Positive"),

`Waiting Time to Transplant` = z7,

FAB = z8 |>
case_match(

1 ~ "Grade 4 Or 5 (AML only)",
0 ~ "Other") |>

factor() |>
relevel(ref = "Other"),

hospital = z9 |> # `z9` is hospital
case_match(

1 ~ "Ohio State University",
2 ~ "Alferd",
3 ~ "St. Vincent",
4 ~ "Hahnemann") |>

factor() |>
relevel(ref = "Ohio State University"),

MTX = (z10 == 1) # a prophylatic treatment for GVHD

) |>
select(-(z1:z10)) # don't need these anymore

bmt1 |>
select(group, id:MTX) |>
print(n = 10)

#> # A tibble: 137 x 12
#> group id `patient age` `donor age` `patient sex` `donor sex`
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#> <fct> <int> <int> <int> <chr> <chr>
#> 1 ALL 1 26 33 Male Female
#> 2 ALL 2 21 37 Male Male
#> 3 ALL 3 26 35 Male Male
#> 4 ALL 4 17 21 Female Male
#> 5 ALL 5 32 36 Male Male
#> 6 ALL 6 22 31 Male Male
#> 7 ALL 7 20 17 Male Female
#> 8 ALL 8 22 24 Male Female
#> 9 ALL 9 18 21 Female Male
#> 10 ALL 10 24 40 Male Male
#> # i 127 more rows
#> # i 6 more variables: `Patient CMV Status` <chr>, `Donor CMV Status` <chr>,
#> # `Waiting Time to Transplant` <int>, FAB <fct>, hospital <fct>, MTX <lgl>

7.8.2. Time-Dependent Covariates

• A time-dependent covariate (“TDC”) is a covariate whose value
changes during the course of the study.

• For variables like age that change in a linear manner with time, we
can just use the value at the start.

• But it may be plausible that when and if GVHD occurs, the risk of
relapse or death increases, and when and if platelet recovery occurs,
the risk decreases.

7.8.3. Analysis in R

• We form a variable precovery which is = 0 before platelet recovery
and is = 1 after platelet recovery, if it occurs.

• For each subject where platelet recovery occurs, we set up multiple
records (lines in the data frame); for example one from t = 0 to the
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time of platelet recovery, and one from that time to relapse, recovery,
or death.

• We do the same for acute GVHD and chronic GVHD.
• For each record, the covariates are constant.

bmt2 = bmt1 |>
#set up new long-format data set:
tmerge(bmt1, id = id, tstop = t2) |>

# the following three steps can be in any order,
# and will still produce the same result:
#add aghvd as tdc:
tmerge(bmt1, id = id, agvhd = tdc(ta)) |>
#add cghvd as tdc:
tmerge(bmt1, id = id, cgvhd = tdc(tc)) |>
#add platelet recovery as tdc:
tmerge(bmt1, id = id, precovery = tdc(tp))

bmt2 = bmt2 |>
as_tibble() |>
mutate(status = as.numeric((tstop == t2) & d3))

# status only = 1 if at end of t2 and not censored

Let’s see how we’ve rearranged the first row of the data:

bmt1 |>
dplyr::filter(id == 1) |>
dplyr::select(id, t1, d1, t2, d2, d3, ta, da, tc, dc, tp, dp)

#> # A tibble: 1 x 12
#> id t1 d1 t2 d2 d3 ta da tc dc tp dp
#> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#> 1 1 2081 0 2081 0 0 67 1 121 1 13 1
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The event times for this individual are:

• t = 0 time of transplant
• tp = 13 platelet recovery
• ta = 67 acute GVHD onset
• tc = 121 chronic GVHD onset
• t2 = 2081 end of study, patient not relapsed or dead

After converting the data to long-format, we have:

bmt2 |>
select(

id,
tstart,
tstop,
agvhd,
cgvhd,
precovery,
status

) |>
dplyr::filter(id == 1)

#> # A tibble: 4 x 7
#> id tstart tstop agvhd cgvhd precovery status
#> <int> <dbl> <int> <int> <int> <int> <dbl>
#> 1 1 0 13 0 0 0 0
#> 2 1 13 67 0 0 1 0
#> 3 1 67 121 1 0 1 0
#> 4 1 121 2081 1 1 1 0

Note that status could have been 1 on the last row, indicating that relapse
or death occurred; since it is false, the participant must have exited the
study without experiencing relapse or death (i.e., they were censored).
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7.8.4. Event sequences

Let:

• A = acute GVHD
• C = chronic GVHD
• P = platelet recovery

Each of the eight possible combinations of A or not-A, with C or not-C,
with P or not-P occurs in this data set.

• A always occurs before C, and P always occurs before C, if both
occur.

• Thus there are ten event sequences in the data set: None, A, C, P,
AC, AP, PA, PC, APC, and PAC.

• In general, there could be as many as 1+3+(3)(2)+6 = 16 sequences,
but our domain knowledge tells us that some are missing: CA, CP,
CAP, CPA, PCA, PC, PAC

• Different subjects could have 1, 2, 3, or 4 intervals, depending on
which of acute GVHD, chronic GVHD, and/or platelet recovery oc-
curred.

• The final interval for any subject has status = 1 if the subject
relapsed or died at that time; otherwise status = 0.

• Any earlier intervals have status = 0.
• Even though there might be multiple lines per ID in the dataset,

there is never more than one event, so no alterations need be made
in the estimation procedures or in the interpretation of the output.

• The function tmerge in the survival package eases the process of
constructing the new long-format dataset.

7.8.5. Model with Time-Fixed Covariates
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bmt1 =
bmt1 |>
mutate(surv = Surv(t2,d3))

bmt_coxph_TF = coxph(
formula = surv ~ group + `patient age`*`donor age` + FAB,
data = bmt1)

summary(bmt_coxph_TF)
#> Call:
#> coxph(formula = surv ~ group + `patient age` * `donor age` +
#> FAB, data = bmt1)
#>
#> n= 137, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.090648 0.335999 0.354279 -3.08 0.00208 **
#> groupHigh Risk AML -0.403905 0.667707 0.362777 -1.11 0.26555
#> `patient age` -0.081639 0.921605 0.036107 -2.26 0.02376 *
#> `donor age` -0.084587 0.918892 0.030097 -2.81 0.00495 **
#> FABGrade 4 Or 5 (AML only) 0.837416 2.310388 0.278464 3.01 0.00264 **
#> `patient age`:`donor age` 0.003159 1.003164 0.000951 3.32 0.00089 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.336 2.976 0.168 0.673
#> groupHigh Risk AML 0.668 1.498 0.328 1.360
#> `patient age` 0.922 1.085 0.859 0.989
#> `donor age` 0.919 1.088 0.866 0.975
#> FABGrade 4 Or 5 (AML only) 2.310 0.433 1.339 3.988
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
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#> Concordance= 0.665 (se = 0.033 )
#> Likelihood ratio test= 32.8 on 6 df, p=1e-05
#> Wald test = 33 on 6 df, p=1e-05
#> Score (logrank) test = 35.8 on 6 df, p=3e-06
drop1(bmt_coxph_TF, test = "Chisq")
#> # A tibble: 4 x 4
#> Df AIC LRT `Pr(>Chi)`
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 726. NA NA
#> 2 2 734. 12.5 0.00192
#> 3 1 733. 9.22 0.00240
#> 4 1 733. 9.51 0.00204

bmt1$mres =
bmt_coxph_TF |>
update(. ~ . - `donor age`) |>
residuals(type="martingale")

bmt1 |>
ggplot(aes(x = `donor age`, y = mres)) +
geom_point() +
geom_smooth(method = "loess", aes(col = "loess")) +
geom_smooth(method = 'lm', aes(col = "lm")) +
theme_classic() +
xlab("Donor age") +
ylab("Martingale Residuals") +
guides(col=guide_legend(title = ""))
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Figure 7.17.: Martingale residuals for Donor age

A more complex functional form for donor age seems warranted; left as
an exercise for the reader.

Now we will add the time-varying covariates:

# add counting process formulation of Surv():
bmt2 =
bmt2 |>
mutate(

surv =
Surv(

time = tstart,
time2 = tstop,
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event = status,
type = "counting"))

Let’s see how the data looks for patient 15:

bmt1 |> dplyr::filter(id == 15) |> dplyr::select(tp, dp, tc,dc, ta, da, FAB, surv, t1, d1, t2, d2, d3)
#> # A tibble: 1 x 13
#> tp dp tc dc ta da FAB surv t1 d1 t2 d2 d3
#> <int> <int> <int> <int> <int> <int> <fct> <Surv> <int> <int> <int> <int> <int>
#> 1 21 1 220 1 418 0 Other 418 418 1 418 0 1
bmt2 |> dplyr::filter(id == 15) |> dplyr::select(id, agvhd, cgvhd, precovery, surv)
#> # A tibble: 3 x 5
#> id agvhd cgvhd precovery surv
#> <int> <int> <int> <int> <Surv>
#> 1 15 0 0 0 ( 0, 21+]
#> 2 15 0 0 1 ( 21,220+]
#> 3 15 0 1 1 (220,418]

7.8.6. Model with Time-Dependent Covariates

bmt_coxph_TV = coxph(
formula =

surv ~
group + `patient age`*`donor age` + FAB + agvhd + cgvhd + precovery,

data = bmt2)

summary(bmt_coxph_TV)
#> Call:
#> coxph(formula = surv ~ group + `patient age` * `donor age` +
#> FAB + agvhd + cgvhd + precovery, data = bmt2)
#>
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#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.038514 0.353980 0.358220 -2.90 0.0037 **
#> groupHigh Risk AML -0.380481 0.683533 0.374867 -1.01 0.3101
#> `patient age` -0.073351 0.929275 0.035956 -2.04 0.0413 *
#> `donor age` -0.076406 0.926440 0.030196 -2.53 0.0114 *
#> FABGrade 4 Or 5 (AML only) 0.805700 2.238263 0.284273 2.83 0.0046 **
#> agvhd 0.150565 1.162491 0.306848 0.49 0.6237
#> cgvhd -0.116136 0.890354 0.289046 -0.40 0.6878
#> precovery -0.941123 0.390190 0.347861 -2.71 0.0068 **
#> `patient age`:`donor age` 0.002895 1.002899 0.000944 3.07 0.0022 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.354 2.825 0.175 0.714
#> groupHigh Risk AML 0.684 1.463 0.328 1.425
#> `patient age` 0.929 1.076 0.866 0.997
#> `donor age` 0.926 1.079 0.873 0.983
#> FABGrade 4 Or 5 (AML only) 2.238 0.447 1.282 3.907
#> agvhd 1.162 0.860 0.637 2.121
#> cgvhd 0.890 1.123 0.505 1.569
#> precovery 0.390 2.563 0.197 0.772
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.702 (se = 0.028 )
#> Likelihood ratio test= 40.3 on 9 df, p=7e-06
#> Wald test = 42.4 on 9 df, p=3e-06
#> Score (logrank) test = 47.2 on 9 df, p=4e-07

Platelet recovery is highly significant.

Neither acute GVHD (agvhd) nor chronic GVHD (cgvhd) has a statisti-
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cally significant effect here, nor are they significant in models with the
other one removed.

update(bmt_coxph_TV, .~.-agvhd) |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
#> FAB + cgvhd + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.049870 0.349983 0.356727 -2.94 0.0032 **
#> groupHigh Risk AML -0.417049 0.658988 0.365348 -1.14 0.2537
#> `patient age` -0.070749 0.931696 0.035477 -1.99 0.0461 *
#> `donor age` -0.075693 0.927101 0.030075 -2.52 0.0118 *
#> FABGrade 4 Or 5 (AML only) 0.807035 2.241253 0.283437 2.85 0.0044 **
#> cgvhd -0.095393 0.909015 0.285979 -0.33 0.7387
#> precovery -0.983653 0.373942 0.338170 -2.91 0.0036 **
#> `patient age`:`donor age` 0.002859 1.002863 0.000936 3.05 0.0023 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.350 2.857 0.174 0.704
#> groupHigh Risk AML 0.659 1.517 0.322 1.349
#> `patient age` 0.932 1.073 0.869 0.999
#> `donor age` 0.927 1.079 0.874 0.983
#> FABGrade 4 Or 5 (AML only) 2.241 0.446 1.286 3.906
#> cgvhd 0.909 1.100 0.519 1.592
#> precovery 0.374 2.674 0.193 0.726
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.701 (se = 0.027 )
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#> Likelihood ratio test= 40 on 8 df, p=3e-06
#> Wald test = 42.4 on 8 df, p=1e-06
#> Score (logrank) test = 47.2 on 8 df, p=1e-07
update(bmt_coxph_TV, .~.-cgvhd) |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
#> FAB + agvhd + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.019638 0.360725 0.355311 -2.87 0.0041 **
#> groupHigh Risk AML -0.381356 0.682935 0.374568 -1.02 0.3086
#> `patient age` -0.073189 0.929426 0.035890 -2.04 0.0414 *
#> `donor age` -0.076753 0.926118 0.030121 -2.55 0.0108 *
#> FABGrade 4 Or 5 (AML only) 0.811716 2.251769 0.284012 2.86 0.0043 **
#> agvhd 0.131621 1.140676 0.302623 0.43 0.6636
#> precovery -0.946697 0.388021 0.347265 -2.73 0.0064 **
#> `patient age`:`donor age` 0.002904 1.002908 0.000943 3.08 0.0021 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.361 2.772 0.180 0.724
#> groupHigh Risk AML 0.683 1.464 0.328 1.423
#> `patient age` 0.929 1.076 0.866 0.997
#> `donor age` 0.926 1.080 0.873 0.982
#> FABGrade 4 Or 5 (AML only) 2.252 0.444 1.291 3.929
#> agvhd 1.141 0.877 0.630 2.064
#> precovery 0.388 2.577 0.196 0.766
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
#>
#> Concordance= 0.701 (se = 0.027 )
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#> Likelihood ratio test= 40.1 on 8 df, p=3e-06
#> Wald test = 42.1 on 8 df, p=1e-06
#> Score (logrank) test = 47.1 on 8 df, p=1e-07

Let’s drop them both:

bmt_coxph_TV2 = update(bmt_coxph_TV, . ~ . - agvhd -cgvhd)
bmt_coxph_TV2 |> summary()
#> Call:
#> coxph(formula = surv ~ group + `patient age` + `donor age` +
#> FAB + precovery + `patient age`:`donor age`, data = bmt2)
#>
#> n= 341, number of events= 83
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
#> groupLow Risk AML -1.032520 0.356108 0.353202 -2.92 0.0035 **
#> groupHigh Risk AML -0.413888 0.661075 0.365209 -1.13 0.2571
#> `patient age` -0.070965 0.931495 0.035453 -2.00 0.0453 *
#> `donor age` -0.076052 0.926768 0.030007 -2.53 0.0113 *
#> FABGrade 4 Or 5 (AML only) 0.811926 2.252242 0.283231 2.87 0.0041 **
#> precovery -0.983505 0.373998 0.337997 -2.91 0.0036 **
#> `patient age`:`donor age` 0.002872 1.002876 0.000936 3.07 0.0021 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> groupLow Risk AML 0.356 2.808 0.178 0.712
#> groupHigh Risk AML 0.661 1.513 0.323 1.352
#> `patient age` 0.931 1.074 0.869 0.999
#> `donor age` 0.927 1.079 0.874 0.983
#> FABGrade 4 Or 5 (AML only) 2.252 0.444 1.293 3.924
#> precovery 0.374 2.674 0.193 0.725
#> `patient age`:`donor age` 1.003 0.997 1.001 1.005
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#>
#> Concordance= 0.7 (se = 0.027 )
#> Likelihood ratio test= 39.9 on 7 df, p=1e-06
#> Wald test = 42.2 on 7 df, p=5e-07
#> Score (logrank) test = 47.1 on 7 df, p=5e-08

7.9. Recurrent Events

(Adapted from Kleinbaum and Klein, Ch 8)

• Sometimes an appropriate analysis requires consideration of recur-
rent events.

• A patient with arthritis may have more than one flareup. The same
is true of many recurring-remitting diseases.

• In this case, we have more than one line in the data frame, but each
line may have an event.

• We have to use a “robust” variance estimator to account for correla-
tion of time-to-events within a patient.

7.9.1. Bladder Cancer Data Set

The bladder cancer dataset from Kleinbaum and Klein contains recurrent
event outcome information for eighty-six cancer patients followed for the
recurrence of bladder cancer tumor after transurethral surgical excision
(Byar and Green 1980). The exposure of interest is the effect of the drug
treatment of thiotepa. Control variables are the initial number and ini-
tial size of tumors. The data layout is suitable for a counting processes
approach.

This drug is still a possible choice for some patients. Another therapeutic
choice is Bacillus Calmette-Guerin (BCG), a live bacterium related to cow
tuberculosis.
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7.9.1.1. Data dictionary

Table 7.3.: Variables in the bladder dataset
Variable Definition
id Patient unique ID
status for each time interval: 1 = recurred, 0 = censored
interval 1 = first recurrence, etc.
intime ‘tstop - tstart (all times in months)
tstart start of interval
tstop end of interval
tx treatment code, 1 = thiotepa
num number of initial tumors
size size of initial tumors (cm)

• There are 85 patients and 190 lines in the dataset, meaning that
many patients have more than one line.

• Patient 1 with 0 observation time was removed.
• Of the 85 patients, 47 had at least one recurrence and 38 had none.
• 18 patients had exactly one recurrence.
• There were up to 4 recurrences in a patient.
• Of the 190 intervals, 112 terminated with a recurrence and 78 were

censored.

7.9.1.2. Different intervals for the same patient are correlated.

• Is the effective sample size 47 or 112? This might narrow confidence
intervals by as much as a factor of √112/47 = 1.54

• What happens if I have 5 treatment and 5 control values and want
to do a t-test and I then duplicate the 10 values as if the sample
size was 20? This falsely narrows confidence intervals by a factor of√

2 = 1.41.
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bladder =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets",
"/surv2datasets/bladder.dta") |>

read_dta() |>
as_tibble()

bladder = bladder[-1,] #remove subject with 0 observation time
print(bladder)

bladder =
bladder |>
mutate(

surv =
Surv(

time = start,
time2 = stop,
event = event,
type = "counting"))

bladder.cox1 = coxph(
formula = surv~tx+num+size,
data = bladder)

#results with biased variance-covariance matrix:
summary(bladder.cox1)
#> Call:
#> coxph(formula = surv ~ tx + num + size, data = bladder)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
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#> tx -0.4116 0.6626 0.1999 -2.06 0.03947 *
#> num 0.1637 1.1778 0.0478 3.43 0.00061 ***
#> size -0.0411 0.9598 0.0703 -0.58 0.55897
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.448 0.98
#> num 1.178 0.849 1.073 1.29
#> size 0.960 1.042 0.836 1.10
#>
#> Concordance= 0.624 (se = 0.032 )
#> Likelihood ratio test= 14.7 on 3 df, p=0.002
#> Wald test = 15.9 on 3 df, p=0.001
#> Score (logrank) test = 16.2 on 3 df, p=0.001

Note

The likelihood ratio and score tests assume independence of observa-
tions within a cluster. The Wald and robust score tests do not.

7.9.1.3. adding cluster = id

If we add cluster= id to the call to coxph, the coefficient estimates don’t
change, but we get an additional column in the summary() output: robust
se:

bladder.cox2 = coxph(
formula = surv ~ tx + num + size,
cluster = id,
data = bladder)
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#unbiased though this reduces power:
summary(bladder.cox2)
#> Call:
#> coxph(formula = surv ~ tx + num + size, data = bladder, cluster = id)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) robust se z Pr(>|z|)
#> tx -0.4116 0.6626 0.1999 0.2488 -1.65 0.0980 .
#> num 0.1637 1.1778 0.0478 0.0584 2.80 0.0051 **
#> size -0.0411 0.9598 0.0703 0.0742 -0.55 0.5799
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.407 1.08
#> num 1.178 0.849 1.050 1.32
#> size 0.960 1.042 0.830 1.11
#>
#> Concordance= 0.624 (se = 0.031 )
#> Likelihood ratio test= 14.7 on 3 df, p=0.002
#> Wald test = 11.2 on 3 df, p=0.01
#> Score (logrank) test = 16.2 on 3 df, p=0.001, Robust = 10.8 p=0.01
#>
#> (Note: the likelihood ratio and score tests assume independence of
#> observations within a cluster, the Wald and robust score tests do not).

robust se is larger than se, and accounts for the repeated observations
from the same individuals:

round(bladder.cox2$naive.var, 4)
#> [,1] [,2] [,3]
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#> [1,] 0.0400 -0.0014 0.0000
#> [2,] -0.0014 0.0023 0.0007
#> [3,] 0.0000 0.0007 0.0049
round(bladder.cox2$var, 4)
#> [,1] [,2] [,3]
#> [1,] 0.0619 -0.0026 -0.0004
#> [2,] -0.0026 0.0034 0.0013
#> [3,] -0.0004 0.0013 0.0055

These are the ratios of correct confidence intervals to naive ones:

with(bladder.cox2, diag(var)/diag(naive.var)) |> sqrt()
#> [1] 1.244 1.223 1.056

We might try dropping the non-significant size variable:

#remove non-significant size variable:
bladder.cox3 = bladder.cox2 |> update(. ~ . - size)
summary(bladder.cox3)
#> Call:
#> coxph(formula = surv ~ tx + num, data = bladder, cluster = id)
#>
#> n= 190, number of events= 112
#>
#> coef exp(coef) se(coef) robust se z Pr(>|z|)
#> tx -0.4117 0.6625 0.2003 0.2515 -1.64 0.1017
#> num 0.1700 1.1853 0.0465 0.0564 3.02 0.0026 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> tx 0.663 1.509 0.405 1.08
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#> num 1.185 0.844 1.061 1.32
#>
#> Concordance= 0.623 (se = 0.031 )
#> Likelihood ratio test= 14.3 on 2 df, p=8e-04
#> Wald test = 10.2 on 2 df, p=0.006
#> Score (logrank) test = 15.8 on 2 df, p=4e-04, Robust = 10.6 p=0.005
#>
#> (Note: the likelihood ratio and score tests assume independence of
#> observations within a cluster, the Wald and robust score tests do not).

Ways to check PH assumption:

• cloglog
• schoenfeld residuals
• interaction with time

7.10. Age as the time scale

See Canchola et al. (2003).

389



8. Parametric survival models

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9

391



8. Parametric survival models

8.1. Parametric Survival Models

8.1.1. Exponential Distribution

• The exponential distribution is the basic distribution for survival
analysis.

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡

log {𝑓(𝑡)} = log {𝜆} − 𝜆𝑡
𝐹(𝑡) = 1 − 𝑒−𝜆𝑡

𝑆(𝑡) = 𝑒−𝜆𝑡

𝐻(𝑡) = log {𝑆(𝑡)} = −𝜆𝑡
ℎ(𝑡) = 𝜆

E(𝑇 ) = 𝜆−1

8.1.2. Weibull Distribution

Using the Kalbfleisch and Prentice (2002) notation:

𝑓(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝑒−(𝜆𝑡)𝑝

𝐹(𝑡) = 1 − 𝑒−(𝜆𝑡)𝑝

𝑆(𝑡) = 𝑒−(𝜆𝑡)𝑝

ℎ(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1

𝐻(𝑡) = (𝜆𝑡)𝑝

log {𝐻(𝑡)} = 𝑝log {𝜆𝑡} = 𝑝log {𝜆} + 𝑝log {𝑡}

E(𝑇 ) = 𝜆−1 ⋅ Γ (1 + 1
𝑝)
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Note

Recall from calculus:

• Γ(𝑡) def= ∫∞
𝑢=0 𝑢𝑡−1𝑒−𝑢𝑑𝑢

• Γ(𝑡) = (𝑡 − 1)! for integers 𝑡 ∈ ℤ

• It is implemented by the gamma() function in R.
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25
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t

Γ(t)

Here are some Weibull density functions, with 𝜆 = 1 and 𝑝 varying:

library(ggplot2)
lambda = 1
ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) dweibull(x, shape = 0.25, scale = 1/lambda)) +
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geom_function(
aes(col = "0.5"),
fun = \(x) dweibull(x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) dweibull(x, shape = 1, scale = 1/lambda)) +

geom_function(
aes(col = "1.5"),
fun = \(x) dweibull(x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) dweibull(x, shape = 2, scale = 1/lambda)) +

geom_function(
aes(col = "5"),
fun = \(x) dweibull(x, shape = 5, scale = 1/lambda)) +

theme_bw() +
xlim(0, 2.5) +
ylab("f(t)") +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(

title = "p",
label.theme =

element_text(
size = 12)))
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Figure 8.1.: Density functions for Weibull distribution

8.1.2.1. Properties of Weibull hazard functions

• When 𝑝 = 1, the Weibull distribution simplifies to the exponential
distribution

• When 𝑝 > 1, the hazard is increasing
• When 𝑝 < 1, the hazard is decreasing

In HW: prove these properties

This distribution provides more flexibility than the exponential.

Here are some Weibull hazard functions, with 𝜆 = 1 and 𝑝 varying:
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library(ggplot2)
library(eha)
lambda = 1

ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) hweibull(x, shape = 0.25, scale = 1/lambda)) +

geom_function(
aes(col = "0.5"),
fun = \(x) hweibull(x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) hweibull(x, shape = 1, scale = 1/lambda)) +

geom_function(
aes(col = "1.5"),
fun = \(x) hweibull(x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) hweibull(x, shape = 2, scale = 1/lambda)) +

theme_bw() +
xlim(0, 2.5) +
ylab("h(t)") +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(

title = "p",
label.theme =

element_text(
size = 12)))
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Figure 8.2.: Hazard functions for Weibull distribution

library(ggplot2)
lambda = 1

ggplot() +
geom_function(

aes(col = "0.25"),
fun = \(x) pweibull(lower = FALSE, x, shape = 0.25, scale = 1/lambda)) +

geom_function(
aes(col = "0.5"),
fun = \(x) pweibull(lower = FALSE, x, shape = 0.5, scale = 1/lambda)) +

geom_function(
aes(col = "1"),
fun = \(x) pweibull(lower = FALSE, x, shape = 1, scale = 1/lambda)) +

geom_function(
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aes(col = "1.5"),
fun = \(x) pweibull(lower = FALSE, x, shape = 1.5, scale = 1/lambda)) +

geom_function(
aes(col = "2"),
fun = \(x) pweibull(lower = FALSE, x, shape = 2, scale = 1/lambda)) +

theme_bw() +
xlim(0, 2.5) +
ylab("S(t)") +
theme(axis.title.y = element_text(angle=0)) +
theme(legend.position="bottom") +
guides(

col =
guide_legend(

title = "p",
label.theme =

element_text(
size = 12)))
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Figure 8.3.: Survival functions for Weibull distribution

8.1.3. Exponential Regression

For each subject 𝑖, define a linear predictor:

𝜂(𝑥) = 𝛽0 + (𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝)
ℎ(𝑡|𝑥) = exp {𝜂(𝑥)}

ℎ0
def= ℎ(𝑡|0)
= exp {𝜂(0)}
= exp {𝛽0 + (𝛽1 ⋅ 0 + ⋯ + 𝛽𝑝 ⋅ 0)}
= exp {𝛽0 + 0}
= exp {𝛽0}
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We let the linear predictor have a constant term, and when there are no
additional predictors the hazard is 𝜆 = exp {𝛽0}. This has a log link as
in a generalized linear model. Since the hazard does not depend on 𝑡, the
hazards are (trivially) proportional.

8.1.4. Accelerated Failure Time

Previously, we assumed the hazards were proportional; that is, the covari-
ates multiplied the baseline hazard function:

ℎ(𝑇 = 𝑡|𝑋 = 𝑥) def= 𝑝(𝑇 = 𝑡|𝑋 = 𝑥, 𝑇 ≥ 𝑡)
= ℎ(𝑡|𝑋 = 0) ⋅ exp {𝜂(𝑥)}
= ℎ(𝑡|𝑋 = 0) ⋅ 𝜃(𝑥)
= ℎ0(𝑡) ⋅ 𝜃(𝑥)

and correspondingly,

𝐻(𝑡|𝑥) = 𝜃(𝑥)𝐻0(𝑡)
𝑆(𝑡|𝑥) = exp {−𝐻(𝑡|𝑥)}

= exp {−𝜃(𝑥) ⋅ 𝐻0(𝑡)}
= (exp {−𝐻0(𝑡)})𝜃(𝑥)

= (𝑆0(𝑡))𝜃(𝑥)

An alternative modeling assumption would be

𝑆(𝑡|𝑋 = 𝑥) = 𝑆0(𝑡 ⋅ 𝜃(𝑥))

where 𝜃(𝑥) = exp {𝜂(𝑥)}, 𝜂(𝑥) = 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝, and 𝑆0(𝑡) = 𝑃(𝑇 ≥
𝑡|𝑋 = 0) is the base survival function.

Then
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𝐸(𝑇 |𝑋 = 𝑥) = ∫
∞

𝑡=0
𝑆(𝑡|𝑥)𝑑𝑡

= ∫
∞

𝑡=0
𝑆0(𝑡 ⋅ 𝜃(𝑥))𝑑𝑡

= ∫
∞

𝑢=0
𝑆0(𝑢)𝑑𝑢 ⋅ 𝜃(𝑥)−1

= 𝜃(𝑥)−1 ⋅ ∫
∞

𝑢=0
𝑆0(𝑢)𝑑𝑢

= 𝜃(𝑥)−1 ⋅ E(𝑇 |𝑋 = 0)
So the mean of 𝑇 given 𝑋 = 𝑥 is the baseline mean divided by 𝜃(𝑥) =
exp {𝜂(𝑥)}.

This modeling strategy is called an accelerated failure time model, because
covariates cause uniform acceleration (or slowing) of failure times.

Additionally:

𝐻(𝑡|𝑥) = 𝐻0(𝜃(𝑥) ⋅ 𝑡)
ℎ(𝑡|𝑥) = 𝜃(𝑥) ⋅ ℎ0(𝜃(𝑥) ⋅ 𝑡)

If the base distribution is exponential with parameter 𝜆 then

𝑆(𝑡|𝑥) = exp {−𝜆 ⋅ 𝑡𝜃(𝑥)}
= [exp {−𝜆𝑡}]𝜃(𝑥)

which is an exponential model with base hazard multiplied by 𝜃(𝑥), which
is also the proportional hazards model.

In terms of the log survival time 𝑌 = log {𝑇 } the model can be written
as
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𝑌 = 𝛼 − 𝜂 + 𝑊
𝛼 = −log {𝜆}

where 𝑊 has the extreme value distribution. The estimated parameter 𝜆
is the intercept and the other coefficients are those of 𝜂, which will be the
opposite sign of those for coxph.

For a Weibull distribution, the hazard function and the survival function
are

ℎ(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1

𝑆(𝑡) = 𝑒−(𝜆𝑡)𝑝

We can construct a proportional hazards model by using a linear predictor
𝜂𝑖 without constant term and letting 𝜃𝑖 = 𝑒𝜂𝑖 we have

ℎ(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝜃𝑖

A distribution with ℎ(𝑡) = 𝜆𝑝(𝜆𝑡)𝑝−1𝜃𝑖 is a Weibull distribution with pa-
rameters 𝜆∗ = 𝜆𝜃1/𝑝

𝑖 and 𝑝 so the survival function is

𝑆∗(𝑡) = 𝑒−(𝜆∗𝑡)𝑝

= 𝑒−(𝜆𝜃1/𝑝𝑡)𝑝

= 𝑆(𝑡𝜃1/𝑝)

so this is also an accelerated failure time model.

In terms of the log survival time 𝑌 = log {𝑇 } the model can be written
as
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𝑌 = 𝛼 − 𝜎𝜂 + 𝜎𝑊
𝛼 = −log {𝜆}
𝜎 = 1/𝑝

where 𝑊 has the extreme value distribution. The estimated parameter 𝜆
is the intercept and the other coefficients are those of 𝜂, which will be the
opposite sign of those for coxph.

These AFT models are log-linear, meaning that the linear predictor has a
log link. The exponential and the Weibull are the only log-linear models
that are simultaneously proportional hazards models. Other parametric
distributions can be used for survival regression either as a proportional
hazards model or as an accelerated failure time model.

8.1.5. Dataset: Leukemia treatments

Remission survival times on 42 leukemia patients, half on new treatment,
half on standard treatment.

This is the same data as the drug6mp data from KMsurv, but with two
other variables and without the pairing.

library(haven)
library(survival)
anderson =
paste0(

"http://web1.sph.emory.edu/dkleinb/allDatasets",
"/surv2datasets/anderson.dta") |>

read_dta() |>
mutate(

status = status |>
case_match(

1 ~ "relapse",
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0 ~ "censored"
),

sex = sex |>
case_match(

0 ~ "female",
1 ~ "male"

),

rx = rx |>
case_match(

0 ~ "new",
1 ~ "standard"

),

surv = Surv(time = survt,event = (status == "relapse"))
)

print(anderson)

8.1.5.1. Cox semi-parametric model

anderson.cox0 = coxph(
formula = surv ~ rx,
data = anderson)

summary(anderson.cox0)
#> Call:
#> coxph(formula = surv ~ rx, data = anderson)
#>
#> n= 42, number of events= 30
#>
#> coef exp(coef) se(coef) z Pr(>|z|)
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#> rxstandard 1.572 4.817 0.412 3.81 0.00014 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> exp(coef) exp(-coef) lower .95 upper .95
#> rxstandard 4.82 0.208 2.15 10.8
#>
#> Concordance= 0.69 (se = 0.041 )
#> Likelihood ratio test= 16.4 on 1 df, p=5e-05
#> Wald test = 14.5 on 1 df, p=1e-04
#> Score (logrank) test = 17.2 on 1 df, p=3e-05

8.1.5.2. Weibull parametric model

anderson.weib <- survreg(
formula = surv ~ rx,
data = anderson,
dist = "weibull")

summary(anderson.weib)
#>
#> Call:
#> survreg(formula = surv ~ rx, data = anderson, dist = "weibull")
#> Value Std. Error z p
#> (Intercept) 3.516 0.252 13.96 < 2e-16
#> rxstandard -1.267 0.311 -4.08 4.5e-05
#> Log(scale) -0.312 0.147 -2.12 0.034
#>
#> Scale= 0.732
#>
#> Weibull distribution
#> Loglik(model)= -106.6 Loglik(intercept only)= -116.4
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#> Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06
#> Number of Newton-Raphson Iterations: 5
#> n= 42

8.1.5.3. Exponential parametric model

anderson.exp <- survreg(
formula = surv ~ rx,
data = anderson,
dist = "exp")

summary(anderson.exp)
#>
#> Call:
#> survreg(formula = surv ~ rx, data = anderson, dist = "exp")
#> Value Std. Error z p
#> (Intercept) 3.686 0.333 11.06 < 2e-16
#> rxstandard -1.527 0.398 -3.83 0.00013
#>
#> Scale fixed at 1
#>
#> Exponential distribution
#> Loglik(model)= -108.5 Loglik(intercept only)= -116.8
#> Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05
#> Number of Newton-Raphson Iterations: 4
#> n= 42

8.1.5.4. Diagnostic - complementary log-log survival plot

library(survminer)
survfit(
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formula = surv ~ rx,
data = anderson) |>
ggsurvplot(fun = "cloglog")
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If the cloglog plot is linear, then a Weibull model may be ok.

8.2. Combining left-truncation and interval-censoring

From [https://stat.ethz.ch/pipermail/r-help/2015-August/431733.html]:

coxph does left truncation but not left (or interval) censoring
survreg does interval censoring but not left truncation (or time
dependent covariates).

• Terry Therneau, August 31, 2015
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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A.1. Random variables

A.1.1. Types of random variables

Definition A.1 (binary variable). A binary variable is a random vari-
able which has only two possible values in its range.

Exercise A.1 (Examples of binary variables). What are some examples
of binary variables in the health sciences?

Solution. Examples of binary outcomes include:

• exposure (exposed vs unexposed)
• disease (diseased vs healthy)
• recovery (recovered vs unrecovered)
• relapse (relapse vs remission)
• return to hospital (returned vs not)
• vital status (dead vs alive)

A.2. Key probability distributions

A.2.1. The Bernoulli distribution

Definition A.2 (Bernoulli distribution). The Bernoulli distribution
family for a random variable 𝑋 is defined as:
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Pr(𝑋 = 𝑥) = 𝟙𝑥∈{0,1}𝜋𝑥(1 − 𝜋)1−𝑥

= { 𝜋, 𝑥 = 1
1 − 𝜋, 𝑥 = 0

A.2.2. The Poisson distribution

Definition A.3 (Poisson distribution).

𝑃(𝑌 = 𝑦) = 𝜆𝑦𝑒−𝜆

𝑦!

A.3. Characteristics of probability distributions

Definition A.4 (Density function). The density function 𝑓(𝑡) or p(𝑇 = 𝑡)
for a random variable 𝑇 at value 𝑡 can be defined as the derivative of the
cumulative probability function 𝑃(𝑇 ≤ 𝑡); that is:

𝑓(𝑡) def= 𝜕
𝜕𝑡 Pr(𝑇 ≤ 𝑡)

Definition A.5 (Hazard function). The hazard function for a random
variable 𝑇 at value 𝑡 is the conditional density of 𝑇 at 𝑡, given 𝑇 ≥ 𝑡; that
is:

ℎ(𝑡) def= 𝑝(𝑇 = 𝑡|𝑇 ≥ 𝑡)

If 𝑇 represents the time at which an event occurs, then ℎ(𝑡) is the proba-
bility that the event occurs at time 𝑡, given that it has not occurred prior
to time 𝑡.
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Definition A.6 (Expectation, expected value, population mean ). The
expectation, expected value, or population mean of a continuous
random variable 𝑋, denoted 𝔼 [𝑋], 𝜇(𝑋), or 𝜇𝑋, is the weighted mean of
𝑋’s possible values, weighted by the probability density function of those
values:

𝔼 [𝑋] = ∫
𝑥∈ℛ(𝑋)

𝑥 ⋅ p(𝑋 = 𝑥)𝑑𝑥

The expectation, expected value, or population mean of a discrete
random variable 𝑋, denoted 𝔼 [𝑋], 𝜇(𝑋), or 𝜇𝑋, is the mean of 𝑋’s possible
values, weighted by the probability mass function of those values:

𝔼 [𝑋] = ∑
𝑥∈ℛ(𝑋)

𝑥 ⋅ P(𝑋 = 𝑥)

(c.f. https://en.wikipedia.org/wiki/Expected_value)

Theorem A.1 (Expectation of the Bernoulli distribution). The expecta-
tion of a Bernoulli random variable with parameter 𝜋 is:

𝔼 [𝑋] = 𝜋
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Proof.
𝔼 [𝑋] = ∑

𝑥∈ℛ(𝑋)
𝑥 ⋅ P(𝑋 = 𝑥)

= ∑
𝑥∈{0,1}

𝑥 ⋅ P(𝑋 = 𝑥)

= (0 ⋅ P(𝑋 = 0)) + (1 ⋅ P(𝑋 = 1))
= (0 ⋅ (1 − 𝜋)) + (1 ⋅ 𝜋)
= 0 + 𝜋
= 𝜋

A.3.1. Variance and related characteristics

Definition A.7 (Variance). The variance of a random variable 𝑋 is the
expectation of the squared difference between 𝑋 and 𝔼 [𝑋]; that is:

Var (𝑋) def= 𝔼 [(𝑋 − 𝔼 [𝑋])2]

Theorem A.2 (Alternative expression for variance).

Var (𝑋) = 𝔼 [𝑋2] − (𝔼 [𝑋])2
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Proof. By linearity of expectation, we have:

Var (𝑋) def= 𝔼 [(𝑋 − 𝔼 [𝑋])2]
= 𝔼 [𝑋2 − 2𝑋𝔼 [𝑋] + (𝔼 [𝑋])2]
= 𝔼 [𝑋2] − 𝔼 [2𝑋𝔼 [𝑋]] + 𝔼 [(𝔼 [𝑋])2]
= 𝔼 [𝑋2] − 2𝔼 [𝑋] 𝔼 [𝑋] + (𝔼 [𝑋])2

= 𝔼 [𝑋2] − (𝔼 [𝑋])2

Definition A.8 (Precision). The precision of a random variable 𝑋, often
denoted 𝜏(𝑋), 𝜏𝑋, or shorthanded as 𝜏 , is the inverse of that random
variable’s variance; that is:

𝜏(𝑋) def= (Var (𝑋))−1

Definition A.9 (Standard deviation). The standard deviation of a ran-
dom variable 𝑋 is the square-root of the variance of 𝑋:

SD (𝑋) def= √Var (𝑋)

Definition A.10 (Covariance). For any two one-dimensional random vari-
ables, 𝑋, 𝑌 :

Cov (𝑋, 𝑌 ) def= 𝔼 [(𝑋 − 𝔼 [𝑋])(𝑌 − 𝔼 [𝑌 ])]
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Theorem A.3.

Cov (𝑋, 𝑌 ) = 𝔼 [𝑋𝑌 ] − 𝔼 [𝑋] 𝔼 [𝑌 ]

Proof. Left to the reader.

Lemma A.1 (The covariance of a variable with itself is its variance). For
any random variable 𝑋:

Cov (𝑋, 𝑋) = Var (𝑋)

Proof.
Cov (𝑋, 𝑋) = 𝐸[𝑋𝑋] − 𝐸[𝑋]𝐸[𝑋]

= 𝐸[𝑋2] − (𝐸[𝑋])2

= Var (𝑋)

Definition A.11 (Variance/covariance of a 𝑝 × 1 random vector). For a
𝑝 × 1 dimensional random vector 𝑋,

Var(𝑋) def= Cov(𝑋)
def= 𝐸[(𝑋 − 𝐸[𝑋])⊤ (𝑋 − 𝐸[𝑋])]
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Theorem A.4 (Alternate expression for variance of a random vector).

Var (𝑋) = 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋]

Proof.

Var (𝑋) = 𝐸[(𝑋⊤ − 𝐸[𝑋]⊤) (𝑋 − 𝐸[𝑋])]
= 𝐸[𝑋⊤𝑋 − 𝐸[𝑋]⊤𝑋 − 𝑋⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]]
= 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋] − 𝐸[𝑋]⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]
= 𝐸[𝑋⊤𝑋] − 2𝐸[𝑋]⊤𝐸[𝑋] + 𝐸[𝑋]⊤𝐸[𝑋]
= 𝐸[𝑋⊤𝑋] − 𝐸[𝑋]⊤𝐸[𝑋]

Theorem A.5 (Variance of a linear combination). For any set of random
variables 𝑋1, … , 𝑋𝑛 and corresponding constants 𝑎1, ..., 𝑎𝑛:

Var (
𝑛

∑
𝑖=1

𝑎𝑖𝑋𝑖) =
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑎𝑗Cov (𝑋𝑖, 𝑋𝑗)

Proof. Left to the reader…
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Lemma A.2. For any two random variables 𝑋 and 𝑌 and scalars 𝑎 and
𝑏:

Var (𝑎𝑋 + 𝑏𝑌 ) = 𝑎2Var (𝑋) + 𝑏2Var (𝑌 ) + 2(𝑎 ⋅ 𝑏)Cov (𝑋, 𝑌 )

Proof. Apply Theorem A.5 with 𝑛 = 2, 𝑋1 = 𝑋, and 𝑋2 = 𝑌 .

Or, see https://statproofbook.github.io/P/var-lincomb.html

Definition A.12 (homoskedastic, heteroskedastic). A random variable 𝑌
is homoskedastic (with respect to covariates 𝑋) if the variance of 𝑌 does
not vary with 𝑋:

Var(𝑌 |𝑋 = 𝑥) = 𝜎2, ∀𝑥

Otherwise it is heteroskedastic.

Definition A.13 (Statistical independence). A set of random variables
𝑋1, … , 𝑋𝑛 are statistically independent if their joint probability is
equal to the product of their marginal probabilities:

Pr(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) =
𝑛

∏
𝑖=1

Pr(𝑋𝑖 = 𝑥𝑖)
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Definition A.14 (Conditional independence). A set of random variables
𝑌1, … , 𝑌𝑛 are conditionally statistically independent given a set of
covariates 𝑋1, … , 𝑋𝑛 if the joint probability of the 𝑌𝑖s given the 𝑋𝑖s is
equal to the product of their marginal probabilities:

Pr(𝑌1 = 𝑦1, … , 𝑌𝑛 = 𝑦𝑛|𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛) =
𝑛

∏
𝑖=1

Pr(𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖)

Definition A.15 (Identically distributed). A set of random variables
𝑋1, … , 𝑋𝑛 are identically distributed if they have the same range ℛ(𝑋)
and if their marginal distributions P(𝑋1 = 𝑥1), ..., P(𝑋𝑛 = 𝑥𝑛) are all
equal to some shared distribution P(𝑋 = 𝑥):

∀𝑖 ∈ {1 ∶ 𝑛} , ∀𝑥 ∈ ℛ(𝑋) ∶ P(𝑋𝑖 = 𝑥) = P(𝑋 = 𝑥)

Definition A.16 (Conditionally identically distributed). A set of random
variables 𝑌1, … , 𝑌𝑛 are conditionally identically distributed given a
set of covariates 𝑋1, … , 𝑋𝑛 if 𝑌1, … , 𝑌𝑛 have the same range ℛ(𝑋) and if
the distributions P(𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖) are all equal to the same distribution
P(𝑌 = 𝑦|𝑋 = 𝑥):

P(𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥) = P(𝑌 = 𝑦|𝑋 = 𝑥)
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Definition A.17 (Independent and identically distributed). A set of ran-
dom variables 𝑋1, … , 𝑋𝑛 are independent and identically distributed
(shorthand: “𝑋𝑖 iid”) if they are statistically independent and identically
distributed.

Definition A.18 (Conditionally independent and identically distributed).
A set of random variables 𝑌1, … , 𝑌𝑛 are conditionally independent and
identically distributed (shorthand: “𝑌𝑖|𝑋𝑖 ciid” or just “𝑌𝑖|𝑋𝑖 iid”)
given a set of covariates 𝑋1, … , 𝑋𝑛 if 𝑌1, … , 𝑌𝑛 are conditionally inde-
pendent given 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛 are identically distributed given
𝑋1, … , 𝑋𝑛.
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B.1. Probabilistic models

Definition B.1 (Scientific models). Scientific models are attempts to
describe physical conditions or changes that occur in the world and uni-
verse around us.

Example B.1 (Scientific models in epidemiology). Epidemiologists typi-
cally study biological conditions and changes, such as the spread of infec-
tious diseases through populations, or the effects of environmental factors
on individuals.

B.1.1. Statistical analysis of scientific models

When we perform statistical analyses, we use data to help us choose be-
tween models - specifically, to determine which models best explain that
data.

However, physical processes do not produce data on their own. Data is
only produced when scientists implement an observation process (i.e., a
scientific study), which is distinct from the underlying physical process. In
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some cases, the observation process and the physical process interact with
each other. This phenomenon is called the “observer effect”1.

In order to learn about the physical processes we are ultimately interested
in, we often need to make special considerations for the observation process
that produced the data which we are analyzing. In particular, if some of
the planned observations in the study design were not completed, we will
likely need to account for the incompleteness of the resulting data set in our
analysis. If we are not sure why some observations are incomplete, we may
need to model the observation process in addition to the physical process
we were originally interested in. For example, if some participants in a
study dropped out part-way through the study, we may need investigate
why those participants dropped out, as opposed to other participants who
completed the study.

These kinds of missing data issues are outside of the scope of this course;
see Van Buuren (2018) for more details.

B.2. Estimands, estimates, and estimators

B.2.1. Estimands

Definition B.2 (Estimand). An estimand is an unknown quantity whose
value we want to know (Pohl et al. 2021; Lawrance et al. 2020).

Example B.2 (Mean height of students). If we are trying to determine
the mean height of students at our school, then the population mean is our
estimand.

In statistical contexts, most estimands are parameters of probabilistic mod-
els, or functions of model parameters.

1https://en.wikipedia.org/wiki/Observer_effect
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Notation for estimands

Model paramaters and other estimands are often symbolized using
lower-case Greek letters: 𝛼, 𝛽, 𝛾, 𝛿, etc.

B.2.2. Estimates

Definition B.3 (Estimate/estimated value). In statistics, an estimate
or estimated value is an informed guess of an estimand’s value, based
on observed data.

Example B.3 (Mean height of students). Suppose we measure the heights
of 50 random students from our school, and the sample mean was 175cm.
We might use 175cm as an estimate of the population mean.

B.2.3. Estimators

Definition B.4 (Estimator). An estimator is a function ̂𝜃(𝑥1, ...𝑥𝑛) that
transforms data 𝑥1, ...𝑥𝑛 into an estimate.

Estimators are random variables

When estimators are applied to random variables, the estimators are
also random variables.

Notation for estimators

Estimators are often symbolized by placing a ^ (“hat”) symbol on
top of the corresponding estimand; for example, ̂𝜃.
Usually, their dependence on the data is implicit:
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̂𝜃 def= ̂𝜃(𝑥1, ...𝑥𝑛)

Example B.4 (Mean height of students). If we want to estimate the
mean height of students at our university, which we will represent as 𝜇,
we might measure the heights of 𝑛 = 50 randomly sampled students as
random variables 𝑋1, ..., 𝑋𝑛. Then we could use the function

̂𝜇(𝑋1, ..., 𝑋𝑛) = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖
def= 𝑋̄

as an estimator to produce an estimate ̂𝜇 = ̄𝑥 of 𝜇.

Another estimator would be just the height of the first student sampled:

̂𝜇(2)(𝑋1, ..., 𝑋𝑛) = 𝑋1

A third possible estimator would be the mean of all sampled students’
heights, except for the two most extreme; that is, if we re-order the ob-
servations 𝑋(1) = min𝑖∈1∶𝑛 𝑋𝑖, 𝑋(2) = min𝑖∈{1∶𝑛}−arg 𝑋(1)

𝑋𝑖, …, 𝑋(𝑛) =
max𝑖∈1∶𝑛 𝑋𝑖, then we could define the estimator:

̂𝜇(3)(𝑋1, ..., 𝑋𝑛) = 1
𝑛

𝑛−1
∑
𝑖=2

𝑋(𝑖)

Which of these estimators is best? It depends on how we evaluate them
(see Section B.3 below).
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B.2.4. Contrasting estimands, estimates, and estimators

It’s helpful to keep in mind the mathematical type of each estimation
concept:

• estimands are numbers (or vector of numbers)
• estimates are also numbers (or vectors)
• estimators are functions of random variables, so they are also random

variables

B.3. Accuracy of estimators

B.3.1. Accuracy

To determine which estimator is best, we need to define best. “Accuracy”
is usually most important; easy computation is usually secondary.

Definition B.5 (Accuracy). The accuracy of an estimator for a given
estimand does not have a consensus formal definition, but all of the usual
candidates are related to the distributions of the errors made by the re-
sulting estimates.

B.3.2. Error

Definition B.6 (Error). The error of an estimate ̂𝜃 of a true value 𝜃,
often denoted 𝜖( ̂𝜃), or more completely 𝜖( ̂𝜃, 𝜃), is the difference between
the estimate and its estimand 𝜃; that is:

𝜖( ̂𝜃) def= ̂𝜃 − 𝜃

Some frequently-used measures of accuracy include:
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B.3.3. Mean squared error

Definition B.7 (Mean squared error). The mean squared error of an
estimator ̂𝜃, denoted MSE ( ̂𝜃), is the expectation of the square of the
error2:

MSE ( ̂𝜃) def= 𝔼 [(𝜖( ̂𝜃))2]

B.3.4. Mean absolute error

Definition B.8 (Mean absolute error). The mean absolute error of an
estimator is the expectation of the absolute value of the error:

MAE ( ̂𝜃) def= 𝔼 [∣𝜖( ̂𝜃)∣]

B.3.5. Bias

Definition B.9 (Bias). The bias of an estimator ̂𝜃 for an estimand 𝜃 is
the expected value of the error:

Bias ( ̂𝜃) def= 𝔼 [𝜖( ̂𝜃)] (B.1)

Theorem B.1 (Bias equals Expectation minus Truth).

Bias ( ̂𝜃) = 𝔼 [ ̂𝜃] − 𝜃

2I might sometimes switch the order of 𝑥, 𝜃; this is unintentional and not meaningful.
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Proof.
Bias ( ̂𝜃) def= 𝔼 [𝜖( ̂𝜃)]

= 𝔼 [ ̂𝜃 − 𝜃]
= 𝔼 [ ̂𝜃] − 𝔼 [𝜃]
= 𝔼 [ ̂𝜃] − 𝜃

The third equality is by the linearity of expectation.

Theorem B.2 (Mean Squared Error equals Bias Squared plus Variance).
For any one-dimensional estimator ̂𝜃:

MSE ( ̂𝜃) = (Bias ( ̂𝜃))
2

+ Var ( ̂𝜃) (B.2)

Proof. Let’s start by expanding each term of the right-hand side:

(Bias ( ̂𝜃))
2

= (𝔼 [ ̂𝜃] − 𝜃)
2

= (𝔼 [ ̂𝜃])
2

− 2𝔼 [ ̂𝜃] 𝜃 + 𝜃2

Var ( ̂𝜃) = 𝔼 [ ̂𝜃2] − (𝔼 [ ̂𝜃])
2

Now, add them together and simplify:

(Bias ( ̂𝜃))
2

+ Var ( ̂𝜃) = (𝔼 [ ̂𝜃])
2

− 2𝔼 [ ̂𝜃] 𝜃 + 𝜃2 + 𝔼 [ ̂𝜃2] − (𝔼 [ ̂𝜃])
2

= 𝔼 [ ̂𝜃2] − 2𝔼 [ ̂𝜃] 𝜃 + 𝜃2
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Now let’s expand the left-hand side to reach the same expression:

MSE ( ̂𝜃) = 𝔼 [(e( ̂𝜃))2]
= 𝔼 [( ̂𝜃 − 𝜃)2]
= 𝔼 [ ̂𝜃2 − 2 ̂𝜃𝜃 − 𝜃2]
= 𝔼 [ ̂𝜃2] − 𝔼 [2 ̂𝜃𝜃] + 𝔼 [𝜃2]
= 𝔼 [ ̂𝜃2] − 2𝔼 [ ̂𝜃] 𝜃 + 𝜃2

MSE ( ̂𝜃) and (Bias ( ̂𝜃))
2
+Var ( ̂𝜃) both equal 𝔼 [ ̂𝜃2]−2𝔼 [ ̂𝜃] 𝜃+𝜃2. Equal-

ity is transitive, so MSE ( ̂𝜃) and (Bias ( ̂𝜃))
2

+ Var ( ̂𝜃) are equal to each
other:

MSE ( ̂𝜃) = (Bias ( ̂𝜃))
2

+ Var ( ̂𝜃)

B.3.5.1. Unbiased estimators

Definition B.10 (unbiased estimator). An estimator ̂𝜃 is unbiased if
Bias ( ̂𝜃) = 0.

Theorem B.3 (properties of unbiased estimators). If ̂𝜃 is unbiased, then:

𝔼 [ ̂𝜃] = 𝜃 (B.3)

MSE ( ̂𝜃) = Var ( ̂𝜃) (B.4)
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Proof. If ̂𝜃 is unbiased, then:

Equation B.3:

Bias ( ̂𝜃) = 0
𝔼 [ ̂𝜃] − 𝜃 = 0

𝔼 [ ̂𝜃] = 𝜃

Equation B.4:

MSE ( ̂𝜃) def= 𝔼 [(𝜖( ̂𝜃))
2
]

= 𝔼 [( ̂𝜃 − 𝜃)
2
]

= 𝔼 [( ̂𝜃 − 𝔼 [ ̂𝜃])
2
]

def= Var ( ̂𝜃)

(Alternative proof of Equation B.4) We could have started from Theo-
rem B.2 instead:

MSE ( ̂𝜃) = (Bias ( ̂𝜃))
2

+ Var ( ̂𝜃)
= (0)2 + Var ( ̂𝜃)
= 0 + Var ( ̂𝜃)
= Var ( ̂𝜃)
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B.3.6. Standard error

Definition B.11 (Standard error). The standard error of an estimator
̂𝜃 is just the standard deviation of ̂𝜃; that is:

SE ( ̂𝜃) def= SD ( ̂𝜃)

“Standard error” is a confusing concept in a few ways. First of all, it
isn’t even defined as a characteristic of the error, 𝜖( ̂𝜃)! Moreover, it is
just a synonym for standard deviation, so it seems like a redundant con-
cept. However, standard errors help us construct p-values and confidence
intervals, so they come up a lot - often enough to give them their own
name.

We can relate standard error to actual error, by rearranging the result
from Theorem B.2:

Var ( ̂𝜃) = Var ( ̂𝜃 − 𝜃)
= Var (𝜖( ̂𝜃))

So the variance of the estimator is equal to the variance of the error, and
the standard error is equal to the standard deviation of the error:

SE ( ̂𝜃) = SD (𝜖( ̂𝜃))

Corollary B.1 (Standard error squared equals MSE minus squared bias).
standard error is what is left over of MSE after bias is removed:

(SE ( ̂𝜃))
2

= MSE ( ̂𝜃) − (Bias ( ̂𝜃))
2
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Proof.
MSE ( ̂𝜃) = (Bias ( ̂𝜃))

2
+ Var ( ̂𝜃)

∴Var ( ̂𝜃) = MSE ( ̂𝜃) − (Bias ( ̂𝜃))
2

∴ (SE ( ̂𝜃))
2

= MSE ( ̂𝜃) − (Bias ( ̂𝜃))
2

Corollary B.2 (For unbiased estimators, SE = RMSE). If 𝔼 [𝜖 ( ̂𝜃)] = 0,
then:

SE ( ̂𝜃) = √MSE ( ̂𝜃)

(this result is equivalent to Equation B.4)
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C. Inference

C.1. Interpretation of Negative Findings

See Vittinghoff et al. (2012) §3.7 (p64).
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D. Introduction to Maximum
Likelihood Inference

These notes are derived primarily from Dobson and Barnett (2018) (mostly
chapters 1-5).

Some material was also taken from McLachlan and Krishnan (2007) and
Casella and Berger (2002).

Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
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library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))
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knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9

D.1. Overview of maximum likelihood estimation

D.1.1. The likelihood function

Definition D.1 (Likelihood). Let ̃𝑥 be a dataset with corresponding ran-
dom variable 𝑋̃. Let pΘ(𝑋̃) be a probability model for the distribution of
𝑋̃ with parameter vector Θ.

Then the likelihood of parameter value 𝜃, for model pΘ(𝑋) and data
𝑋̃ = ̃𝑥, is the joint probability of ̃𝑥 given Θ = 𝜃:

ℒ(𝜃) def= 𝑝𝜃(𝑋̃ = ̃𝑥)
= 𝑝𝜃(𝑋1 = 𝑥1, ..., 𝑋𝑛 = 𝑥𝑛)

Notation for the likelihood function

The likelihood function can be written as:

• ℒ(𝜃)
• ℒ( ̃𝑥; 𝜃)
• ℒ(𝜃; ̃𝑥)
• ℒ𝑥̃(𝜃)
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• ℒ𝜃( ̃𝑥)
• ℒ( ̃𝑥|𝜃)

All of these notations mean the same thing.

The likelihood is a function that takes 𝜃 (and implicitly, 𝑋̃) as inputs and
outputs a single number, the joint probability of ̃𝑥 for model 𝑝Θ(𝑋̃ = ̃𝑥)
with Θ = 𝜃.

Theorem D.1 (Likelihood of an independent sample). For mutually in-
dependent data 𝑋1, ..., 𝑋𝑛:

ℒ( ̃𝑥|𝜃) =
𝑛

∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃) (D.1)

Proof.
ℒ( ̃𝑥|𝜃) def= p(𝑋1 = 𝑥1, …, 𝑋𝑛 = 𝑥𝑛|𝜃)

=
𝑛

∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃)

The second equality is by the definition of statistical independence.

D.1.2. The maximum likelihood estimate

Definition D.2 (Maximum likelihood estimate). The maximum likeli-
hood estimate of a parameter vector Θ, denoted ̂𝜃ML, is the value of Θ
that maximizes the likelihood:

̂𝜃ML
def= arg max

Θ
ℒ(Θ) (D.2)
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D.1.3. Finding the maximum of a function

Recall from calculus: the maxima of a continuous function 𝑓(𝑥) over a
range of input values ℛ(𝑥) can be found either:

• at the edges of the range of input values, OR:
• where the function is flat (i.e. where the gradient function 𝑓 ′(𝑥) = 0)

AND the second derivative is negative definite (𝑓″(𝑥) < 0).

D.1.4. Directly maximizing the likelihood function for iid data

To find the maximizer(s) of the likelihood function, we need to solve
ℒ′(𝜃) = 0 for 𝜃. However, even for mutually independent data, we quickly
run into a problem:

ℒ′(𝜃) = 𝜕
𝜕𝜃ℒ(𝜃)

= 𝜕
𝜕𝜃

𝑛
∏
𝑖=1

𝑝(𝑋𝑖 = 𝑥𝑖|𝜃)
(D.3)

The derivative of the likelihood of independent data is the derivative of
a product. We will have to perform a massive application of the product
rule to evaluate this derivative.

D.1.5. The log-likelihood function

It is typically easier to work with the log of the likelihood function:

Definition D.3 (Log-likelihood). The log-likelihood of parameter value
𝜃, for model pΘ(𝑋̃) and data 𝑋̃ = ̃𝑥, is the natural logarithm of the
likelihood1:

1https://en.wikipedia.org/wiki/Does_exactly_what_it_says_on_the_tin
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ℓ(𝜃) def= log {ℒ(𝜃)}

Theorem D.2. The likelihood and log-likelihood have the same maximizer:

arg max
𝜃

ℒ(𝜃) = arg max
𝜃

ℓ(𝜃)

Proof. Left to the reader.

Theorem D.3 (Log-likelihood of an iid sample). For iid data 𝑋1, ..., 𝑋𝑛
with shared distribution p(𝑋 = 𝑥):

ℓ(𝑥|𝜃) =
𝑛

∑
𝑖=1

log {𝑝(𝑋 = 𝑥𝑖|𝜃)} (D.4)

Proof.
ℓ(𝑥|𝜃) def= log {ℒ( ̃𝑥|𝜃)}

= log {
𝑛

∏
𝑖=1

p(𝑋𝑖 = 𝑥𝑖|𝜃)}

=
𝑛

∑
𝑖=1

log {𝑝(𝑋 = 𝑥𝑖|𝜃)}
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For iid data, we will have a much easier time taking the derivative of the
log-likelihood:

Theorem D.4 (Derivative of the log-likelihood function for iid data). For
iid data:

ℓ′(𝜃) =
𝑛

∑
𝑖=1

𝜕
𝜕𝜃 log {p(𝑋 = 𝑥𝑖|𝜃)} (D.5)

Proof.
ℓ′(𝜃) = 𝜕

𝜕𝜃ℓ(𝜃)

= 𝜕
𝜕𝜃

𝑛
∑
𝑖=1

log {p(𝑋 = 𝑥𝑖|𝜃)}

=
𝑛

∑
𝑖=1

𝜕
𝜕𝜃 log {p(𝑋 = 𝑥𝑖|𝜃)}

D.1.6. The score function

The first derivative2 of the log-likelihood, ℓ′(𝜃), is important enough to
have its own name: the score function.

Definition D.4 (Score function). The score function of a statistical
model p(𝑋̃ = ̃𝑥) is the gradient (i.e., first derivative) of the log-likelihood
of that model:

2a.k.a. the gradient3
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ℓ′(𝜃) def= 𝜕
𝜕𝜃ℓ(𝜃)

We often skip writing the arguments 𝑥 and/or 𝜃), so ℓ′ def= ℓ′( ̃𝑥; 𝜃) def= ℓ′(𝜃).4
Some statisticians use 𝑈 or 𝑆 instead of ℓ′. I prefer ℓ′. Why use up extra
letters?

D.1.7. Asymptotic distribution of the maximum likelihood
estimate

We learned how to quantify our uncertainty about these maximum like-
lihood estimates; with sufficient sample size, ̂𝜃ML has the approximate
distribution:

̂𝜃𝑀𝐿∼̇𝑁(𝜃, ℐ(𝜃)−1)

Recall:

• ℐ(𝜃) def= 𝔼 [𝐼(𝑋̃; 𝜃)]
• 𝐼(𝑋̃, 𝜃) def= −ℓ″(𝑋̃; 𝜃)

We can estimate ℐ(𝜃) using either ℐ( ̂𝜃ML) or 𝐼( ̃𝑥; ̂𝜃ML).
So we can estimate the standard error of ̂𝜃𝑘 as:

ŜE ( ̂𝜃𝑘) = √[( ̂ℐ ( ̂𝜃ML))
−1

]
𝑘𝑘

4I might sometimes switch the order of 𝑥, 𝜃; this is unintentional and not meaningful.
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D.1.8. The (Fisher) (expected) information matrix

The variance of ℓ′(𝑥, 𝜃), 𝐶𝑜𝑣 {ℓ′(𝑥, 𝜃)}, is also very important; we call it
the “expected information matrix”, “Fisher information matrix”, or just
“information matrix”, and we represent it using the symbol ℑ (\frakturI
in Unicode, \mathfrak{I} in LaTeX).

ℑ def= ℑ(𝜃) def= 𝐶𝑜𝑣 (ℓ′|𝜃) = 𝐸[ℓ′ℓ′⊤] − 𝐸[ℓ′] 𝐸[ℓ′]⊤

The elements of ℑ are:

{ℑ𝑖𝑗
def= 𝐶𝑜𝑣 (ℓ′

𝑖, ℓ′
𝑗) = 𝐸[ℓ′

𝑖ℓ′
𝑗] − 𝐸[ℓ′

𝑖]𝐸[ℓ′
𝑗]}

Here,

𝔼 [ℓ′] def= ∫
𝑥∈ℛ(𝑥)

ℓ′(𝑥, 𝜃)p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

( 𝜕
𝜕𝜃 log {p(𝑋 = 𝑥|𝜃)}) p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

𝜕
𝜕𝜃p(𝑋 = 𝑥|𝜃)
p(𝑋 = 𝑥|𝜃) p(𝑋 = 𝑥|𝜃)𝑑𝑥

= ∫
𝑥∈ℛ(𝑋)

𝜕
𝜕𝜃p(𝑋 = 𝑥|𝜃)𝑑𝑥

And similarly

𝔼 [ℓ′ℓ′⊤] def= ∫
𝑥∈𝑅(𝑥)

ℓ′(𝑥, 𝜃)ℓ′(𝑥, 𝜃)⊤ p (𝑋 = 𝑥|𝜃) 𝑑𝑥

Note that 𝔼 [ℓ′] and 𝔼 [ℓ′ℓ′⊤] are functions of 𝜃 but not of 𝑥; the expecta-
tion operator removed 𝑥.
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Also note that for most of the distributions you are familiar with (including
Gaussian, binomial, Poisson, exponential):

𝔼 [ℓ′] = 0

So

ℐ (𝜃) = 𝔼 [ℓ′ℓ′⊤]

Moreover, for those distributions (called the “exponential family”), we
have:

ℑ = −𝔼 [ℓ″] = 𝔼 [−ℓ″]

(see Dobson and Barnett (2018), §3.17), where

ℓ″ def= 𝜕
𝜕𝜃ℓ′(𝑥,𝜃)⊤ = 𝜕

𝜕𝜃
𝜕

𝜕𝜃⊤ ℓ(𝑥, 𝜃)

is the 𝑝 × 𝑝 matrix whose elements are:

ℓ″
𝑖𝑗

def= 𝜕
𝜕𝜃𝑖

𝜕
𝜕𝜃𝑗

log {𝑝 (𝑋 = 𝑥 ∣ 𝜃)}

ℓ″ is called the “Hessian”5 of the log-likelihood function.

Sometimes, we use 𝐼(𝜃; 𝑥) def= −ℓ″ (note the standard-font “I” here). 𝐼(𝜃; 𝑥)
is the observed information, precision, or concentration matrix (Negative
Hessian).

5named after mathematician Otto Hesse6
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Key point

The asymptotics of MLEs gives us ̂𝜃𝑀𝐿 ∼ 𝑁 (𝜃, ℑ−1(𝜃)), approxi-
mately, for large sample sizes.

We can estimate ℐ−1(𝜃) by working out 𝔼 [−ℓ″] or 𝔼 [ℓ′ℓ′⊤] and plugging
in ̂𝜃ML, but sometimes we instead use 𝐼( ̂𝜃ML, ̃𝑥) for convenience; there are
some cases where it’s provably better according to some criteria (Efron
and Hinkley (1978)).

D.1.9. Iterative maximization

Note that later, when we are trying to find MLEs for likelihoods which we
can’t easily differentiate, we will “hill-climb” using the Newton-Raphson
algorithm:

̂𝜃∗ ← ̂𝜃∗ + (𝐼 ( ̃𝑦; ̂𝜃∗))
−1

ℓ′ ( ̃𝑦; ̂𝜃∗)

= ̂𝜃∗ − (ℓ″ ( ̃𝑦; ̂𝜃∗))
−1

ℓ′ ( ̃𝑦; ̂𝜃∗)

The reasoning for this algorithm is that we can approximate the the score
function using the first-order Taylor polynomial7:

ℓ′(𝜃) ≈ ℓ′∗(𝜃)
def= ℓ′( ̂𝜃∗) + ℓ″( ̂𝜃∗)(𝜃 − ̂𝜃∗)

7https://en.wikipedia.org/wiki/Taylor%27s_theorem
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The approximate score function, ℓ′∗(𝜃), is a linear function of 𝜃, so it is
easy to solve the corresponding approximate score equation, ℓ′∗(𝜃) = 0,
for 𝜃:

𝜃 = ̂𝜃∗ − ℓ′( ̂𝜃∗) ⋅ (ℓ″( ̂𝜃∗))
−1

For computational simplicity, we will sometimes use ℑ−1(𝜃) in place of
𝐼 ( ̂𝜃, 𝑦); doing so is called “Fisher scoring” or the “method of scoring”.
Note that this is the opposite of the substitution that we are making for
estimating the variance of the MLE; this time we should technically use
the observed information but we use the expected information instead.

There’s also an “empirical information matrix” (see McLachlan and Krish-
nan (2007)):

𝐼𝑒(𝜃, 𝑦) def=
𝑛

∑
𝑖=1

ℓ′
𝑖 ℓ′

𝑖
⊤ − 1

𝑛ℓ′ℓ′⊤

where ℓ𝑖 is the log-likelihood of the ith observation. Note that ℓ′ =
∑𝑛

𝑖=1 ℓ′
𝑖.

1
𝑛𝐼𝑒(𝜃, 𝑦) is the sample equivalent of

ℑ def= ℑ(𝜃) def= 𝐶𝑜𝑣 (ℓ′|𝜃) = 𝐸[ℓ′ℓ′⊤] − 𝐸[ℓ′] 𝐸[ℓ′]⊤

{ℑ𝑗𝑘
def= 𝐶𝑜𝑣 (ℓ′

𝑗, ℓ′
𝑘) = 𝐸[ℓ′

𝑗ℓ′
𝑘] − 𝐸[ℓ′

𝑗]𝐸[ℓ′
𝑘]}
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𝐼𝑒(𝜃, 𝑦) is sometimes computationally easier to compute for Newton-
Raphson-type maximization algorithms.

c.f. https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

D.1.10. Quantifying (un)certainty of MLEs

D.1.10.1. Confidence intervals for MLEs

An asymptotic approximation of a 95% confidence interval for 𝜃𝑘 is

̂𝜃ML ± 𝑧0.975 × ŜE ( ̂𝜃𝑘)

where 𝑧𝛽 the 𝛽 quantile of the standard Gaussian distribution.

D.1.10.2. p-values and hypothesis tests for MLEs

(to add)

D.1.10.3. Likelihood ratio tests for MLEs

log(likelihood ratio) tests (c.f. Dobson and Barnett 2018, sec. 5.7):

−2ℓ0 ∼ 𝜒2(𝑝 − 𝑞)

See also https://online.stat.psu.edu/stat504/book/export/html/657
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D.1.10.4. Prediction intervals for MLEs

𝑋 ∈ [ ̂𝜇 ± 𝑧1−𝛼/2
𝜎
𝑚]

Where 𝑚 is the sample size of the new data to be predicted (typically
1, except for binary outcomes, where it needs to be bigger for prediction
intervals to make sense)

D.2. Example: Maximum likelihood for Tropical
Cyclones in Australia

(Adapted from Dobson and Barnett (2018) §1.6.5)

D.2.1. Data

The cyclones dataset in the dobson package (Table D.1) records
the number of tropical cyclones in Northeastern Australia during 13
November-to-April cyclone seasons (more details in Dobson and Barnett
(2018) §1.6.5 and help(cyclones, package = "dobson")). Figure D.1
graphs the number of cyclones (y-axis) by season (x-axis). Let’s use 𝑌𝑖
to represent these counts, where 𝑖 is an indexing variable for the seasons
and 𝑌𝑖 is the number of cyclones in season 𝑖.

D.2.2. Exploratory analysis

Suppose we want to learn about how many cyclones to expect per season.
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library(dobson)
library(dplyr)
data(cyclones)
library(pander)
pander(cyclones |> relocate(season, .before = everything()))

Table D.1.: Number of tropical cyclones during a season from November
to April in Northeastern Australia

season years number
1 1956/7 6
2 1957/8 5
3 1958/9 4
4 1959/60 6
5 1960/1 6
6 1961/2 3
7 1962/3 12
8 1963/4 7
9 1964/5 4
10 1965/6 2
11 1966/7 6
12 1967/8 7
13 1968/9 4

library(ggplot2)
library(dplyr)
cyclones |>
mutate(years = years |> factor(levels = years)) |>
ggplot(aes(x = years, y = number, group = 1)) +
geom_point() +
geom_line() +
xlab("Season") +
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ylab("Number of cyclones") +
expand_limits(y = 0) +
theme(axis.text.x = element_text(vjust = .5, angle = 45))
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Figure D.1.: Number of tropical cyclones per season in northeastern Aus-
tralia, 1956-1969

There’s no obvious correlation between adjacent seasons, so let’s assume
that each season is independent of the others.

Let’s also assume that they are identically distributed; let’s denote this
distribution as 𝑃(𝑌 = 𝑦) (note that there’s no index 𝑖 in this expression,
since we are assuming the 𝑌𝑖s are identically distributed). We can visu-
alize the distribution using a bar plot (Figure D.2). Table D.2 provides
summary statistics.
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cyclones |>
ggplot() +
geom_histogram(aes(x = number)) +
expand_limits(x = 0) +
xlab("Number of cyclones") +
ylab("Count (number of seasons)")
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Figure D.2.: Bar plot of cyclones per season

n = nrow(cyclones)
sumx = cyclones |> pull(number) |> sum()
xbar = cyclones |> pull(number) |> mean()

cyclones |> table1::table1(x = ~ number)
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Table D.2.: Summary statistics for cyclones data

  Overall
(N=13)

number
Mean (SD) 5.54 (2.47)
Median [Min, Max] 6.00 [2.00, 12.0]

D.2.3. Model

We want to estimate 𝑃(𝑌 = 𝑦); that is, 𝑃(𝑌 = 𝑦) is our estimand.

We could estimate 𝑃(𝑌 = 𝑦) for each value of 𝑦 in 0 ∶ ∞ separately
(“nonparametrically”) using the fraction of our data with 𝑌𝑖 = 𝑦, but then
we would be estimating an infinitely large set of parameters, and we would
have low precision. We will probably do better with a parametric model.

Exercise D.1. What parametric probability distribution family might we
use to model this empirical distribution?

Solution. Let’s use the Poisson. The Poisson distribution is appropriate
for this data , because the data are counts that could theoretically take
any integer value (discrete) in the range 0 ∶ ∞. Visually, the plot of our
data closely resembles a Poisson or binomial distribution. Since cyclones
do not have an “upper limit” on the number of events we could potentially
observe in one season, the Poisson distribution is more appropriate than
the binomial.

Exercise D.2. Write down the Poisson distribution’s probability mass
function.
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Solution.
𝑃(𝑌 = 𝑦) = 𝜆𝑦𝑒−𝜆

𝑦! (D.6)

D.2.4. Estimating the model parameters using maximum
likelihood

Now, we can estimate the parameter 𝜆 for this distribution using maximum
likelihood estimation.

What is the likelihood?

Exercise D.3. Write down the likelihood (probability mass function or
probability density function) of a single observation 𝑥, according to your
model.

Solution.
ℒ(𝜆; 𝑥) = 𝑝(𝑋 = 𝑥|Λ = 𝜆)

= 𝜆𝑥𝑒−𝜆

𝑥!

Exercise D.4. Write down the vector of parameters in your model.

Solution. There is only one parameter, 𝜆:

𝜃 = (𝜆)

Exercise D.5. Write down the population mean and variance of a sin-
gle observation from your chosen probability model, as a function of the
parameters (extra credit - derive them).

Solution.
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• Population mean: E[𝑋] = 𝜆
• Population variance: Var(𝑋) = 𝜆

Exercise D.6. Write down the likelihood of the full dataset.

Solution.
ℒ(𝜆; ̃𝑥) = 𝑃(𝑋̃ = ̃𝑥)

= 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ..., 𝑋13 = 𝑥13)

=
13
∏
𝑖=1

𝑃(𝑋𝑖 = 𝑥𝑖)

=
13
∏
𝑖=1

𝜆𝑥𝑖𝑒−𝜆

𝑥𝑖!

Exercise D.7. Graph the likelihood as a function of 𝜆.

Solution.

lik = function(lambda, y = cyclones$number, n = length(y))
{
lambda^sum(y) * exp(-n*lambda) / prod(factorial(y))
}

library(ggplot2)
lik_plot =
ggplot() +
geom_function(fun = lik, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("likelihood") +
xlab('lambda')

print(lik_plot)
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Figure D.3.: Likelihood of Dobson cyclone data

Exercise D.8. Write down the log-likelihood of the full dataset.
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Solution.
ℓ(𝜆; ̃𝑥) = log {ℒ(𝜆; ̃𝑥)}

= log {
𝑛

∏
𝑖=1

𝜆𝑥𝑖e−𝜆

𝑥𝑖!
}

=
𝑛

∑
𝑖=1

log {𝜆𝑥𝑖e−𝜆

𝑥𝑖!
}

=
𝑛

∑
𝑖=1

log {𝜆𝑥𝑖} + log {e−𝜆} − log {𝑥𝑖!}

=
𝑛

∑
𝑖=1

𝑥𝑖log {𝜆} − 𝜆 − log {𝑥𝑖!}

=
𝑛

∑
𝑖=1

𝑥𝑖log {𝜆} −
𝑛

∑
𝑖=1

𝜆 −
𝑛

∑
𝑖=1

log {𝑥𝑖!}

=
𝑛

∑
𝑖=1

𝑥𝑖log {𝜆} − 𝑛𝜆 −
𝑛

∑
𝑖=1

log {𝑥𝑖!}

Exercise D.9. Graph the log-likelihood as a function of 𝜆.

Solution.

loglik = function(lambda, y = cyclones$number, n = length(y))
{
sum(y) * log(lambda) - n*lambda - sum(log(factorial(y)))
}

ll_plot = ggplot() +
geom_function(fun = loglik, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("log-likelihood") +
xlab('lambda')
ll_plot
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Figure D.4.: log-likelihood of Dobson cyclone data

D.2.4.1. The score function

Exercise D.10. Derive the score function for the dataset.

Solution. The score function is the first derivative of the log-likelihood:
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ℓ′(𝜆; ̃𝑥) = 𝜕
𝜕𝜆

𝑛
∑
𝑖=1

𝑥𝑖log {𝜆} − 𝑛𝜆 −
𝑛

∑
𝑖=1

log {𝑥𝑖!}

= 𝜕
𝜕𝜆

𝑛
∑
𝑖=1

𝑥𝑖log {𝜆} − 𝜕
𝜕𝜆𝑛𝜆 − 𝜕

𝜕𝜆
𝑛

∑
𝑖=1

log {𝑥𝑖!}

=
𝑛

∑
𝑖=1

𝑥𝑖
𝜕

𝜕𝜆 log {𝜆} − 𝑛 𝜕
𝜕𝜆𝜆 −

𝑛
∑
𝑖=1

𝜕
𝜕𝜆 log {𝑥𝑖!}

=
𝑛

∑
𝑖=1

𝑥𝑖
1
𝜆 − 𝑛 − 0

= 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛

= ( 1
𝜆𝑛 ̄𝑥) − 𝑛

= ( 1
𝜆72) − 13

Exercise D.11. Graph the score function.

Solution.

score = function(lambda, y = cyclones$number, n = length(y))
{
(sum(y) / lambda) - n

}

ggplot() +
geom_function(fun = score, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +

ylab("l'(lambda)") +
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xlab('lambda') +
geom_hline(yintercept = 0, col = 'red')
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Figure D.5.: score function of Dobson cyclone data

D.2.4.2. The Hessian matrix

Exercise D.12. Derive the Hessian matrix.

Solution. The Hessian function for an iid sample is the 2nd derivative(s)
of the log-likelihood:
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ℓ″(𝜆; ̃𝑥) = 𝜕
𝜕𝜆 ( 1

𝜆
𝑛

∑
𝑖=1

𝑥𝑖 − 𝑛)

= 𝜕
𝜕𝜆

1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖 − 𝜕
𝜕𝜆𝑛

= − 1
𝜆2

𝑛
∑
𝑖=1

𝑥𝑖

= − 1
𝜆2 𝑛 ̄𝑥

= − 1
𝜆2 ⋅ 72

Exercise D.13. Graph the Hessian.

Solution.

hessian = function(lambda, y = cyclones$number, n = length(y))
{
-sum(y)/(lambda^2)
}

ggplot() +
geom_function(fun = hessian, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +

ylab("l''(lambda)") +
xlab('lambda') +
geom_hline(yintercept = 0, col = 'red')
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Figure D.6.: Hessian function of Dobson cyclone data

Exercise D.14. Write the score equation (estimating equation).

Solution.
ℓ′(𝜆; ̃𝑥) = 0

Exercise D.15. Solve the estimating equation for 𝜆:
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Solution.
0 = 1

𝜆
𝑛

∑
𝑖=1

𝑥𝑖 − 𝑛

𝑛 = 1
𝜆

𝑛
∑
𝑖=1

𝑥𝑖

𝑛𝜆 =
𝑛

∑
𝑖=1

𝑥𝑖

𝜆 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

= ̄𝑥

Let’s call this solution of the estimating equation 𝜆̃ for now:

𝜆̃ def= ̄𝑥

Exercise D.16. Confirm that the Hessian ℓ″(𝜆; ̃𝑥) is negative when eval-
uated at 𝜆̃.

Solution.
ℓ″(𝜆̃; ̃𝑥) = − 1

𝜆̃2
𝑛 ̄𝑥

= − 1
̄𝑥2 𝑛 ̄𝑥

= −𝑛
̄𝑥

< 0

Exercise D.17. Find the MLE of 𝜆.

Solution. Since ℓ″(𝜆̃; ̃𝑥) < 0, 𝜆̃ is at least a local maximizer of the likelihood
function ℒ(𝜆). Since there is only one solution to the estimating equation
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and the Hessian is negative definite everywhere, 𝜆̃ must also be the global
maximizer of ℒ(𝜆; ̃𝑥):

mle = mean(cyclones$number)

𝜆̂ML = ̄𝑥 = 5.5385

Exercise D.18. Graph the log-likelihood with the MLE superimposed.

Solution.

library(dplyr)

mle_data = tibble(x = mle, y = loglik(mle))
ll_plot + geom_point(data = mle_data, aes(x = x, y = y), col = 'red')
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Figure D.7.: log-likelihood of Dobson cyclone data with MLE

D.2.4.3. Information matrices

obs_inf = function(...) -hessian(...)
ggplot() +
geom_function(fun = obs_inf, n = 1001) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("I(lambda)") +
xlab('lambda') +
geom_hline(yintercept = 0, col = 'red')
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Figure D.8.: Observed information function of Dobson cyclone data

Example D.1 (Finding the MLE using the Newton-Raphson algorithm).

We found that the MLE was 𝜆̂ = ̄𝑥, by solving the score equation ℓ′(𝜆) = 0
for 𝜆.

What if we hadn’t been able to solve the score equation?

Then we could start with some initial guess 𝜆̂∗, such as 𝜆̂∗ = 3, and use
the Newton-Raphson algorithm.

# specify initial guess:
cur_lambda_est = 3
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In Exercise D.10, we found that the score function was:

ℓ′(𝜆; ̃𝑥) = (72
𝜆 ) − 𝑛

In Exercise D.12, we found that the Hessian was:

ℓ″(𝜆; ̃𝑥) = −72
𝜆2

So we can approximate the the score function using the first-order Taylor
polynomial8:

ℓ′(𝜆) ≈ ℓ′∗(𝜆)
def= ℓ′(𝜆̂∗) + ℓ″(𝜆̂∗)(𝜆 − 𝜆̂∗)

= (72
𝜆̂∗

− 𝑛) + ⎛⎜
⎝

− 72
(𝜆̂∗)2

⎞⎟
⎠

(𝜆 − 𝜆̂∗)

Figure D.9 compares the true score function and the approximate score
function at 𝜆̂∗ = 3.

8https://en.wikipedia.org/wiki/Taylor%27s_theorem
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approx_score = function(lambda, lhat, ...)
{
score(lambda = lhat, ...) +
hessian(lambda = lhat, ...) * (lambda - lhat)

}

point_size = 5

plot1 = ggplot() +
geom_function(
fun = score,
aes(col = "true score function"),
n = 1001) +

geom_function(
fun = approx_score,
aes(col = "approximate score function"),
n = 1001,
args = list(lhat = cur_lambda_est)) +

geom_point(
size = point_size,
aes(x = cur_lambda_est, y = score(lambda = cur_lambda_est),

col = "current estimate")
) +
geom_point(
size = point_size,
aes(
x = xbar,
y = 0,
col = "true MLE"
)
) +
xlim(min(cyclones$number), max(cyclones$number)) +
ylab("l'(lambda)") +
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xlab('lambda') +
geom_hline(yintercept = 0)

print(plot1)
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Figure D.9.: score function of Dobson cyclone data and approximate score
function

This is equivalent to estimating the log-likelihood with a second-order
Taylor polynomial:

ℓ∗(𝜆) = ℓ(𝜆̂∗) + (𝜆 − 𝜆̂∗)ℓ′(𝜆̂∗) + 1
2ℓ″(𝜆̂∗)(𝜆 − 𝜆̂∗)2

469



D. Introduction to Maximum Likelihood Inference

approx_loglik = function(lambda, lhat, ...)
{
loglik(lambda = lhat, ...) +
score(lambda = lhat, ...) * (lambda - lhat) +
1/2 * hessian(lambda = lhat, ...) * (lambda - lhat)^2

}

plot_loglik = ggplot() +
geom_function(
fun = loglik,
aes(col = "true log-likelihood"),
n = 1001) +

geom_function(
fun = approx_loglik,
aes(col = "approximate log-likelihood"),
n = 1001,
args = list(lhat = cur_lambda_est)) +

geom_point(
size = point_size,
aes(x = cur_lambda_est, y = loglik(lambda = cur_lambda_est),

col = "current estimate")
) +
geom_point(
size = point_size,
aes(
x = xbar,
y = loglik(xbar),
col = "true MLE"
)
) +
xlim(min(cyclones$number) - 1, max(cyclones$number)) +
ylab("l'(lambda)") +
xlab('lambda')
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print(plot_loglik)
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Figure D.10.: log-likelihood of Dobson cyclone data and approximate log-
likelihood function

The approximate score function, ℓ′∗(𝜆), is a linear function of 𝜆, so it is
easy to solve the corresponding approximate score equation, ℓ′∗(𝜆) = 0,
for 𝜆:

𝜆 = 𝜆̂∗ − ℓ′(𝜆̂∗) ⋅ (ℓ″(𝜆̂∗))−1

= 4.375
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new_lambda_est <-
cur_lambda_est -
score(cur_lambda_est) * hessian(cur_lambda_est)^-1

plot2 = plot1 +
geom_point(
size = point_size,
aes(
x = new_lambda_est,
y = 0,
col = "new estimate"
)) +
geom_segment(
arrow = grid::arrow(),
linewidth = 2,
alpha = .7,
aes(
x = cur_lambda_est,
y = approx_score(
lhat = cur_lambda_est,
lambda = cur_lambda_est),
xend = new_lambda_est,
yend = 0,
col = "update"
)
)
print(plot2)
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Figure D.11.: score function of Dobson cyclone data and approximate
score function

So we update 𝜆̂∗ ← 4.375 and repeat our estimation process:

plot2 +
geom_function(
fun = approx_score,
aes(col = "new approximate score function"),
n = 1001,
args = list(lhat = new_lambda_est)) +

geom_point(
size = point_size,
aes(x = new_lambda_est, y = score(lambda = new_lambda_est),
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col = "new estimate")
)
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Figure D.12.: score function of Dobson cyclone data and approximate
score function

We repeat this process until the likelihood converges:

Compare with Exercise D.17
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Table D.3.: Convergence of Newton-Raphson Algorithm for finding MLE
of cyclone data

library(tibble)
cur_lambda_est = 3 # restarting
diff_loglik = Inf
tolerance = 10^-4
max_iter = 100
NR_info = tibble(
iteration = 0,
lambda = cur_lambda_est |> num(digits = 4),
likelihood = lik(cur_lambda_est),
`log(likelihood)` = loglik(cur_lambda_est) |> num(digits = 4),
score = score(cur_lambda_est),
hessian = hessian(cur_lambda_est)

)

for (cur_iter in 1:max_iter)
{

new_lambda_est <-
cur_lambda_est - score(cur_lambda_est) * hessian(cur_lambda_est)^-1

diff_loglik = loglik(new_lambda_est) - loglik(cur_lambda_est)

new_NR_info = tibble(
iteration = cur_iter,
lambda = new_lambda_est,
likelihood = lik(new_lambda_est),
`log(likelihood)` = loglik(new_lambda_est),
score = score(new_lambda_est),
hessian = hessian(new_lambda_est),
`diff(loglik)` = diff_loglik

)

NR_info = NR_info |> bind_rows(new_NR_info)

cur_lambda_est = new_lambda_est

if(abs(diff_loglik) < tolerance) break

}

NR_info
#> # A tibble: 6 x 7
#> iteration lambda likelihood `log(likelihood)` score hessian `diff(loglik)`
#> <dbl> <num:.> <dbl> <num:.4!> <dbl> <dbl> <dbl>
#> 1 0 3.0000 4.00e-18 -40.0610 1.1 e+ 1 -8 NA
#> 2 1 4.3750 4.33e-14 -30.7708 3.46e+ 0 -3.76 9.29e+ 0
#> 3 2 5.2941 2.57e-13 -28.9897 6.00e- 1 -2.57 1.78e+ 0
#> 4 3 5.5277 2.76e-13 -28.9176 2.54e- 2 -2.36 7.21e- 2
#> 5 4 5.5384 2.76e-13 -28.9175 4.93e- 5 -2.35 1.37e- 4
#> 6 5 5.5385 2.76e-13 -28.9175 1.87e-10 -2.35 5.18e-10
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ll_plot +
geom_segment(
data = NR_info,
arrow = grid::arrow(),
# linewidth = 2,
alpha = .7,
aes(
x = lambda,
xend = lead(lambda),
y = `log(likelihood)`,
yend = lead(`log(likelihood)`),
col = factor(iteration)
)
)
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Figure D.13.: Newton-Raphson algorithm for finding MLE of model D.6
for cyclone data

D.3. Maximum likelihood inference for univariate
Gaussian models

Suppose 𝑋1, ..., 𝑋𝑛 ∼iid 𝑁(𝜇, 𝜎2). Let 𝑋 = (𝑋1, … , 𝑋𝑛)⊤ be these
random variables in vector format. Let 𝑥𝑖 and 𝑥 denote the corresponding
observed data. Then 𝜃 = (𝜇, 𝜎2) is the vector of true parameters, and
Θ = (M, Σ2) is the vector of parameters as a random vector.

Then the log-likelihood is:
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ℓ ∝ −𝑛
2 log {𝜎2} − 1

2
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2

= −𝑛
2 log {𝜎2} − 1

2𝜎2

𝑛
∑
𝑖=1

𝑥2
𝑖 − 2𝑥𝑖𝜇 + 𝜇2

D.3.1. The score function

ℓ′(𝑥, 𝜃) def= 𝜕
𝜕𝜃ℓ(𝑥, 𝜃) = (

𝜕
𝜕𝜇ℓ(𝜃; 𝑥)
𝜕

𝜕𝜎2 ℓ(𝜃; 𝑥) ) = ( ℓ′
𝜇(𝜃; 𝑥)

ℓ′
𝜎2(𝜃; 𝑥) )

.

ℓ′(𝑥, 𝜃) is the function we set equal to 0 and solve to find the MLE:

̂𝜃𝑀𝐿 = {𝜃 ∶ ℓ′(𝑥, 𝜃) = 0}

D.3.2. MLE of 𝜇

𝑑ℓ
𝑑𝜇 = −1

2
𝑛

∑
𝑖=1

−2(𝑥𝑖 − 𝜇)
𝜎2

= 1
𝜎2 [(

𝑛
∑
𝑖=1

𝑥𝑖) − 𝑛𝜇]

If 𝑑ℓ
𝑑𝜇 = 0, then 𝜇 = 𝑥 def= 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖.

𝑑2ℓ
(𝑑𝜇)2 = −𝑛

𝜎2 < 0

So ̂𝜇𝑀𝐿 = 𝑥.
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D.3.3. MLE of 𝜎2

Reparametrizing the Gaussian distribution

When solving for 𝜎̂𝑀𝐿, you can treat 𝜎2 as an atomic variable (don’t
differentiate with respect to 𝜎 or things get messy). In fact, you can
replace 𝜎2 with 1/𝜏 and differentiate with respect to 𝜏 instead, and
the process might be even easier.

𝑑ℓ
𝑑𝜎2 = 𝜕

𝜕𝜎2 (−𝑛
2 log {𝜎2} − 1

2
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2 )

= −𝑛
2 (𝜎2)−1 + 1

2 (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

If 𝑑ℓ
𝑑𝜎2 = 0, then:

𝑛
2 (𝜎2)−1 = 1

2 (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2

We plug in ̂𝜇𝑀𝐿 = 𝑥 to maximize globally (a technique called profiling):

𝜎2
𝑀𝐿 = 1

𝑛
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)2

Now:
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𝑑2ℓ
(𝑑𝜎2)2 = 𝜕

𝜕𝜎2 {−𝑛
2 (𝜎2)−1 + 1

2 (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= {−𝑛
2

𝜕
𝜕𝜎2 (𝜎2)−1 + 1

2
𝜕

𝜕𝜎2 (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= {𝑛
2 (𝜎2)−2 − (𝜎2)−3 𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= (𝜎2)−2 {𝑛
2 − (𝜎2)−1 𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

Evaluated at 𝜇 = 𝑥, 𝜎2 = 1
𝑛 ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2, we have:

𝑑2ℓ
(𝑑𝜎2)2 = (𝜎̂2)−2 {𝑛

2 − (𝜎̂2)−1 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥)2}

= (𝜎̂2)−2 {𝑛
2 − (𝜎̂2)−1 𝑛𝜎̂2}

= (𝜎̂2)−2 {𝑛
2 − 𝑛}

= (𝜎̂2)−2 𝑛 {1
2 − 1}

= (𝜎̂2)−2 𝑛 (−1
2) < 0

Finally, we have:
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𝑑2ℓ
𝑑𝜇 𝑑𝜎2 = 𝜕

𝜕𝜇 {−𝑛
2 (𝜎2)−1 + 1

2 (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2}

= 1
2 (𝜎2)−2 𝜕

𝜕𝜇
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

= 1
2 (𝜎2)−2 𝑛

∑
𝑖=1

−2(𝑥𝑖 − 𝜇)

= − (𝜎2)−2 𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)

Evaluated at 𝜇 = ̂𝜇 = 𝑥, 𝜎2 = 𝜎̂2 = 1
𝑛 ∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2, we have:

𝑑2ℓ
𝑑𝜇 𝑑𝜎2 = − (𝜎̂2)−2 (𝑛𝑥 − 𝑛𝑥) = 0

D.3.4. Covariance matrix

𝐼 = [
𝑛
𝜎2 0
0 (𝜎̂2)−2 𝑛 (−1

2)] = [𝑎 0
0 𝑑]

So:

𝐼−1 = 1
𝑎𝑑 [𝑑 0

0 𝑎] = [
1
𝑎 0
0 1

𝑑
]

𝐼−1 = [
𝜎̂2
𝑛 0
0 2(𝜎̂2)2

𝑛
]

See Casella and Berger (2002) p322, example 7.2.12.

To prove it’s a maximum, we need:
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• ℓ′ = 0
• At least one diagonal element of ℓ″ is negative.

• Determinant of ℓ″ is positive.

D.4. Example: hormone therapy study

Now, we’re going to analyze some real-world data using a Gaussian model,
and then we’re going to do a simulation to examine the properties of
maximum likelihood estimation for that Gaussian model.

Here we look at the “heart and estrogen/progestin study” (HERS), a clin-
ical trial of hormone therapy for prevention of recurrent heart attacks and
death among 2,763 post-menopausal women with existing coronary heart
disease (CHD) (Hulley et al. 1998).

We are going to model the distribution of fasting glucose among nondia-
betics who don’t exercise.

# load the data directly from a UCSF website
hers = haven::read_dta(
paste0( # I'm breaking up the url into two chunks for readability

"https://regression.ucsf.edu/sites/g/files",
"/tkssra6706/f/wysiwyg/home/data/hersdata.dta"

)
)
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Table D.4.: HERS dataset

hers |> head()
#> # A tibble: 6 x 37
#> HT age raceth nonwhite smoking drinkany exercise physact globrat
#> <dbl+lbl> <dbl> <dbl+l> <dbl+lb> <dbl+l> <dbl+lb> <dbl+lb> <dbl+l> <dbl+l>
#> 1 0 [placebo] 70 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 5 [muc~ 3 [goo~
#> 2 0 [placebo] 62 2 [Afr~ 1 [yes] 0 [no] 0 [no] 0 [no] 1 [muc~ 3 [goo~
#> 3 1 [hormone t~ 69 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 3 [abo~ 3 [goo~
#> 4 0 [placebo] 64 1 [Whi~ 0 [no] 1 [yes] 1 [yes] 0 [no] 1 [muc~ 3 [goo~
#> 5 0 [placebo] 65 1 [Whi~ 0 [no] 0 [no] 0 [no] 0 [no] 2 [som~ 3 [goo~
#> 6 1 [hormone t~ 68 2 [Afr~ 1 [yes] 0 [no] 1 [yes] 0 [no] 3 [abo~ 3 [goo~
#> # i 28 more variables: poorfair <dbl+lbl>, medcond <dbl>, htnmeds <dbl+lbl>,
#> # statins <dbl+lbl>, diabetes <dbl+lbl>, dmpills <dbl+lbl>,
#> # insulin <dbl+lbl>, weight <dbl>, BMI <dbl>, waist <dbl>, WHR <dbl>,
#> # glucose <dbl>, weight1 <dbl>, BMI1 <dbl>, waist1 <dbl>, WHR1 <dbl>,
#> # glucose1 <dbl>, tchol <dbl>, LDL <dbl>, HDL <dbl>, TG <dbl>, tchol1 <dbl>,
#> # LDL1 <dbl>, HDL1 <dbl>, TG1 <dbl>, SBP <dbl>, DBP <dbl>, age10 <dbl>
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n.obs = 100 # we're going to take a small subset of the data to look at;
# if we took the whole data set, the likelihood function would be hard to
# graph nicely

library(dplyr)
data1 =
hers |>
filter(

diabetes == 0,
exercise == 0) |>

head(n.obs)

glucose_data =
data1 |>
pull(glucose)

library(ggplot2)
library(ggeasy)
plot1 =
data1 |>
ggplot(aes(x = glucose)) +
geom_histogram(aes(x = glucose, after_stat(density))) +
theme_classic() +
easy_labs()

print(plot1)
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Looks somewhat plausibly Gaussian. Good enough for this example!

D.4.1. Find the MLEs

mu_hat = mean(glucose_data)
sigma_sq_hat = mean((glucose_data - mean(glucose_data))^2)

Our MLEs are:

• ̂𝜇 = 98.66
• 𝜎̂2 = 104.7444

Here’s the estimated distribution, superimposed on our histogram:
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plot1 +
geom_function(

fun = function(x) dnorm(x, mean = mu_hat, sd = sqrt(sigma_sq_hat)),
col = "red"

)
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Looks like a somewhat decent fit? We could probably do better, but that’s
for another time.

D.4.2. Construct the likelihood and log-likelihood functions

it’s often computationally more effective to construct the log-likelihood
first and then exponentiate it to get the likelihood
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loglik = function(
mu, # I'm assigning default values, which the function will use
# unless we tell it otherwise
sigma = sd(x), # note that you can define some defaults based on other arguments
x = glucose_data,
n = length(x)

)
{

normalizing_constants = -n/2 * log((sigma^2) * 2 * pi)

likelihood_kernel = - 1/(2 * sigma^2) *
{
# I have to do this part in a somewhat complicated way
# so that we can pass in vectors of possible values of mu
# and get the likelihood for each value;
# for the binomial case it's easier
sum(x^2) - 2 * sum(x) * mu + n * mu^2

}

answer = normalizing_constants + likelihood_kernel

return(answer)

}

# `...` means pass any inputs to lik() along to loglik()
lik = function(...) exp(loglik(...))

D.4.3. Graph the Likelihood as a function of 𝜇

(fixing 𝜎2 at 𝜎̂2 = 104.7444)
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ggplot() +
geom_function(fun = function(x) lik(mu = x, sigma = sigma_sq_hat)) +
xlim(mean(glucose_data) + c(-1,1) * sd(glucose_data)) +
xlab("possible values of mu") +
ylab("likelihood") +
geom_vline(xintercept = mean(glucose_data), col = "red")

4.442e−243

5.223e−243

6.004e−243

6.785e−243

7.566e−243

90 95 100 105
possible values of mu

lik
el

ih
oo

d

D.4.4. Graph the Log-likelihood as a function of 𝜇

(fixing 𝜎2 at 𝜎̂2 = 104.7444)

ggplot() +
geom_function(fun = function(x) loglik(mu = x, sigma = sigma_sq_hat)) +
xlim(mean(glucose_data) + c(-1,1) * sd(glucose_data)) +
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xlab("possible values of mu") +
ylab('log(likelihood)') +
geom_vline(xintercept = mean(glucose_data), col = "red")
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D.4.5. Likelihood and log-likelihood for 𝜎, conditional on 𝜇 = ̂𝜇:

ggplot() +
geom_function(fun = function(x) lik(sigma = x, mu = mean(glucose_data))) +
xlim(sd(glucose_data) * c(.9,1.1)) +
geom_vline(

xintercept = sd(glucose_data) * sqrt(n.obs - 1)/sqrt(n.obs),
col = "red") +
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xlab("possible values for sigma") +
ylab('Likelihood')

7.203e−164

1.145e−163

1.570e−163

1.995e−163

2.420e−163

9.5 10.0 10.5 11.0
possible values for sigma

Li
ke

lih
oo

d

ggplot() +
geom_function(

fun = function(x) loglik(sigma = x, mu = mean(glucose_data))
) +
xlim(sd(glucose_data) * c(0.9, 1.1)) +
geom_vline(

xintercept =
sd(glucose_data) * sqrt(n.obs - 1) / sqrt(n.obs),

col = "red") +
xlab("possible values for sigma") +
ylab("log(likelihood)")
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D.4.6. Standard errors by sample size:

se.mu.hat = function(n, sigma = sd(glucose_data)) sigma/sqrt(n)
ggplot() +
geom_function(fun = se.mu.hat) +
scale_x_continuous(trans = "log10", limits = c(10, 10^5), name = "Sample size") +
ylab("Standard error of mu (mg/dl)") +
theme_classic()
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D.4.7. Simulations

D.4.7.1. Create simulation framework

Here’s a function that performs a single simulation of a Gaussian modeling
analysis:

do_one_sim = function(
n = 100,
mu = mean(glucose_data),
mu0 = mean(glucose_data) * 0.9,
sigma2 = var(glucose_data),
return_data = FALSE # if this is set to true, we will create a list() containing both
# the analytic results and the vector of simulated data

)
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{

# generate data
x = rnorm(n = 100, mean = mu, sd = sqrt(sigma2))

# analyze data
mu_hat = mean(x)
sigmahat = sd(x)
se_hat = sigmahat/sqrt(n)
confint = mu_hat + c(-1, 1) * se_hat * qt(.975, df = n - 1)
tstat = abs(mu_hat - mu0) / se_hat
pval = pt(df = n - 1, q = tstat, lower = FALSE) * 2
confint_covers = between(mu, confint[1], confint[2])
test_rejects = pval < 0.05

# if you want spaces, hyphens, or characters in your column names, use "", '', or ``:
to_return = tibble(

"mu-hat" = mu_hat,
"sigma-hat" = sigmahat,
"se_hat" = se_hat,
"confint_left" = confint[1],
"confint_right" = confint[2],
"tstat" = tstat,
"pval" = pval,
"confint covers true mu" = confint_covers,
"test rejects null hypothesis" = test_rejects

)

if(return_data)
{

return(
list(

data = x,
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results = to_return))
} else
{

return(to_return)
}

}

Let’s see what this function outputs for us:

do_one_sim()
#> # A tibble: 1 x 9
#> `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat pval
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 96.8 9.48 0.948 94.9 98.6 8.40 3.27e-13
#> # i 2 more variables: `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>

Looks good!

Now let’s check it against the t.test() function from the stats pack-
age:

set.seed(1)
mu = mean(glucose_data)
mu0 = 80
sim.output = do_one_sim(mu0 = mu0, return_data = TRUE)
our_results =
sim.output$results |>
mutate(source = "`do_one_sim()`")

results_t.test = t.test(sim.output$data, mu = mu0)
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results2 =
tibble(

source = "`stats::t.test()`",
"mu-hat" = results_t.test$estimate,
"sigma-hat" = results_t.test$stderr*sqrt(length(sim.output$data)),
"se_hat" = results_t.test$stderr,
confint_left = results_t.test$conf.int[1],
confint_right = results_t.test$conf.int[2],
tstat = results_t.test$statistic,
pval = results_t.test$p.value,
"confint covers true mu" = between(mu, confint_left, confint_right),
`test rejects null hypothesis` = pval < 0.05

)

comparison =
bind_rows(

our_results,
results2

) |>
relocate(

"source",
.before = everything()

)

comparison
#> # A tibble: 2 x 10
#> source `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat pval
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 `do_one~ 99.8 9.24 0.924 97.9 102. 21.4 6.23e-39
#> 2 `stats:~ 99.8 9.24 0.924 97.9 102. 21.4 6.23e-39
#> # i 2 more variables: `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>
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Looks like we got it right!

D.4.7.2. Run 1000 simulations

Here’s a function that calls the previous function n_sims times and sum-
marizes the results:

do_n_sims = function(
n_sims = 1000,
... # this symbol means "allow additional arguments to be passed on to the `do_sim_once` function

)
{

sim_results = NULL # we're going to create a "tibble" of results,
# row by row (slightly different from the hint on the homework)

for (i in 1:n_sims)
{

set.seed(i)

current_results =
do_one_sim(...) |> # here's where the simulation actually gets run
mutate(

sim_number = i
) |>
relocate(sim_number, .before = everything())

sim_results =
sim_results |>
bind_rows(current_results)
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}

return(sim_results)
}

sim_results = do_n_sims(
n_sims = 100,
mu = mean(glucose_data),
sigma2 = var(glucose_data),
n = 100 # this is the number of samples per simulated data set

)

sim_results |> head(10)
#> # A tibble: 10 x 10
#> sim_number `mu-hat` `sigma-hat` se_hat confint_left confint_right tstat
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 99.8 9.24 0.924 97.9 102. 11.9
#> 2 2 98.3 11.9 1.19 96.0 101. 8.00
#> 3 3 98.8 8.81 0.881 97.0 101. 11.3
#> 4 4 99.7 9.40 0.940 97.8 102. 11.6
#> 5 5 99.0 9.72 0.972 97.1 101. 10.5
#> 6 6 98.6 10.6 1.06 96.4 101. 9.18
#> 7 7 100. 9.86 0.986 98.1 102. 11.5
#> 8 8 97.7 11.1 1.11 95.5 99.9 8.03
#> 9 9 98.1 9.86 0.986 96.2 100. 9.45
#> 10 10 97.3 9.68 0.968 95.3 99.2 8.74
#> # i 3 more variables: pval <dbl>, `confint covers true mu` <lgl>,
#> # `test rejects null hypothesis` <lgl>

The simulation results are in! Now we have to analyze them.
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D.4.7.3. Analyze simulation results

To do that, we write another function:

summarize_sim = function(
sim_results,
mu = mean(glucose_data),
sigma2 = var(glucose_data),
n = 100)

{

# calculate the true standard error based on the data-generating parameters:
`se(mu-hat)` = sqrt(sigma2/n)

sim_results |>
summarize(
`bias[mu-hat]` = mean(`mu-hat`) - mu,
`SE(mu-hat)` = sd(`mu-hat`),
`bias[SE-hat]` = mean(se_hat) - `se(mu-hat)`,
`SE(SE-hat)` = sd(se_hat),
coverage = mean(`confint covers true mu`),
power = mean(`test rejects null hypothesis`)

)

}

Let’s try it out:

sim_summary = summarize_sim(
sim_results,
mu = mean(glucose_data),
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# this function needs to know the true parameter values in order to assess bias
sigma2 = var(glucose_data),
n = 100)

sim_summary
#> # A tibble: 1 x 6
#> `bias[mu-hat]` `SE(mu-hat)` `bias[SE-hat]` `SE(SE-hat)` coverage power
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.0334 0.999 -0.00826 0.0752 0.98 1

From this simulation, we observe that our estimate of 𝜇, ̂𝜇, has minimal
bias, and so does our estimate of 𝑆𝐸( ̂𝜇), ̂𝑆𝐸( ̂𝜇).
The confidence intervals captured the true value even more often than
they were supposed to, and the hypothesis test always rejected the null
hypothesis.

I wonder what would happen with a different sample size, a different true
𝜇 value, or a different 𝜎2 value…
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Configuring R

Functions from these packages will be used throughout this document:

library(conflicted) # check for conflicting function definitions
# library(printr) # inserts help-file output into markdown output
library(rmarkdown) # Convert R Markdown documents into a variety of formats.
library(pander) # format tables for markdown
library(ggplot2) # graphics
library(ggeasy) # help with graphics
library(ggfortify) # help with graphics
library(dplyr) # manipulate data
library(tibble) # `tibble`s extend `data.frame`s
library(magrittr) # `%>%` and other additional piping tools
library(haven) # import Stata files
library(knitr) # format R output for markdown
library(tidyr) # Tools to help to create tidy data
library(plotly) # interactive graphics
library(dobson) # datasets from Dobson and Barnett 2018
library(parameters) # format model output tables for markdown
library(haven) # import Stata files
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library(latex2exp) # use LaTeX in R code (for figures and tables)
library(fs) # filesystem path manipulations
library(survival) # survival analysis
library(survminer) # survival analysis graphics
library(KMsurv) # datasets from Klein and Moeschberger
library(parameters) # format model output tables for
library(webshot2) # convert interactive content to static for pdf
library(forcats) # functions for categorical variables ("factors")
library(stringr) # functions for dealing with strings
library(lubridate) # functions for dealing with dates and times

Here are some R settings I use in this document:

rm(list = ls()) # delete any data that's already loaded into R

conflicts_prefer(dplyr::filter)
ggplot2::theme_set(
ggplot2::theme_bw() +

# ggplot2::labs(col = "") +
ggplot2::theme(
legend.position = "bottom",
text = ggplot2::element_text(size = 12, family = "serif")))

knitr::opts_chunk$set(message = FALSE)
options('digits' = 4)

panderOptions("big.mark", ",")
pander::panderOptions("table.emphasize.rownames", FALSE)
pander::panderOptions("table.split.table", Inf)
conflicts_prefer(dplyr::filter) # use the `filter()` function from dplyr() by default
legend_text_size = 9
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E.1. Parameters versus random variables

The parameters of a probability distribution shouldn’t involve the random
variables being modeled:

This is wrong

𝑋 ∼ 𝑃𝑜𝑖𝑠(𝜆)
𝜆̂𝑀𝐿 →𝐷 𝑁(𝑋̄, 𝜆/𝑛)

Solution.
𝜆̂𝑀𝐿 →𝐷 𝑁(𝜆, 𝜆/𝑛)

Expectations are means, not sums, despite the similarity of Σ and E. Re-
ally, we should use 𝜇 instead of E.

E.2. Quarto

E.2.1.

Make sure not to put a div ::: on the next line after a slide break ---:

---
::: notes
:::

There needs to be an empty line between them:
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---

::: notes
:::

E.2.2. library(printr) currently breaks df-print: paged

See https://github.com/yihui/printr/issues/41
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F. Notation

Table F.1.: Notation used in this book
symbol meaning LaTeX
¬ not \neg
∀ all \forall
∃ some \exists
∪ union, “or” \cup
∩ intersection, “and” \cap
∣ given, conditional on \mid, |
∑ sum \sum
∏ product \prod
𝜇 mean \mu
𝔼[𝑋] expectation of 𝑋 \mathbb{E}[X]

F.1. The percent sign

The percent sign “%” is just a shorthand for “× 1
100”. The word “per-

cent” comes from the Latin “per centum”; “centum” means 100 in Latin,
so “percent” means “per hundred” (c.f., https://en.wikipedia.org/wiki/
Percentage)

So, contrary to what you may have learned previously, 10% = 0.1 is a true
and correct equality.
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Proof.
10% = 10 × 1

100
= 10

100
= 0.1
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G. Statistical computing in R

There are an overwhelming number of great resources for learning R; here
are some recommendations:

• Introduction to modern R: Wickham, Çetinkaya-Rundel, and Grole-
mund (2023)

• Advanced R programming: Wickham (2019)
• Examples of graphics: Chang (2024)
• Building R packages: Wickham and Bryan (2023)
• Translations from SAS: Kleinman and Horton (2009)

G.1. Functions

• Read this ASAP: https://r4ds.hadley.nz/functions.html
• Use this as a reference: https://adv-r.hadley.nz/functions.html

G.1.1. Methods versus functions

See https://adv-r.hadley.nz/oo.html#oop-systems

G.1.2. Debugging R and C code

See https://www.maths.ed.ac.uk/~swood34/RCdebug/RCdebug.html
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G.2. The tidyverse

The tidyverse is an opinionated collection of R packages de-
signed for data science. All packages share an underlying de-
sign philosophy, grammar, and data structures.

• https://www.tidyverse.org/

These packages are being actively developed by Hadley Wickham1 and his
colleagues at posit23.

Details:

• Wickham et al. (2019)
• Wickham, Çetinkaya-Rundel, and Grolemund (2023)
• Kuhn and Silge (2022)

G.3. Piping

See Wickham, Çetinkaya-Rundel, and Grolemund (2023)5 for details.

There are currently (2024) two commonly-used pipe operators in R:

• %>%: the “magrittr pipe”, from the magrittr6 package (Bache and
Wickham (2022); re-exported7 by dplyr8 and others) .

• |>: the “native pipe”, from base R (�4.1.0)

1https://hadley.nz/
2https://posit.co/
3the company formerly known as RStudio4

5https://r4ds.hadley.nz/data-transform.html#sec-the-pipe
6https://cran.r-project.org/web/packages/magrittr/index.html
7https://r-pkgs.org/dependencies-in-practice.html#re-exporting
8https://cran.r-project.org/web/packages/dplyr/index.html
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G.3.1. Which pipe should I use?

Wickham, Çetinkaya-Rundel, and Grolemund (2023) recommends the na-
tive pipe9:

For simple cases, |> and %>% behave identically. So why do
we recommend the base pipe? Firstly, because it’s part of base
R, it’s always available for you to use, even when you’re not
using the tidyverse. Secondly, |> is quite a bit simpler than
%>%: in the time between the invention of %>% in 2014 and
the inclusion of |> in R 4.1.0 in 2021, we gained a better un-
derstanding of the pipe. This allowed the base implementation
to jettison infrequently used and less important features.

G.3.2. Why doesn’t ggplot2 use piping?

Here’s tidyverse creator Hadley Wickham’s answer (from 2018):

I think it’s worth unpacking this question into a few smaller
pieces:

• Should ggplot2 use the pipe? IMO, yes.
• Could ggplot2 support both the pipe and plus? No
• Would it be worth it to create a ggplot3 that uses the

pipe? No.

https://forum.posit.co/t/why-cant-ggplot2-use/4372/7

9https://r4ds.hadley.nz/data-transform.html#sec-the-pipe:~:text=So%20why%
20do%20we%20recommend%20the%20base%20pipe%3F
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G.4. Quarto

Quarto is a system for writing documents with embedded R code and/or
results:

• Read this ASAP: https://r4ds.hadley.nz/communicate
• Then use this for reference: https://quarto.org/docs/reference/

G.5. Packages

This book espouses our philosophy of package development:
anything that can be automated, should be automated. Do
as little as possible by hand. Do as much as possible with
functions. The goal is to spend your time thinking about what
you want your package to do rather than thinking about the
minutiae of package structure.

• https://r-pkgs.org/introduction.html#:~:text=This%20book%20espouses,of%20package%20structure.

• Read this ASAP: https://r-pkgs.org/whole-game.html

• Use the rest of Wickham and Bryan (2023) as a reference

G.6. Git

94% of respondents to a 2022 Stack Overflow survey reported using git for
version control link10

More details11

10https://survey.stackoverflow.co/2022/#section-version-control-version-control-
systems

11https://r-pkgs.org/software-development-practices.html#sec-sw-dev-practices-git-
github
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• https://happygitwithr.com/

• https://usethis.r-lib.org/articles/pr-functions.html

G.7. Spatial data science

• Pebesma and Bivand (2023)

G.8. Shiny apps

• Read this first: Wickham (2021)
• Use this as a reference: Fay et al. (2021)
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H. Contributing to rme

This section outlines how to propose a change to rme. For a detailed discus-
sion on contributing to this and other projects, please see the Tidyverse
development contributing guide1 and the Tidyverse code review princi-
ples2. This project is not part of the tidyverse, but we have borrowed
their development processes.

H.1. Fixing typos

You can fix typos, spelling mistakes, or grammatical errors directly using
the GitHub web interface by making changes in the corresponding source
file. This generally means you’ll need to edit a .qmd file. This book is
written using Quarto3.

H.2. Bigger changes

If you want to make a bigger change, it’s a good idea to first file an
issue and make sure someone from the development team agrees that it’s
needed.

1https://rstd.io/tidy-contrib
2https://code-review.tidyverse.org/
3https://quarto.org/docs/books/
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H.2.1. Pull request4 process

• Fork the package and clone onto your computer. If you haven’t done
this before, we recommend using usethis::create_from_github("d-morrison/rme",
fork = TRUE).

• Install all development dependencies with devtools::install_dev_deps().
Make sure you can build the book by running quarto render in a
Terminal.

• Create a Git branch for your pull request (PR). We recommend using
usethis::pr_init("brief-description-of-change"). Details at
https://usethis.r-lib.org/articles/pr-functions.html

• Make your changes, commit to git, and then create a PR by running
usethis::pr_push(), and following the prompts in your browser.
The title of your PR should briefly describe the change. The body
of your PR should contain Fixes #issue-number.

• Add a bullet to the top of NEWS.md (i.e. just below the first header).
Follow the style described in https://style.tidyverse.org/news.html.

H.2.2. Code style

• New code should follow the tidyverse style guide5. You can use the
styler6 package to apply these styles, but please don’t restyle code
that has nothing to do with your PR.

4https://usethis.r-lib.org/articles/pr-functions.html#whats-a-pull-request
5https://style.tidyverse.org
6https://CRAN.R-project.org/package=styler
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H. Contributing to rme

H.3. Code of Conduct

Please note that the rme project is released with a Contributor Code
of Conduct7. By contributing to this project you agree to abide by its
terms.

7CODE_OF_CONDUCT.md
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